
Applications Of Graphs In Trajectory Design
Abstract for the 25th International Symposium on Space Flight Dynamics

Juan Arrieta
Jet Propulsion Laboratory, California Institute of Technology

Juan.Arrieta@jpl.nasa.gov

Graphs are widely studied data structures and have found applications in many corners of human endeavor. Their perva-
siveness has led to a strong theoretical foundation, a broad collection of algorithms, the availability of high-quality software,
and the creation of standards for their storage and visualization.

In domains such as the study of social networks the relationship is instinctively analogous: friends and friendships seem
to be naturally represented by nodes and edges. In other domains, such as the calculation of sparse Jacobians, the analogy
is more subtle.

During the development of methods and tools for the preliminary design of gravity tours in the Jovian system, I found
three main applications of graphs which have proved valuable. In my contribution to the conference I will expand on these
three aspects and how they are coming together in the implementation of a tool for the design of gravity tours.

Representation of Gravity-Assisted Tours

The design of trajectories for missions like the Voyagers, Galileo, and Cassini entails a complex piece-wise construction
process aiming to join various flybys together. A mission designer typically starts from given incoming hyperbolic conditions
at some body, generates various possible subsequent flybys, selects a specific one, and continues in this manner until a
satisfactory multiple-flyby trajectory has been created. The process is complex because one can generate subsequent flybys
using various transfer strategies, such as resonant, non-resonant, and π-transfers, and these can be subject to different
modeling considerations, such as the fidelity of the gravity field or the use of maneuvers.

I will present a technique for representing such process using directed graphs. The graph representation enables efficient
calculation, storage, and data mining. In this technique nodes represent incoming conditions at some flyby body, and each
edge represents the transfer between two nodes. For example: in the patched-conic approximation a node contains a body

id, t, v∞i id, t, v∞iv∞o

identifier, id, a timepoint, t, and an incoming hyperbolic velocity vector, v∞i; an edge contains an outgoing hyperbolic velocity
vector, v∞o, and references to the from and to nodes. Deceivingly simple, this representation enables the implementation
of complex behaviors such as (1) the generation of nodes in either depth-first or breadth-first manner, (2) the isolation of
tours within the graph as a list of edges, and (3) the serialization of the graph to various standard formats for storage
and visualization. The graph format accommodates for additional information attached to nodes and edges to represent

id, t, v∞i id, t, v∞i id, t, v∞i id, t, v∞iv∞o, ∆t, ∆v v∞o v∞o, ∆t, ∆v

additional transfer events. For example: a ∆v executed ∆t time units from the flyby time could be added to some edges to
denote maneuver locations for non-ballistic transfers.

It would seem natural to represent spacecraft trajectories as graphs: world-events linked by transfers and, in fact, the
leading software for trajectory optimization such as MALTO, CATO, Cosmic, SOCS, and Copernicus are all based on similar
concepts: break points and control points; nodes and stages; constraints and phases. Their relationship to graphs, however,
is often secondary and mostly in the form of a list of nodes and edges [n, e, n, e, . . .]. I propose what I perceive to be a
more cohesive methodology for representing different phases of a trajectory as a directed graph where the nodes denote the
junction points (constraints) between different phases and the edges represent the dynamical model joining the nodes.

Modeling Multibody Gravity Using Undirected Graphs

Depending on their distance and potential, the various gravity sources acting on a body can be treated as barycenters, point
masses, or distributed masses; the distinction can be important both for numerical and performance reasons. For example: it
is reasonable for an Earth orbiter to consider the perturbations due to the Jovian system taken as the barycenter of Jupiter
and the four Galilieans; this calculation entails one—and not five—ephemerides evaluations. Similarly, it may be reasonable
to consider the Moon’s distributed potential, but less reasonable to consider, for example, Saturn’s oblateness. The decision



@

B C

$

D

D1 D2

X

X1 X2 X3 X4

of what gravity sources to treat in what manner at a given time is delegated to a gravity model, which can also be used to
determine the appropriate integration center.

I will present a technique for modeling multibody gravity using an undirected graph. It is inspired by the manner in which
gravity is modeled in the MONTE library using k-ary trees, but differs from it in three major aspects: (1) treats the nodes
homogeneously during the calculation, (2) makes the integration center the root node, and (3) refers all motion to a common
center (normally, but not necessarily, the Solar System barycenter). The methodology can be implemented recursively and
can store intermediate results to yield savings in ephemerides evaluation.

Graph Coloring for the Evaluation of Sparse Jacobians and Hessians

I will describe both the theoretical foundation and implementation of a utility that relies on graph coloring techniques for
the numerical calculation of sparse Jacobians and Hessians. The theory is based on the original work of Curtis, Powell, and
Reid; later generalized by Coleman and Moré; and extended and summarized by Gebremedhin, Manne, and Pothen: one
can reduce the number of function evaluations required to calculate an sparse Jacobian if its columns are separated into
structurally orthogonal groups, and finding such groups is equivalent to coloring a graph. For example: the Jacobian of the
differential equations modeling the two body problem

d2r

dt2
= −µ

r

r3
(1)

can be separated into three groups (red, green, and blue) of structurally-orthogonal columns:

structure(J) =


0 0 0 Bvx

0 0
0 0 0 0 Bvy

0
0 0 0 0 0 Bvz

Brx Bry Brz 0 0 0
Brx Bry Brz 0 0 0
Brx Bry Brz 0 0 0

 . (2)

Given a nominal value, one could evaluate the six columns in the Jacobian using three (as opposed to six) additional function
evaluations: perturbing red (rx, vx, vy, and vz), then green (ry), and finally blue (rz). This choice of groups was obtained

r 1
x r 1

y r 1
z v 1

x v 1
y v 1

z

rx ry rzvx vy vz

from a distance-2 coloring of the variable-dependency graph: nodes separated by two edges must have different colors.

Acknowledgements

The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration.


