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Abstract:

This paper addresses the problem of active collision avoidance for an operational satellite with
an orbital debris. The thrusting strategy is designed as a single velocity increment performed at
a time fixed in advance. Due to uncertainty affecting the position and velocity of the two objects,
its computation can be cast into a chance-constrained optimization problem. Here, the model of
rectilinear encounters between spherical objects enables to tackle it via the so-called scenario
approach. In the scenario program, constraints and their gradients with respect to the control
vector are computed analytically thanks to the f and g functions, assuming Keplerian dynamics to
propagate the effects of the maneuver. Two test cases including a real collision alert illustrate the
performance of the proposed method.

1. INTRODUCTION

The ever-growing population of space debris has become a constant threat for Earth satellites.
On-ground tracking radars allow to foresee potential collisions and consequent alerts are sent to
operators several days before a would-be conjunction of a debris with one of the spacecraft they
monitor. These messages describe the geometry as well as position and velocity at some reference
time of a pair of potentially colliding objects. Because of the uncertain nature of the data, the risk is
computed via a probabilistic metric. When the collision probability is too high compared to the
safety threshold, the operator would then need to perform an evasive maneuver. The design of
such an operation is driven by fuel-consumption in order to have the slightest impact on mission
lifetime. Assuming that statistical information is available for characterizing uncertainty, an intuitive
formulation of the problem belongs to the class of chance-constrained optimization problems where
at least one constraint is probabilistic [15], [12], [4].

Since chance-constrained problems are generally hard to solve, simplifying assumptions are usually
made to reduce the dimension of the optimization space or even to avoid the probabilistic formulation.
In [11], the optimization process is decoupled: the direction is optimized at first before minimizing
the magnitude independently. In the context of formation flying, the method described in [16] does
not directly handle the collision probability. Instead, the velocity increment is designed to achieve a
fixed distance of closest approach between the two mean trajectories. A similar approach is used in
[14], where execution time and thrust direction are heuristically fixed a priori so that the collision
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avoidance maneuver is only optimized in magnitude. On the other hand, in [10], uncertainty
is tackled via robust optimization and convex relaxations rather than via a chance constrained
optimization problem formulation. In the present paper, no relaxation is done concerning the
optimization variables and the probabilistic formulation is dealt with indirectly.

This study focuses on the design of a single maneuver to be executed at a fixed time before
conjunction. Assuming high-thrust chemical propulsion, an impulsive idealization of the finite
powered control is considered. In practice, this kind of space operation is usually effective enough
to reduce the risk to an acceptable level. The conjunction is assumed to be a rectilinear encounter
involving spherical objects [2, 7]. As in [11], the effects of the maneuver are computed assuming
Keplerian dynamics. Consequently, orbit propagation may be done analytically thanks to the
Lagrange coefficients f and g [3, 8, 9]. The original chance-constrained problem is handled via
the so-called scenario approach [5, 6]. Using this method, admissible solutions of the genuine
probabilistic optimization problem are provided with some predefined confidence level when a
convexity property of the realizable set is verified [6]. Unfortunately, this is not the case for the
problem of collision avoidance tackled in this paper. Still, scenario approaches offer a practical and
useful way to the user for designing effective fuel-efficient maneuvers. This is demonstrated by the
results obtained with the numerical examples. The first one, originating from a real case collision
alert, validates the proposed approach by comparison with a heuristic method while the second one,
simulating an encounter on an elliptical orbit, shows its efficiency.

2. ENCOUNTER MODEL

In a possible collision between a pair of Earth-orbiting objects, the active actuated satellite is
referred to as the primary object denoted by the subscript p, while the space debris, assumed to be
passive (non actuated) is called the secondary object denoted by the subscript s.

A typical alert provides the operator with an uncertain estimate of both objects’ position r and
velocity v at some reference time t = 0, chosen when the mean trajectories are close to each other.
The system of coordinates can be any Earth-centered frame, such as the Geocentric Equatorial
Coordinate System [17]. Using the notations previously introduced and superscripts for time
evaluation, the uncertain parameter is q = (r̂0

p, v̂0
p,r0

s ,v0
s ), lying in a domain of uncertainty Q ⊆

R3×R3×R3×R3. The hat stands for the fact that r̂0
p and v̂0

p describe the primary state if no
maneuver is performed. When uncertainty is modeled via probability distributions, the states of the
two objects are usually modeled with independent multivariate normal laws [7]. However, in the
present approach, no assumption on the probabilistic nature of the random vectors is needed. The
only requirement is to be able to trial the general random vector q that describes uncertainty.

A specific model - namely short-term encounters [2] - has been developed to describe conjunctions
with high relative speed at stake. Such a case typically occurs in low-Earth orbit where orbital
velocities are the highest in magnitude. The short-term model is based on one main approximation:
the relative motion between the two objects is considered as a uniformly rectilinear trajectory. Also,
in this model, uncertainty on velocities is usually neglected, but this assumption is not required by
our approach and will not be requested here.
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The last assumption is that each object is geometrically modeled with a sphere. In this context, the
collision set i.e. the set of initial (t = 0) relative coordinates leading to a collision on an infinite
time horizon is an infinite right cylinder of revolution, referred to as the tube of collision [7]. Let us
briefly explain why. First of all, one needs to introduce the so-called combined object [7]. Defined
for any time t, it is the set of relative coordinates between the primary and secondary centers such
that the two objects are intersecting. Because of the spherical assumption, the combined object
is in fact independent of time and is also a sphere, whose radius R equals the sum of the objects’
radii (see Figure 1). Under the uniform rectilinear assumption of the motion, the collision set is
the translation of the combined object centered at the origin over an infinite time horizon along the
direction given by the relative velocity. As a result, the tube of collision is an infinite right cylinder
of revolution, whose axis contains the origin and is directed along the relative velocity.

R

p

s

Figure 1: Combined sphere of the two objects

3. CHANCE-CONSTRAINED FORMULATION FOR THE PROBLEM OF COLLISION
AVOIDANCE

Basically, the goal of an avoidance maneuver is to minimize fuel-consumption while ensuring that
the probability of collision over time remains sufficiently small according to mission requirements.
Assuming high-thrust propulsion, a maneuver is modeled as an instantaneous jump in the velocity
of the primary object, referred to as an impulse. The date of the burn τ ≤ 0 is fixed in advance and
is not part of the optimization process. Its choice can be based on heuristic considerations or on
operational constraints such as visibility windows. As a result, the control vector reduces to a single
velocity increment ∆v. Usually, there is only a need for a very slight velocity correction to avoid
collision. For this reason, the control set X ⊂ R3 is chosen as some ball centered at zero with a
relatively small radius. Assuming a single steerable thruster, fuel-consumption equals the Euclidean
norm of the velocity increment ‖∆v‖ [13, Chapter 6]. In order to obtain a differentiable function,
the performance index is chosen as ‖∆v‖2.

In our model, for a given occurrence of the uncertain parameter q, the condition for a collision
to occur can be written - as will be shown later - as a single inequality c(∆v,q) < 0, where
c : X ×Q 7→ R. Therefore, the chance-constrained problem writes as:

min
∆v∈X

‖∆v‖2 s.t. P{c(∆v,q)< 0} ≤ ε, (1)

where the maximum risk ε ∈ (0,1) is defined by the user.

For a given (∆v,q), the computation of c is done in two steps. First, the effect of ∆v can be computed
by propagating the initial state (r̂0

p, v̂0
p) backwards in time to its date of execution τ , adding the
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velocity increment and propagating forwards to the reference time. Then, the objects’ states are
plugged in the equation defining the tube of collision. All the details are given in Section 5..

Despite the quadratic cost function and its convexity property, Problem (1) is hard to solve if only
for the computation of the chance constraint itself. Therefore, it is tackled indirectly with a scenario
approach described below.

4. A SCENARIO APPROACH

The scenario approach can provide admissible solutions to a chance-constrained problem [5].
Instead of dealing with a probabilistic constraint, it aims at solving a min-max problem on a large
but finite number of occurrences of the uncertain parameter. In the present case, as the cost function
does not depend on the random vector, the resulting problem described hereafter is a deterministic
minimization problem.

4.1. The Scenario Program

The scenario approach aims at solving a so-called scenario program [5]. First of all, one needs to
sample N vectors q(1), . . . ,q(N) in Q. The scenario program associated to (1) then writes as:

min
∆v∈X

‖∆v‖2 s.t. c(∆v,q(i))≥ 0 ∀i = 1, . . . ,N. (2)

Note here that the cost function appearing in the scenario program (2), is unchanged but the chance
constraint has been replaced by a finite number of deterministic conditions, easier to evaluate. In
general, local solutions of such a problem can be obtained by use of state-of-the-art optimization
solvers, especially if the gradient of c with respect to the control vector can be computed analytically.

4.2. Solutions of the Scenario Program

Let us first define the feasibility set Kq, for q in Q:

Kq = {∆v ∈X : c(∆v,q)≥ 0}. (3)

Basically, for a given realization of the uncertain parameter, such a set contains all the control
vectors leading to no collision between the two objects. When q varies in Q, (3) defines a family of
feasibility sets. If these sets satisfy a convexity property, then there is a strong theoretical result on
the solution of the scenario program, stated below.

Theorem 1 (Uncertain convex program [6] in three-dimension) If Kq is convex for all q in Q
and if N is such that:

(1− ε)N +Nε(1− ε)N−1 +
1
2
(N−1)Nε

2(1− ε
N−2)≤ β , (4)

then there is a probability 1− β , referred to as the confidence level, for the solution ∆v∗ =
∆v∗(q(1), . . . ,q(N)) of the scenario program (2) to satisfy:

P{c(∆v∗,q)< 0} ≤ ε. (5)
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This theorem basically means that, under the convexity assumption for all the feasibility sets, there
is a guarantee in probability for the solution of a sufficiently large scenario program to be admissible
for the initial chance-constrained problem. However, even in this case, the provided solution will be
sub-optimal since it is a global optimum for only a finite number of scenarios and there is no global
optimal certificate for the genuine problem.
In the case when some feasibility sets Kq for some q in Q are non convex sets, the solution of a
scenario program may still be admissible for the original chance constrained problem, although
the designer has no guarantee, even in a probabilistic sense. In addition, the obtained solution is
in general a local optimum of the scenario program. In the present case of collision avoidance for
rectilinear encounters, it turns out that the convexity property is not satisfied. As a result, even for
large N, there is no guarantee that the solution of a scenario program will be admissible for the
chance-constrained problem. Therefore, the validity of the solution would have to be checked a
posteriori and its optimality can only be evaluated by comparing with alternative approaches when
available.

5. COMPUTATION OF FUNCTION c(·,q) AND ITS GRADIENT

As mentioned in section 4., the scenario program (2) can be solved using state-of-the-art optimization
solvers. To do so, one needs to evaluate the functions c(·,q( j)) (i = 1, . . . ,N) for any ∆v ∈X and,
to improve the efficiency of these solvers, their gradients if possible. Computing c requires to
propagate the effects of a maneuver on the primary trajectory. In the sequel, it is assumed that they
can be estimated with Keplerian dynamics.

5.1. The f and g Lagrange coefficients

The f and g functions first appear in the so-called Kepler problem [8, Chapter 2.11] which consists
in propagating over time the position and velocity of a body on a Keplerian orbit. More precisely, if
the position and velocity of an orbiting body are known at a given time t1, its position and velocity
can be found for any t2 ≤ t1 or any t2 ≥ t1, as linear combinations of the initial position and velocity
vectors, whose coefficients are the f and g functions and their time derivatives ḟ and ġ. These four
quantities are functions of time shift and initial conditions. Namely, for any (t1, t2):

rt2 = f (rt1,vt1, t2− t1)rt1 +g(rt1 ,vt1 , t2− t1)vt1 ,
vt2 = ḟ (rt1,vt1, t2− t1)rt1 + ġ(rt1,vt1, t2− t1)vt1.

(6)

The idea of introducing such functions comes from Kepler’s laws, stating that a given orbit lies
in a single plane. Using an angular parameter instead of t, analytic expressions for f and g and
their time derivatives may be derived by solving the equations of motion in the two-body problem.
The relationship between time and the orbital angle is given by the so-called Kepler equation. As
a result, seen as functions of time, f , g, ḟ and ġ are implicitly defined and can be computed by
solving a transcendental equation. It is done here via a Newton-Raphson algorithm. See [3, Chapter
4] or [9, Chapter 8] for details.
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5.2. Computing c(∆v,q)

For any given scenario q ∈Q, we now want to compute c(∆v,q) as a function of the impulse ∆v.
Recall that, in the framework of rectilinear encounters between spherical objects, the collision set in
the space of relative coordinates at t = 0 is an infinite right cylinder of revolution. Its axis contains
the origin and is oriented along the relative velocity vector (see Figure 2). As a result, the condition
for the occurrence of a collision can be expressed as a single inequality c(∆v,q)< 0. It basically
states that the squared magnitude of the projection of the relative position vector onto the plane
orthogonal to the relative velocity has to be smaller than the square of the combined radius. Let
r0

p(∆v,q) and v0
p(∆v,q) be respectively the primary position and velocity at t = 0 after a maneuver

∆v is performed at t = τ . Function c writes as:

c(∆v,q) = ‖r0
p(∆v,q)− r0

s‖2−
(
(r0

p(∆v,q)− r0
s )

T ·
v0

p(∆v,q)−v0
s

‖v0
p(∆v,q)−v0

s‖

)2

−R2. (7)

R v0
p − v0

s

r0p − r0s

(0, 0, 0)

Figure 2: Tube of collision

In order to evaluate c(∆v,q), we now need to compute the primary position r0
p(∆v,q) and velocity

v0
p(∆v,q). In the present study, as in [11], the effect of the maneuver ∆v on the primary object

is assumed to be computed under Keplerian dynamics, i.e. by neglecting the effects of orbital
perturbations. Therefore, the Lagrange coefficients f and g can be used to evaluate r0

p(∆v,q) and
v0

p(∆v,q).

Let us first propagate backwards the initial state (r̂0
p, v̂0

p) to the instant τ of burn. According to
formulas (6), the primary position and velocity just before the burn are given by:

rτ
p(q) = f

(
r̂0

p, v̂
0
p,τ
)

r̂0
p +g

(
r̂0

p, v̂
0
p,τ
)

v̂0
p,

vτ
p(q) = ḟ

(
r̂0

p, v̂
0
p,τ
)

r̂0
p + ġ

(
r̂0

p, v̂
0
p,τ
)

v̂0
p.

Note that all the previous quantities are independent of the control vector. The next step is to add
the velocity increment ∆v at t = τ and to finally propagate forwards the state to t = 0. The primary
position and velocity vectors after the burn are then given by:

r0
p(∆v,q) = f

(
rτ

p(q),v
τ
p(q)+∆v,−τ

)
rτ

p(q)+g
(
rτ

p(q),v
τ
p(q)+∆v,−τ

)
(vτ

p(q)+∆v), (8)

v0
p(∆v,q) = ḟ

(
rτ

p(q),v
τ
p(q)+∆v,−τ

)
rτ

p(q)+ ġ
(
rτ

p(q),v
τ
p(q)+∆v,−τ

)
(vτ

p(q)+∆v). (9)

Plugging these expressions into (7) allows to evaluate c(∆v,q). As previously mentioned, the
inequality c(·,q)≥ 0 does not satisfy any convexity property.
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5.3. Computing ∂1c(∆v,q)

In the present approach, the gradient of the function c(·,q) can be computed analytically, allowing
us in part 6. to use more efficient optimization solver. This part is dedicated to the derivation of a
formula for ∂1c(∆v,q), where ∂1 denotes the partial derivatives of a function with respect to its first
input.

From equations (8) and (9), it comes that:

∂1r0
p(∆v,q) = ∂2 f

(
rτ

p,v
τ
p +∆v,−τ

)
rτ

p +∂2g
(
rτ

p,v
τ
p +∆v,−τ

)
vτ

p +g
(
rτ

p,v
τ
p +∆v,−τ

)
,(10)

∂1v0
p(∆v,q) = ∂2 ḟ

(
rτ

p,v
τ
p +∆v,−τ

)
rτ

p +∂2ġ
(
rτ

p,v
τ
p +∆v,−τ

)
vτ

p + ġ
(
rτ

p,v
τ
p +∆v,−τ

)
,(11)

where ∂2 denotes the partial derivative with respect to the second variable of the considered
function. Note that the partial derivatives of the f and g functions can be derived from their analytic
expressions. Let us now define:

u0
r (∆v,q) =

v0
p(∆v,q)−v0

s

‖v0
p(∆v,q)−v0

s‖
, (12)

and rewrite c(∆v,q) as:
c(∆v,q) = c′(∆v,q)− c′′(∆v,q)2,

where the functions c′,c′′ are defined by:

c′(∆v,q) = ‖r0
p(∆v,q)− r0

s‖2−R2,

c′′(∆v,q) =
(
r0

p(∆v,q)− r0
s
)T u0

r (∆v,q).

The c′(·,q) function can be seen as a composite function, namely:

c′(·,q) : ∆v 7→ r0
p(∆v,q)− r0

s 7→ ‖r0
p(∆v,q)− r0

s‖2,

whose gradient with respect to ∆v, is classically given by:

∂1c′(∆v,q) = 2∂1r0
p(∆v,q)T (r0

p(∆v,q)− r0
s ).

Let us now focus on the computation of ∂1c′′(∆v,q). The first step consists in computing the
gradient of c′′(·,q) as a function of ∂1u0

r (·,q). In what follows, the dependence in the impulse ∆v
will be omitted to lighten the notations. Here we get:

∂1c′′(∆v,q) = ∂1r0T
p u0

r +∂1u0T
r (r0

p− r0
s ).

The second step is to compute ∂1u0
r (∆v,q) and is more technical. The function u0

r (·,q) can be seen
in its turn as a composite function, namely:

u0
r (·,q) : R3 7→ R3 7→ R3

∆v 7→ v0
p(∆v,q)−v0

s 7→ ψ(v0
p(∆v,q)−v0

s ) =
v0

p(∆v,q)−v0
s

‖v0
p(∆v,q)−v0

s‖
.
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Using the first order Taylor expansion of the function ψ : R3 7→ R3,x 7→ x
‖x‖ , the Jacobian matrix of

ψ writes:

Jψ(x) =
1
‖x‖

(
I3−

xxT

‖x‖2

)
.

Hence:

∂1u0
r (∆v,q) = Jψ(v0

p−v0
s )∂1v0

p,

=

(
I3−

(v0
p−v0

s )(v0
p−v0

s )
T

‖v0
p−v0

s‖2

)
∂1v0

p

‖v0
p−v0

s‖
,

=
1

‖v0
p−v0

s‖
(
I3−u0

r u0T
r
)

∂1v0
p.

The gradient of c′′(·,q) writes:

∂1c′′(∆v,q) = ∂1r0T
p u0

r +
∂1v0T

p

‖v0
p−v0

s‖
(
I3−u0

r u0T
r
)T

(r0
p− r0

s ).

Lastly, after some simplifications, the gradient of c(·,q), given by:

∂1c(∆v,q) = ∂1c′(∆v,q)−2c′′(∆v,q)∂1c′′(∆v,q),

equals:

∂1c = 2

(
∂1r0

p−
(r0

p− r0
s )

T u0
r

‖v0
p−v0

s‖
∂1v0

p

)T

(I3−u0
r u0T

r )(r0
p− r0

s ). (13)

6. NUMERICAL RESULTS

The scenario approach can deal with any given date of avoidance maneuver. However for the sake
of comparison, we choose here a specific configuration for the burn, namely one half orbital period
before conjunction. In the case of a circular orbit, a tangential maneuver is a classical choice to
maximize the radial separation between the two objects [14]. Thus, the first example validates our
method by comparing it to this heuristic. The second example is an encounter on an elliptical orbit,
for which no intuitive solution exists, but that can still be tackled by the scenario approach. For
both cases, the positions r̂0

p and r0
s of each orbiting object, follow independent normal probability

distribution laws while uncertainty on velocities is neglected: the variables v̂0
p and v0

s are in fact
deterministic. It is a usual assumption for short-term encounters [2]. Scenarios are then randomly
sampled accordingly to these probability distribution laws.

Solutions will be expressed in the local orbital frame (x,y,z) depicted in Figure 3: it is attached to
the primary orbit propagated backwards to t = τ from the mean position-velocity vector E(r̂0

p, v̂0
p).

The x axis is along the orbital velocity, the z axis points opposite to the orbital momentum and the y
axis completes the orthogonal frame.
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Earth

E(r0p)

E(v0
p)

x

y

z

Figure 3: Configuration of the collision avoidance maneuver

Let us now describe the main steps of the search for optimality:
1. Generate N scenarios q(1), . . . ,q(N).
2. Solve the associated scenario program.

(a) If there is no solution, then go back to step 1.
(b) Otherwise let ∆v be the obtained solution and go to step 3.

3. Compare the current cost ‖∆v‖ to the last memorized ‖∆v∗‖.
(a) If ‖∆v‖ ≤ ‖∆v∗‖, go to step 4.
(b) Otherwise go back to step 1.

4. Check the feasibility of the current ∆v for the original chance constrained problem via a
Monte Carlo method.

(a) If P{c(∆v,q)< 0} ≤ ε , then ∆v∗← ∆v and go back to step 1.
(b) Otherwise go back to step 1.

This iterative algorithm basically solves scenario programs and only keeps solutions admissible to
the chance-constrained problem and improving the cost. The loop stops when the maximum number
of iterations has been reached. The user can possibly change the value of N to extend the search. In
this study, N = 1,000 and scenario programs are solved with fmincon in c©Matlab 2014a.

As a reference for comparison, a simple homemade line search method is used, providing Solutions
labeled 0. More precisely, solutions are obtained by a dichotomous search along a direction fixed a
priori. Similarly to what is proposed in [14], it is chosen along the x axis. The dichotomous search
stops when the risk lies in [0.99ε,ε], according to Monte Carlo trials.

6.1. Example 1

This first example is a real conjunction alert sent by the JSpOC to our industrial partner Airbus
Defence and Space. The primary orbit is circular and the risk without mitigation is 1.9×10−3.

A summary of the different computed solutions is given in Table 1. It is noticeable that the
two solutions coming from the two different approach are almost equal, confirming the heuristic
choice of Solution 0. Figure 4 depicts the histogram of logarithmic normalized miss distances
(log10

√
1+ c/R2) for a random sampling of 104 relative trajectories. The distribution resulting

from the maneuver shows no collision (negative values), unlike the uncontrolled case.
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No. ∆vx (mm/s) ∆vy (mm/s) ∆vz (mm/s) ‖∆v‖ (mm/s) P{c(∆v,q)< 0}
0 -22.510 0 0 22.510 1.0×10−4

1 -22.495 0.625 0.003 22.504 9.7×10−5

Table 1: Solutions

Figure 4: Histogram of miss distances: without mitigation (blue) and with maneuver (red)

6.2. Example 2

The primary orbit is non-circular with an eccentricity of 0.741. Input data are obtained by modifying
case number 9 in [1] in order to obtain a short-term encounter. Mean values are given in Table 2 and
covariance matrices in equation (14) for the primary (left side) and for the secondary (right side):

 67.0143 14.5722 31.3632
∗ 3.2133 6.8234
∗ ∗ 14.7289

 ,

 67.0146 14.5721 31.3630
∗ 3.2133 6.8234
∗ ∗ 14.7288

 . (14)

Object Primary Secondary
Position (km) [−5532.700 20132.674 40010.549] [−5532.694 20132.677 40010.554]

Velocity (km/s) [−1.450945 −0.311609 −0.671302] [−1.450947 −0.311608 0.671301]
Table 2: Mean values for object’s position and velocity

Collision probability without any maneuver is 3.24× 10−1. As shown in Table 3, Solution 0 is
16.7% more costly than the one obtained via the scenario approach. It can be explained by the fact
that, for a non-circular orbit, a tangential maneuver does not demonstrate any specific advantage.
This shows the usefulness of the scenario approach that can handle configurations for which it is
hard to heuristically derive fuel-efficient maneuvers. The histogram of logarithmic normalized miss
distances is depicted in Figure 5 and illustrates the safety introduced by the control law.
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No. ∆vx (mm/s) ∆vy (mm/s) ∆vz (mm/s) ‖∆v‖ (mm/s) P{c(∆v,q)< 0}
0 -0.3315 0 0 0.3315 1.0×10−4

1 -0.2430 0.0094 -0.1469 0.2841 8.0×10−5

Table 3: Solutions

Figure 5: Histogram of miss distances: without mitigation (blue) and with maneuver (red)

7. CONCLUSION

A method to design collision avoidance maneuvers for rectilinear space encounters has been
proposed. Based on the scenario approach for chance-constrained optimization, it provides the user
with admissible solutions and has several advantages. First of all, unlike some other works in the
literature, it does not reduce the original dimension of the optimization space for the impulse. As a
result, it does not require any heuristic knowledge on the optimal solution. Secondly, the f and g
functions prove to be a convenient way to analytically compute the constraints and their gradient
with respect to the control vector in the scenario program. Additionally, this approach does not
require any assumption on the nature of the uncertainty affecting the position and velocity of both
objects, allowing for non-Gaussian probability distribution laws. Although this paper focuses on
spherical objects, the method could be extended to other geometrical shapes such as polyhedrons,
with applications to the International Space Station for instance. The only requirement ist to be
able to derive the expression and compute the value of the collision equations as functions of both
control vector and uncertain parameter.
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