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Abstract

Space mechanics problems are extremely sensitivadertainties management: small differences on
initial conditions can lead to large errors on adicted phenomenon such as orbit propagation. To
cover the whole range of possible trajectories givan object, one may analyze the evolution of the
covariance matrix, which is not very accurate fighly non-linear systems, or use statistical method
like Monte Carlo methods for numerical integrationkich are very time-consuming.

A new way to deal with uncertainties on orbit prgaiéon is the use of Taylor Differential Algebra.
Research in this field has been carried out overpast 20 years, including studies on Apophis
asteroid close encounters, interplanetary transéerparticle accelerators [1][2]. A single intepa
using Taylor Differential Algebra will propagateethreference initial stateyxalong with a full
neighborhood of states aroungiwhereas a usual integration will only propagaterhis method has
several advantages. It reduces the study of uncieta to a single propagation, decreasing the
computation time with respect to Monte-Carlo methéak which many integrations are needed. It
also provides an analytical result which possessp® interesting properties and can be manipulated,
while usual methods are statistical and only giwmerical results.

The purpose of the present study is to implemefillgpropagator, for any Earth-orbiting objects
using Thales Polynomial Algebra Computational EagrACE. This leads to carefully and accurately
model in Taylor Algebra main perturbations suchhag order Earth zonal and tesseral potential,
Sun/Moon perturbations, Earth atmospheric dragrsaldiation pressure, etc.

The theory requires functions to have specific progs but we show that it is possible to exterel th
range of available functions to include discontiiesi or some piecewise functions.

This propagator has been heavily validated agdinales reference numerical propagator to operate in
industrial applications. Even for complex force ratsg our implementation of &"®rder TDA orbit
propagation runs as fast as two hundred classioplagations. Even if some limitations still remain
concerning intermediate evaluations, and improvemare still achievable on computation times, the
Taylor Differential Algebra is under way to becomelassical and powerful tool for space mechanics
applications.
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I ntroduction

Many space mechanics problems involve dealing wiitbertainties since many parameters are often
not known accurately. Some examples are the paositib non-cooperative debris, spacecraft

parameters such as the frontal area or the drejciert. As a result, some numerical methods have
been set up in order to circumvent these problerdd@be able to find the most adequate solution.

Tiche de dispersion renirée atmosphérique

Figure 1: Reentry dispersion area.

The first method usually used is the Monte-Carldhod: a large amount of sets of initial conditions
is defined using dispersions representative of gheblem (given some standard deviations or
covariance matrices for instance) and for eachalrdébndition, the process is performed and thaltes
is computed. In case of orbit propagation, thel fitate is the result of the propagated initialesta

This method has the advantages of being simpleetoug, since the computation core remains
unchanged, and accurate, since the resulting seraely describes the initial set of uncertainties
However this method has the major disadvantagdseiofy quite time-consuming since the process
needs to be repeated thousands of times, and panefy numerical since the resulting set is purely
statistical.
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Figure 2: Monte-Carlo process.

The second common method is to compute the covariaratrix — or state transition matdx/dX0—

of the final state. This matrix describes the bédranf the solution around a reference point (id ire
the above picture) to the first order. This methad the advantage of being fast and analytichkagt
however several disadvantages: unless computedhity @ifferences, the computation core of the
process needs to be rewritten to account for padgaivatives, and this is only a first order
approximation whose accuracy quickly drops off fidghly non-linear system which is the case of
many space mechanics problems such as low-Earthpodpagation or spacecraft reentry.

In the following pages, we describe the use of diafflifferential Algebra to deal with uncertainties
particularly for orbit propagation. A brief summaof/the mathematical background of Taylor Algebra
is first presented along with its implantation irhales library PACE. Then we detail its



implementation in Thales orbit propagator JACK, sdssues that arose and the solutions we came up
with. The results we obtained are presented itatbtesection of this paper.

1. Taylor Differential Algebra

1.1. Mathematical background

Taylor Algebra and possibilities that came out fthdir roots in the works of Brook Taylor in 1715.
His works led him to the following theorem:

Theorem (Taylor): Let f be a functionf :[a, b] 00 - 0O (n+1) times continuous andh times
differentiable onﬁa, b]. Letx, D[a, b]. Then for anny[a, b], we have:

(=3 1 0)x- %) +Of(x=x,)")

In other words, any smooth enough function candeally approximated around a poing ky a
polynomial whose coefficients only depend Brlerivatives computed aroung Xhis approximation
can be as accurate as required, the order of thmegion setting the precision.

This theorem can be generalized to a multivariatetions:
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Equation (1) splits any smooth function in a polymal part and a remainder. As a result the
polynomial part of is an approximation of the fuontf. This polynomial is entirely defined by:

- Its coefficients,

- Its ordemn,

- The number of variables

- Its centerx,.

There is no way to define an algebra on the ringaynomialsK[X]. However, an algebra can be
defined if one considers only polynomials of a giverder. Hence, the following algebra called
“Taylor Differential Algebra” (TDA) can be defined:

Elements: polynomials up to ordeof v variables centered around a poigitvith coefficients

in R

- Operations: usual operations on polynomials (aaldjtimultiplication, multiplication by a
scalar). The only difference with usual polynomialging that resulting polynomials are
truncated to the algebra order

This algebra is often referred {D, in the literature.

Givenn andv, the maximum number of coefficients of a polyndni@onging ta,D, is given by the

formula:
(n+v)

niv!



This number also corresponds to the dimension efaljebra. As an exampkd)e is of dimension
462,,0D¢ is of dimension 8008.

Other operations can be defined on the algebra:
- Derivationd and anti-derivatio@ !, hence Taylor Algebra is Differential,
- Complex functions such &, cos atan, exp

These functions are simply computed using theirldrageries, which are composed of
algebraic operations (), aroundx,. For example with the exponential function:

+oo k
expx=>» —
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Given a polynomiaP of ,D,, we have:
n Pk
expP =) —
2

Inverse of polynomia% can also be computed using:

5= 2P

1+P =

Many more properties can be extracted from TayldfeEential Algebra: composition, inversion,
algorithms for fixed-point problems, binary relatjcetc. Extensive work about Taylor Algebra and
rigorous proofs can be found in the literaftif&"

In conclusion, it appears that any complex calciruslving algebraic operations can be performed in
Taylor algebra.

1.2. Thales computational engine PACE

Thales has designed and implemented a mathemébicaly PACE (Polynomial Algebra ((
Computation Engine) based on Taylor Differentiafjétira. This library has been written i "=~
java and can thus be used in any computer environrites also fully generic and can b

applied hence foany physical problem dealing with uncertainties

Java

The main constraint on the library is to be as fastpossible since all algebraic operations on
polynomials are computationally intensive (Jeele ) and will be performed a huge amount of time.

The library possesses 4 levels, by increasing afleomplexity (in a computer library sense):

- Algebra:

The key to obtain a successful and efficient pofgia computation engine is to make every
algebraic operation as efficient as possible. IICEAthe algebra part of the library is devoted
to that task. Many articles deal with how to e#idily perform operations in such an
algebr&™®.

The option we have chosen is to minimize the nunddefloating point operations when
performing algebraic operations. Hence, once thekaih has been defined, some tables are
pre-computed so that future algebraic operatiorthermlgebra can be run very efficiently.
Pre-computed tables are available for all operationultiplication, derivation, anti-derivation,
etc.



Example of precomputed table for multiplicatiorvegi two polynomials represented by their
sets of coefficientsd,...., a, [bo,...., 1], the pre-computed table lists pairs of indickdl,

m| involved in the multiplication operation. Hencine multiplication operation is just a
simple loop on this table to pick the right coa#fitis among the initial polynomialgy|....,

aJ and [h,...., ] to get the resulting polynomialdc..., G.

Polynomial (element of algebra):

For a given algebra, a polynomial is only composéa list of its coefficients. The other
parameters are settled by the algebra (ondeumber of variableg and centexg). All non-
obvious operations rely on precomputed tables gdemsiby the algebra to minimize
computation cost. All algebraic operations are laléé as well as math operations (sin, cos,
exp, etc.). Many on-the-side functions have beededd such as comparison, truncation,
composition, evaluation, partial evaluation, etc.

On-top elements have also been created such asrwemt polynomials, allowing some
specific operations such as inversion.

Here are the results obtaineddy with a classic 2.4GHz i5 desktop computer:

Operation Computation time in sDg
(for 100 000 operations)
Addition 120ms
Multiplication by a constant 70ms
Multiplication 1100ms
Derivation 140ms
Polynomial evaluation 700ms

Table 1: computation times for Taylor algebra low-leel operations.

One can see how important is to reduce computatieh of multiplication since it is has the
biggest computation expense.

Mathematical tools:

Mathematical tools include algorithms specific tolydomial Algebra as well as classic
mathematical algorithms converted into Taylor Algebften used to solve physical problems.
Two main algorithms are presented here: fixed-steggrators and fixed-point solvers.

Fixed-step integrators, particularly Runge-Kutteegrators are simply a linear combination of
terms, as a result it is straightforward to conveimto Taylor Algebra since it involves only
algebraic operations. PACE possesses a genericedark for integrating first order
differential equations using Runge-Kutta integrsitor

Fixed-point solvers require to solve equations loé form x = f(x) and it is usually
implemented using a loop and a convergence cnitdnostop the loop. The convergence is
usually a mere comparison betweeandf(x) and loop is stop i is close enough tffx). In
Taylor Algebra, this convergence criterion is hemeplaced by the comparison of two
polynomialsP andf(P). This comparison can be performed in many ways:

- Term by term comparison: equality is satisfiedlitaefficients are close enough to each
other (depending on a fixed threshold).

- Term by term comparison using only a subset ofcthefficients. This method is faster
than the comparison of all coefficients but mustused carefully. Indeed, speed of
convergence of coefficients depends on their moabmider. Coefficients of higher
order tend to converge more slowly than coefficdentt lower order. Numerical quality
issues are also at stake since coefficients of lugter are partially absorbed by
coefficients of lower orders. As a result accuraavergence on high order coefficients



IS not required since the last digits in doublecfgien are never taken into account when
evaluating polynomials.
- Comparison using norms of polynomials. An examleasm is provided in [2].

This library is hence generic and can be usedrgroa-top program dealing with uncertainties. la th
following section, PACE is used for orbit propagati

To use Taylor Algebra in a computer code, origiogérations (addition, multiplication, sinus, etc.)
have to be replaced by their Taylor counterpasfindd in PACE library.

2. Application to orbit propagation

2.1. Orbit propagation in Thales JACK software

A Taylorised version of Thales numerical orbit pagptor has been
implemented in JACK software. This propagator uB#sCE library to
perform Taylor polynomial computation. This orbibpagator implements
the following models:

- Earth gravity up to any order and degrees,

- Moon, Sun gravity and other planets,

- Atmospheric drag,

- Solar radiation pressure,

- Tides (solid and oceanic),

- Relativistic force.
Included models allow precise orbit propagatiorbéoperformed for any kind of orbits (LEO, GEO,
GTO, etc.).

Most perturbations are easy to convert into Taglgebra since it involves only algebraic operations
The trickiest has been solar radiation pressurepariicularly to properly manage the transitiomiro
enlightened to shadowed part of the orbit sinceniblves non-algebraic operations. This point is
discussed in section 2.2.

Then starting from an initial state vectog,[Yo, Zo, VX, VYo, VZ]', one propagation is performed in
Taylor algebra. The result is a vector of polyndrfy’afunction of an initial state vect(X_r;:

X, = f(X,)

Then multiple evaluations of the polynomiare performed for various initial statf;sdepending on
initial dispersion sets. These polynomials evabratiare very fast since thousands of evaluations ca
be performed in a fraction of a second with modemmputers (se€able 1: computation times for Taylor
algebra low-level operationsTablg 1

This is different from classic Monte-Carlo simutats which require as many orbit propagations as
initial samples’?{. Hereunder is an example with 1000 samples:

- Classic Monte-Carlo requires 1000 propagations,
- Monte-Carlo using Taylor Algebra requires one pgateon (which is more computationally
intensive) in Taylor Algebra and 1000 very fastyngimial evaluations.
More formally computation tim&yc with classic Monte-Carlo method is:

Tyc = nTrea

with n the number of samples afigl.,; the duration of an orbit propagation.



The computation tim&r, with Monte-Carlo using Taylor Algebra is:
Tra = Trayior + 1t
with Trq,,0 the duration of a Taylor propagatiott. being very small (segable J), it yields to:
Try = TTaylor
Hence using Taylor Algebra is more efficient if:
Tra <Tumc
Or:

TTaylor < nTReal

Results on threshold number of sampldésading tal'rq,0r = NnTgeq are provided in section 2.3.

2.2. Issues and solutions

The main issue when translating a computation @oeTaylor Algebra is translating non-algebraic
operations. In particular conditions suchifaG..condition...) then ... else are not easy to translate
since they involve comparisons.

First case: discontinuities

Such a pattern will occur if there is a discontipuin the system dynamics. A solution to circumvent
this issue is to approximate the condition witheactangent function with suitably chosen parameters
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Figure 3: Approximation of a discontinuity by an arctangent function.

One can see in the plots above for a very low patark, it well fits with the expected discontinuity.
The main advantage here is to have a functban which is infinitely differentiable and then its
Taylor expansion can be obtained.

Second case: the solar radiation pressure shadwtido

The main problem met when converting the orbit nicaé propagator into Taylor Algebra was to
deal with the solar radiation pressure shadow fanciThis shadow function is continuous, infinitely
differentiable but is not easy to translate intgldaAlgebra since it involves comparisons to knibw
the spacecraft is within the bounds of the shadqueetof the orbit or not. Hence the shadow fumctio
looks like this:



0 if @ eumbra
f(0)=1g(0) if 0 penumbra
1 if @ elight
Here is the plot of the function:

shadowFunction = f(alpha)
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Figure 4: Shadow function of the solar radiation pessure.

The computation of the shadow function involvestsaxtraction of a second order polynomial. Then
determining the spacecraft position with respedEaoth shadow is based on the value of these roots
and the comparison issue still remains.

We came with the id&h that instead of extracting the real roots of teeosd order equation, we
could keep the complex root and then get the fshaldow function with complex coefficients. This
required to define polynomials with complex coe#itts. Operations on these polynomials are very
similar to polynomials with real coefficients anavie been included in PACE. As a result the shadow
function is now a function with values in C fielddadoes not have any conditions any more:

g: R > C
a — ga)

The plot of the real and the imaginary part ofshadow function is presented hereafter:
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Figure 5: Shadow function of the solar radiation pessure (real and complex parts).

We notice that the real part of the complex shaflovetion is exactly the shadow function we were
expecting for. And this has been obtained withowy aonditionif (...condition...) then ... else
...which cannot be translated into Taylor Algebra.aA®sult, pieces of code involving conditions on



roots of a i order polynomial can readily translate into Taydbgebra by computing the complex
roots thus removing any conditions on the roots.

2.3. One-day LEO TLE propagation results

Hereunder are presented some orbit propagatiotigeditained in the following conditions:

- One-day propagation from an object from TLE catalog

- Set of usual perturbation (Earth gravity 10x10,/8loon, SRP and atmospheric drag).
A Monte-Carlo is then performed with the followipgrameters:

- 1000 samples,

- Dispersed parameters: position and velocity ofahdtate.

- Average TLE dispersiors(= 10km — 10m/s on every component of state vector)

Polynomials are expanded to tHedider. Hence, computations are performed in thetabeDs.

Computation time results:

Taylor propagation is as fast as 250 single prof@uys This means that if more than 250 samples are
required Taylor propagation will be faster. Henaéhvt000 samples, Taylor Monte-Carlo is 4 times
faster than usual Monte-Carlo.

Accuracy:

Hereafter are presented two plots.

- First plot is the absolute position error on all Bamples for various polynomial orders (hence
in the algebragDs, ¢Ds, sD;). The result show that the higher the order, tlheenaccurate the
results. However some quality numerical issues avite for high orders (around 12 in our
case).
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Figure 6: Absolute position error for various algelva orders.

- Second plot shows Monte-Carlo results in the pkamj-major axis, mean anomaly). The
results obtained with usual Monte-Carlo are in Ridt shows good agreement between usual
Monte-Carlo and Taylor method used with &rder polynomials. Hence"Sorder algebra
allows the dynamics of the system to be correatiscdbed for LEO one-day propagation on
the chosen initial dispersion sets.
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Figure 7: Dispersion error in the plan (semi-majoraxis, mean anomaly) for various polynomial orders.

One another interesting result is to compute gtatgsition matrix with Taylor Algebra. In that case
the computation is performed D, (1* order algebra). Computation is hence very fast rasdlts
shows to be twice faster than traditional statesiteon matrix computation without requiring to veri
down the variational equations.

3.  Ongoing work and future studies

Current and future work includes improvements ahpatation times since this is a key to Taylor
algebra success. It also includes working on a teagonvert automatically a code from the real
number algebra to the Taylor algebra. Some langusigeh as C++ allow to overload basic operations
(+, %, /, .) which saves some translation time,willtnot allow to overload more complex operations
which means partial automatic translation. Tayllgebra also possesses some interesting properties
like being a differential algebra. This allows ef#int integratotd optimized for Taylor Differential
Algebra to be defined and is currently being ingeded. At last, Thales is currently involved in
funded R&D activities regarding operational softevasing Taylor Algebra.

Conclusion

We showed how to implement Taylor Differential Abga in a computer program. In particular this
has been done in Thales library PACE. This lowdldigrary provides an efficient polynomial
computation engine and can be used in any on-tojegirrequiring to deal with uncertainties. In
particular we used it for orbit propagation. Evendomplex force models, our implementation of'a 5
order TDA orbit propagation runs as fast as twodned classical propagations. Even if some
limitations still remain concerning intermediateaations, and improvements are still achievable on
computation times, Thales is working for Taylor fBiential Algebra to become a powerful tool for a
wide variety of numerical applications.
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