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Abstract 
 
Space mechanics problems are extremely sensitive to uncertainties management: small differences on 
initial conditions can lead to large errors on a predicted phenomenon such as orbit propagation. To 
cover the whole range of possible trajectories of a given object, one may analyze the evolution of the 
covariance matrix, which is not very accurate for highly non-linear systems, or use statistical methods 
like Monte Carlo methods for numerical integrations, which are very time-consuming. 
 
A new way to deal with uncertainties on orbit propagation is the use of Taylor Differential Algebra. 
Research in this field has been carried out over the past 20 years, including studies on Apophis 
asteroid close encounters, interplanetary transfers, or particle accelerators [1][2]. A single integration 
using Taylor Differential Algebra will propagate the reference initial state x0 along with a full 
neighborhood of states around x0 whereas a usual integration will only propagate x0. This method has 
several advantages. It reduces the study of uncertainties to a single propagation, decreasing the 
computation time with respect to Monte-Carlo methods for which many integrations are needed. It 
also provides an analytical result which possesses some interesting properties and can be manipulated, 
while usual methods are statistical and only give numerical results. 
 
The purpose of the present study is to implement a full propagator, for any Earth-orbiting objects 
using Thales Polynomial Algebra Computational Engine PACE. This leads to carefully and accurately 
model in Taylor Algebra main perturbations such as high order Earth zonal and tesseral potential, 
Sun/Moon perturbations, Earth atmospheric drag, solar radiation pressure, etc. 
 
The theory requires functions to have specific properties but we show that it is possible to extend the 
range of available functions to include discontinuities or some piecewise functions. 
 
This propagator has been heavily validated against Thales reference numerical propagator to operate in 
industrial applications. Even for complex force models, our implementation of a 5th order TDA orbit 
propagation runs as fast as two hundred classical propagations. Even if some limitations still remain 
concerning intermediate evaluations, and improvements are still achievable on computation times, the 
Taylor Differential Algebra is under way to become a classical and powerful tool for space mechanics 
applications. 
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Introduction 
 
Many space mechanics problems involve dealing with uncertainties since many parameters are often 
not known accurately. Some examples are the position of non-cooperative debris, spacecraft 
parameters such as the frontal area or the drag coefficient. As a result, some numerical methods have 
been set up in order to circumvent these problems and to be able to find the most adequate solution. 
 

 
Figure 1: Reentry dispersion area. 

 
The first method usually used is the Monte-Carlo method: a large amount of sets of initial conditions 
is defined using dispersions representative of the problem (given some standard deviations or 
covariance matrices for instance) and for each initial condition, the process is performed and the result 
is computed. In case of orbit propagation, the final state is the result of the propagated initial state. 
This method has the advantages of being simple to set up, since the computation core remains 
unchanged, and accurate, since the resulting set accurately describes the initial set of uncertainties. 
However this method has the major disadvantages of being quite time-consuming since the process 
needs to be repeated thousands of times, and being purely numerical since the resulting set is purely 
statistical. 
 

 
Figure 2: Monte-Carlo process. 

 
The second common method is to compute the covariance matrix – or state transition matrix dX/dX0 – 
of the final state. This matrix describes the behavior of the solution around a reference point (in red in 
the above picture) to the first order. This method has the advantage of being fast and analytical. It has 
however several disadvantages: unless computed by finite differences, the computation core of the 
process needs to be rewritten to account for partial derivatives, and this is only a first order 
approximation whose accuracy quickly drops off for highly non-linear system which is the case of 
many space mechanics problems such as low-Earth-orbit propagation or spacecraft reentry. 
 
In the following pages, we describe the use of Taylor Differential Algebra to deal with uncertainties 
particularly for orbit propagation. A brief summary of the mathematical background of Taylor Algebra 
is first presented along with its implantation in Thales library PACE. Then we detail its 



implementation in Thales orbit propagator JACK, some issues that arose and the solutions we came up 
with. The results we obtained are presented in the last section of this paper. 
 

1. Taylor Differential Algebra 

1.1. Mathematical background 
 
Taylor Algebra and possibilities that came out find their roots in the works of Brook Taylor in 1715. 
His works led him to the following theorem: 
 
Theorem (Taylor): Let f be a function [ ] ℜ→ℜ⊂baf ,:  )1( +n  times continuous and n  times 

differentiable on[ ]ba, . Let [ ]bax ,0 ∈ . Then for any [ ]bax ,∈ , we have: 
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In other words, any smooth enough function can be locally approximated around a point x0 by a 
polynomial whose coefficients only depend on nth derivatives computed around x0. This approximation 
can be as accurate as required, the order of the expansion setting the precision. 
 
This theorem can be generalized to a multivariate functions: 
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Equation (1) splits any smooth function in a polynomial part and a remainder. As a result the 
polynomial part of is an approximation of the function f. This polynomial is entirely defined by: 

- Its coefficients, 
- Its order n, 
- The number of variables v, 
- Its center x0. 

 
There is no way to define an algebra on the ring of polynomials K[X] . However, an algebra can be 
defined if one considers only polynomials of a given order. Hence, the following algebra called 
“Taylor Differential Algebra” (TDA) can be defined: 

- Elements: polynomials up to order n of v variables centered around a point x0 with coefficients 
in R. 

- Operations: usual operations on polynomials (addition, multiplication, multiplication by a 
scalar). The only difference with usual polynomials being that resulting polynomials are 
truncated to the algebra order n. 

 
This algebra is often referred to nDv in the literature. 
 
Given n and v, the maximum number of coefficients of a polynomial belonging to nDv is given by the 
formula: 
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This number also corresponds to the dimension of the algebra. As an example, 5D6 is of dimension 
462, 10D6 is of dimension 8008. 
 
Other operations can be defined on the algebra: 

- Derivation � and anti-derivation ���, hence Taylor Algebra is Differential, 
- Complex functions such as sin, cos, atan, exp: 

 
These functions are simply computed using their Taylor series, which are composed of 
algebraic operations (+, �), around x0. For example with the exponential function: 
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Given a polynomial P of nDv, we have: 
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Inverse of polynomial 
P

1
can also be computed using: 
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Many more properties can be extracted from Taylor Differential Algebra: composition, inversion, 
algorithms for fixed-point problems, binary relation, etc. Extensive work about Taylor Algebra and 
rigorous proofs can be found in the literature[1][2][4] . 
 
In conclusion, it appears that any complex calculus involving algebraic operations can be performed in 
Taylor algebra. 
 

1.2. Thales computational engine PACE 
 
Thales has designed and implemented a mathematical library PACE (Polynomial Algebra 
Computation Engine) based on Taylor Differential Algebra. This library has been written in 
java and can thus be used in any computer environment. It is also fully generic and can be 
applied hence for any physical problem dealing with uncertainties. 
 
The main constraint on the library is to be as fast as possible since all algebraic operations on 
polynomials are computationally intensive (see Table 1) and will be performed a huge amount of time. 
 
The library possesses 4 levels, by increasing order of complexity (in a computer library sense): 
 

- Algebra: 
 
The key to obtain a successful and efficient polynomial computation engine is to make every 
algebraic operation as efficient as possible. In PACE, the algebra part of the library is devoted 
to that task. Many articles deal with how to efficiently perform operations in such an 
algebra[3][5]. 
 
The option we have chosen is to minimize the number of floating point operations when 
performing algebraic operations. Hence, once the algebra has been defined, some tables are 
pre-computed so that future algebraic operations on the algebra can be run very efficiently. 
Pre-computed tables are available for all operations: multiplication, derivation, anti-derivation, 
etc. 
 



Example of precomputed table for multiplication: given two polynomials represented by their 
sets of coefficients [a0,…., ak], [b0,…., bl], the pre-computed table lists pairs of indices [k, l, 
m] involved in the multiplication operation. Hence, the multiplication operation is just a 
simple loop on this table to pick the right coefficients among the initial polynomials [a0,…., 
ak] and [b0,…., bl] to get the resulting polynomial [c0,…., cm]. 
 

- Polynomial (element of algebra): 
 
For a given algebra, a polynomial is only composed of a list of its coefficients. The other 
parameters are settled by the algebra (order n, number of variables v and center x0). All non-
obvious operations rely on precomputed tables provided by the algebra to minimize 
computation cost. All algebraic operations are available as well as math operations (sin, cos, 
exp, etc.). Many on-the-side functions have been added, such as comparison, truncation, 
composition, evaluation, partial evaluation, etc. 
On-top elements have also been created such as vectors of polynomials, allowing some 
specific operations such as inversion. 
 
Here are the results obtained in 6D5 with a classic 2.4GHz i5 desktop computer: 
 

Operation Computation time in 5D6 
(for 100 000 operations) 

Addition  120ms 
Multiplication by a constant 70ms 

Multiplication  1100ms 
Derivation 140ms 

Polynomial evaluation 700ms 
Table 1: computation times for Taylor algebra low-level operations. 

 
One can see how important is to reduce computation cost of multiplication since it is has the 
biggest computation expense. 
 

- Mathematical tools: 
 
Mathematical tools include algorithms specific to Polynomial Algebra as well as classic 
mathematical algorithms converted into Taylor Algebra often used to solve physical problems. 
Two main algorithms are presented here: fixed-step integrators and fixed-point solvers. 
 
Fixed-step integrators, particularly Runge-Kutta integrators are simply a linear combination of 
terms, as a result it is straightforward to convert it into Taylor Algebra since it involves only 
algebraic operations. PACE possesses a generic framework for integrating first order 
differential equations using Runge-Kutta integrators. 
 
Fixed-point solvers require to solve equations of the form � = ���	 and it is usually 
implemented using a loop and a convergence criterion to stop the loop. The convergence is 
usually a mere comparison between x and f(x) and loop is stop is x is close enough to f(x). In 
Taylor Algebra, this convergence criterion is hence replaced by the comparison of two 
polynomials P and f(P). This comparison can be performed in many ways: 
- Term by term comparison: equality is satisfied if all coefficients are close enough to each 

other (depending on a fixed threshold). 
- Term by term comparison using only a subset of the coefficients. This method is faster 

than the comparison of all coefficients but must be used carefully. Indeed, speed of 
convergence of coefficients depends on their monomial order. Coefficients of higher 
order tend to converge more slowly than coefficients of lower order. Numerical quality 
issues are also at stake since coefficients of high order are partially absorbed by 
coefficients of lower orders. As a result accurate convergence on high order coefficients 



is not required since the last digits in double precision are never taken into account when 
evaluating polynomials. 

- Comparison using norms of polynomials. An example of norm is provided in [2]. 
 
This library is hence generic and can be used for any on-top program dealing with uncertainties. In the 
following section, PACE is used for orbit propagation. 
 
To use Taylor Algebra in a computer code, original operations (addition, multiplication, sinus, etc.) 
have to be replaced by their Taylor counterparts, defined in PACE library. 
 

2. Application to orbit propagation 

2.1. Orbit propagation in Thales JACK software 
 
A Taylorised version of Thales numerical orbit propagator has been 
implemented in JACK software. This propagator uses PACE library to 
perform Taylor polynomial computation. This orbit propagator implements 
the following models: 

- Earth gravity up to any order and degrees, 
- Moon, Sun gravity and other planets, 
- Atmospheric drag, 
- Solar radiation pressure, 
- Tides (solid and oceanic), 
- Relativistic force. 

Included models allow precise orbit propagation to be performed for any kind of orbits (LEO, GEO, 
GTO, etc.). 
 
Most perturbations are easy to convert into Taylor algebra since it involves only algebraic operations. 
The trickiest has been solar radiation pressure and particularly to properly manage the transition from 
enlightened to shadowed part of the orbit since it involves non-algebraic operations. This point is 
discussed in section 2.2. 
 
Then starting from an initial state vector [x0, y0, z0, vx0, vy0, vz0]

T, one propagation is performed in 
Taylor algebra. The result is a vector of polynomial 
�����
 function of an initial state vector 
����
: 
 


�����
 = ��
����
� 
 

Then multiple evaluations of the polynomial f are performed for various initial states 
����
 depending on 
initial dispersion sets. These polynomials evaluations are very fast since thousands of evaluations can 
be performed in a fraction of a second with modern computers (see Table 1: computation times for Taylor 
algebra low-level operationsTable 1). 
 
This is different from classic Monte-Carlo simulations which require as many orbit propagations as 
initial samples 
����
. Hereunder is an example with 1000 samples: 

- Classic Monte-Carlo requires 1000 propagations, 
- Monte-Carlo using Taylor Algebra requires one propagation (which is more computationally 

intensive) in Taylor Algebra and 1000 very fast polynomial evaluations. 
 
More formally computation time TMC with classic Monte-Carlo method is: 
 

��� = ������ 
 
with n the number of samples and ����� the duration of an orbit propagation. 
 



The computation time TTA with Monte-Carlo using Taylor Algebra is: 
 

��� = ������� � �� 
 
with ������� the duration of a Taylor propagation. �� being very small (see Table 1), it yields to: 
 

���  ������� 
 
Hence using Taylor Algebra is more efficient if: 
 

��� ! ��� 	 
Or: 

������� ! 	������ 
 
Results on threshold number of samples n leading to ������� = 	������ are provided in section 2.3. 
 

2.2. Issues and solutions 
 
The main issue when translating a computation code into Taylor Algebra is translating non-algebraic 
operations. In particular conditions such as if (…condition…) then … else … are not easy to translate 
since they involve comparisons. 
 
First case: discontinuities 
 
Such a pattern will occur if there is a discontinuity in the system dynamics. A solution to circumvent 
this issue is to approximate the condition with an arctangent function with suitably chosen parameters: 
 

 
Figure 3: Approximation of a discontinuity by an arctangent function. 

 
One can see in the plots above for a very low parameter k, it well fits with the expected discontinuity. 
The main advantage here is to have a function, atan, which is infinitely differentiable and then its 
Taylor expansion can be obtained. 
 
Second case: the solar radiation pressure shadow function 
 
The main problem met when converting the orbit numerical propagator into Taylor Algebra was to 
deal with the solar radiation pressure shadow function. This shadow function is continuous, infinitely 
differentiable but is not easy to translate into Taylor Algebra since it involves comparisons to know if 
the spacecraft is within the bounds of the shadowed part of the orbit or not. Hence the shadow function 
looks like this: 



 
Here is the plot of the function: 
 

 
Figure 4: Shadow function of the solar radiation pressure. 

The computation of the shadow function involves roots extraction of a second order polynomial. Then 
determining the spacecraft position with respect to Earth shadow is based on the value of these roots 
and the comparison issue still remains. 
 
We came with the idea[6] that instead of extracting the real roots of the second order equation, we 
could keep the complex root and then get the final shadow function with complex coefficients. This 
required to define polynomials with complex coefficients. Operations on these polynomials are very 
similar to polynomials with real coefficients and have been included in PACE. As a result the shadow 
function is now a function with values in C field and does not have any conditions any more: 
 

 
 
The plot of the real and the imaginary part of the shadow function is presented hereafter: 
 

 

 
Figure 5: Shadow function of the solar radiation pressure (real and complex parts). 

 
We notice that the real part of the complex shadow function is exactly the shadow function we were 
expecting for. And this has been obtained without any condition if (…condition…) then … else 
…which cannot be translated into Taylor Algebra. As a result, pieces of code involving conditions on 



roots of a nth order polynomial can readily translate into Taylor algebra by computing the complex 
roots thus removing any conditions on the roots. 
 

2.3. One-day LEO TLE propagation results 
 
Hereunder are presented some orbit propagation results obtained in the following conditions: 

- One-day propagation from an object from TLE catalog, 
- Set of usual perturbation (Earth gravity 10x10, Sun/Moon, SRP and atmospheric drag). 

A Monte-Carlo is then performed with the following parameters: 
- 1000 samples, 
- Dispersed parameters: position and velocity of initial state. 
- Average TLE dispersion (σ = 10km – 10m/s on every component of state vector). 

 
Polynomials are expanded to the 5th order. Hence, computations are performed in the algebra 6D5. 
 
 
Computation time results: 
 
Taylor propagation is as fast as 250 single propagations. This means that if more than 250 samples are 
required Taylor propagation will be faster. Hence with 1000 samples, Taylor Monte-Carlo is 4 times 
faster than usual Monte-Carlo. 
 
Accuracy: 
 
Hereafter are presented two plots. 

- First plot is the absolute position error on all the samples for various polynomial orders (hence 
in the algebras 6D3, 6D5, 6D7). The result show that the higher the order, the more accurate the 
results. However some quality numerical issues will arise for high orders (around 12 in our 
case). 

 

 
Figure 6: Absolute position error for various algebra orders. 

 
- Second plot shows Monte-Carlo results in the plan (semi-major axis, mean anomaly). The 

results obtained with usual Monte-Carlo are in red. Plot shows good agreement between usual 
Monte-Carlo and Taylor method used with 5th order polynomials. Hence 5th order algebra 
allows the dynamics of the system to be correctly described for LEO one-day propagation on 
the chosen initial dispersion sets. 

 



 
Figure 7: Dispersion error in the plan (semi-major axis, mean anomaly) for various polynomial orders. 

 
One another interesting result is to compute state transition matrix with Taylor Algebra. In that case 
the computation is performed in 6D1 (1

st order algebra). Computation is hence very fast and results 
shows to be twice faster than traditional state transition matrix computation without requiring to write 
down the variational equations. 
 

3. Ongoing work and future studies 
 
Current and future work includes improvements of computation times since this is a key to Taylor 
algebra success. It also includes working on a way to convert automatically a code from the real 
number algebra to the Taylor algebra. Some languages such as C++ allow to overload basic operations 
(+, ×, /, .) which saves some translation time, but will not allow to overload more complex operations 
which means partial automatic translation. Taylor algebra also possesses some interesting properties 
like being a differential algebra. This allows efficient integrators[2] optimized for Taylor Differential 
Algebra to be defined and is currently being investigated. At last, Thales is currently involved in 
funded R&D activities regarding operational software using Taylor Algebra. 
 

Conclusion 
 
We showed how to implement Taylor Differential Algebra in a computer program. In particular this 
has been done in Thales library PACE. This low-level library provides an efficient polynomial 
computation engine and can be used in any on-top project requiring to deal with uncertainties. In 
particular we used it for orbit propagation. Even for complex force models, our implementation of a 5th 
order TDA orbit propagation runs as fast as two hundred classical propagations. Even if some 
limitations still remain concerning intermediate evaluations, and improvements are still achievable on 
computation times, Thales is working for Taylor Differential Algebra to become a powerful tool for a 
wide variety of numerical applications. 
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