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Abstract: This paper is devoted to the dynamics of a multi-tethered pyramidal satellite 

formation rotating about its axis of symmetry in the nominal mode. Whereas the combination 

of rotation and gravity-gradient forces is insufficient to maintain the mutual positions of 

satellites, they are assumed to be equipped with low-thrust rocket engines. We propose a 

control strategy that allows the stabilization of the nominal spin state and demonstrate the 

system's proper operation by numerically simulating its controlled motion. The discussed 

multi-tethered formations could be employed, for example, to provide co-location of several 

satellites at a slot in geostationary orbit. 
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1. Introduction 

 

This paper presents a study of the multi-tethered satellite formation’s dynamics. This 

formation consists of a main body connected by means of cables with several deputy 

satellites. The deputy satellites are only connected with the main body and not with each 

other. In nominal regime it has a shape of a pyramid with its top directed towards the Earth 

(Fig. 1). To keep the tethers taut the formation is spinning, but the combination of rotation 

with gravity-gradient is insufficient for it and therefore the deputy satellites are equipped with 

low-thrust engines to stabilize the desired dynamics of the system. 

 

Figure 1. Earth-facing multi-tethered pyramidal satellite formation: C – main 

satellite, 1 2 3, ,A A A  - deputy satellites 
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If tethers are long enough such a formation can be used to maintain the main body in 

geosynchronous motion (i.e., in the motion with an orbital period of one sidereal day) below 

the geostationary orbit (assuming that the mass center O  of formation moves in GEO).  If 

tethers are not too close to the formation’s mass center O , an “ordinary” geostationary 

satellite can be placed inside the discussed pyramidal structure. And, of course, any other 

applications mentioned typically in papers on the dynamics of multi-tethered formations 

remain relevant (space interferometry, multi-point measurements, etc). 

  

I. Bekey was probably the first to discuss three-dimensional multi-tethered formations, he 

proposed a double-pyramid configuration [4]. Then the dynamical properties of multi-

tethered formations were intensively studied.  

 

To specify formations comprised of a main body and deputy satellites attached to the main 

body by tethers (as in our case) A. Pizarro-Chong and A.K. Misra introduced the term “hub-

and-spoke” [13]. The behavior of such formations was studied in different dynamical 

environment:  in circular orbit [2], in elliptic orbit [3], in halo-orbit [25, 5] and near collinear 

Lagrangian points [22]. 

 

Interesting examples of 3D equilibrium configurations of a chain of four satellites connected 

by three weightless rods were presented in [7], although at least one rod in these 

configurations is compressed and thus cannot be replaced with a tether.  

 

Worthy of special mention is a recent series of papers by H. Schaub, C.R. Seubert et al. [15, 

16, 12, etc.], where the concept of the Tethered Coulomb Structure (TCS) is introduced. In 

general TCS is a 3D structure consisting of discrete spacecraft components (nodes) connected 

by tethers. The discrete components are electrostatically charged to produce repulsive forces 

between them and to prevent the slack of any cable. The convincing justification of the TCS 

technical feasibility is provided, several control algorithms are developed to maintain the 

desirable attitude motion of such a structure. Nevertheless, it appears that the Coulomb 

repulsive forces are the effective countermeasure against slacks only in the case of relatively 

close nodes: the discussed length of the tethers in [15, 16, 12] has an order of magnitude of 

10 m.  

 

The SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellite) 

system, developed by MIT Space Systems Laboratory, NASA, DAPRA and Aurora Flight 

Sciences, was proposed as a testbed for dynamical experiments with tethered formations [6]. 

There are three SPHERES satellites currently onboard the International Space Station. Being 

equipped with twelve carbon dioxide thrusters these satellites can maneuver with great 

precision in the ISS interior safety for its crew.  

 

As a novel trend one can distinguish the studies on dynamics of space webs composed of 

large number of spacecrafts connected by tethers (e.g., [11, 24]). Evidently, sophisticated 

control strategy is required to maintain the desirable shape of a space web and to provide the 

desired orbital and attitude dynamics. In particular, this strategy should take into account the 

gravity-gradient effects and centrifugal forces applied to such a very flexible structure. Below 

we will be dealing with similar requirements.  

 

More references can be found in reviews [8, 20], where special sections are devoted to multi-

tethered formations. 
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Since multi-tethered satellite formation is a mechanical system with a very large number of 

degrees of freedom, in general its dynamics is rather complicated. Taking into account that 

the satellites' dimensions are much smaller than length of the tethers the former are usually 

approximated as point masses. Another commonly used simplification is an assumption that 

the tethers are weightless. Some authors employ the so-called lumped mass discretization to 

analyze the dynamics of the system in a more realistic way (e.g., [1, 2, 21]).  

  

In Section 2 we start with the consideration of a simplified dynamical model of multi-tethered 

formation (point masses + massless tethers). We derive a control strategy allowing to 

maintain the formation in the uniform rotation around the local vertical and provide the 

stability conditions of controlled motion. In Section 3 we present the results obtained by 

numerical simulation of the system’s dynamics. 

 

2. Control strategy to maintain the system’s rotation about the local vertical 

 

2.1. Basic assumptions and equations of motion 
 

As stated in the Introduction, we will consider a space system composed of the 1N   bodies: 

the main satellite C of mass 1m  and N  deputy satellites 1, , NA A  of mass 2m  each. The 

deputy satellites are linked to the main satellite by tethers; all the tethers are assumed to be 

identical; unless otherwise stated the tethers’ masses are ignored. 

 

The desired nominal mode of motion is a uniform rotation of the system about the local 

vertical (i.e., a straight line running from the Earth center of mass (CoM) to the system CoM 

O ). In the nominal motion the main satellite is located on the local vertical at a distance *d  

from the CoM O  and the deputy satellites move around in a circle in the plane normal to the 

local vertical; the neighboring satellites are located the same distance apart (Fig. 1). To 

maintain a system in such a rotation the deputy satellites are equipped with low-trust engines. 

 

Developing a control strategy we will use the central field approximation for the Earth 

gravity field (in Section 3 we present the results of simulations demonstrating the efficiency 

of the proposed strategy for a more realistic model of the space environment including, in 

particular, high-degree Earth Gravitational model, Moon and Sun perturbations). The system 

CoM O  moves nominally in circular orbit with the mean motion 0 .  

 

To write down the motion equations, we introduce a Local Vertical Local Horizontal (LVLH) 

reference frame, centered on the nominal position of the system CoM in its orbital motion: 

the Oz axis is aligned with the local vertical, the Ox  is running tangentially to the orbit in the 

direction of the CoM O  motion and the Oy  axis is directed along the normal line to the orbit 

plane.  

 

We start with the equations describing the deputy satellite motions: 

 

2 , 1, , .e cor

i i i i im i N    r F F T U  (1) 
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Here 2 2

2 2(0, ,3 ) e T

i o i o im y m z F  is a sum of the gravity and inertia forces acting in the non-

inertial reference frame LVLH, 
2 0 2 0(2 ,0, 2 ) cor T

i i im z m x F  is the Coriolis force, iU  is the 

control action, and iT  is the tension force applied to ith deputy satellite. We adopt the usual 

model of the massless visco-elastic tether. In this case 

 

 0 0

( )
[ ] , if

0, otherwise

C i
C i C i C itether tether

C i
i

d
k l b l

dt

      
  



r r
r r r r r r

r rT  

  

where 
tetherk , 

tetherb and ol  denote the rigidity of the tether, its viscosity and length in non-

deformed state respectively. As follows from the formula for iT , the tether is subject to 

tension only. 

 

The main satellite’s motion is governed by the equation 

 

1

1

.
N

e cor

C C C i

i

m


  r F F T  (2) 

 

Like in the previous case, e

CF  is the sum of gravity and inertia forces and cor

CF is the Coriolis 

force. We recall that no control actions are applied to the main satellite. 

  

2.2. Nominal system motion 

 

In the nominal motion the satellite formation rotates as a rigid body about the local vertical 

with a relative angular velocity *  in the LVLH reference frame: 

 

* *

* *

* * * 0

* * * *

0 sin cos
2 ( 1)

0 , sin sin , ( )

cos

   
   

       
       

i

C i i i

l
i

l t t
N

d l d

 


   



r r  (3) 

 

Here *l  is the tether length in nominal motion ( *
* 0 

tether

T
l l

k
, *T  is the tether tension in 

nominal mode), *  is the angle between the tethers and the system CoM radius vector, and 

*d  is the distance from the main satellite to the system CoM.  It is easy to find that 

 
1

2 2

* 2 * 0 * 1 2 0 1 2
* * * 0

1 2 * 1 2 1 2

cos | | 3 3
, , 1

cos ( )

e

C

tether

l Nm l m m m m
d T l l

m Nm N m Nm m Nm k

  





 
     

   

F
 

 

By differentiating relations (3), we can find  *

ir  and *

ir  ( 1, ,i N ). We insert the resulting 

expressions in motion equations (1) and obtain the thrust, which should be provided by the 

engines to maintain the nominal motion of the system: 
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The control law (4) can be simplified if the choice of the nominal motion rotation velocity is 

such that the first or second *

iU  components equals zero. In particular, the first component 

equals zero if 

  

1 1
* 0 0

1 2 2

3 3
, .

1

m m

m Nm Nm


   


  

 
 (5) 

 

If the system’s rotation velocity in the LVLH frame meets condition (5), its nominal motion 

can be maintained by the following control actions: 

 

* 2

0 * 2 *

0 * * 2 *

0

sin sin

2 sin sin

 
 

  
  

i i

i

l m

l m

  

   

U  (6) 

 

When constructing the nominal control strategy using equation (6), it is worth noting that the 

nominal motion must meet the constraints: 

 

* min * * * min, sind d R d R   . (7) 

 

The first condition in (7) constrains the distance from the main satellite to the system CoM 

and the second constrains the distance between the CoM and the tethers. 

 

2.3. Small perturbations compensation 

 

For the system to stay in the nominal motion mode, the control actions *

iU  should be 

supplemented with the actions **

iU ensuring that the motion remains stable, at least in the 

numerical simulations. Let us note that **

iU  is to compensate any perturbations not accounted 

for in (2) (e.g. luni-solar gravity, solar radiation pressure etc.). 

 

We start constructing **

iU  by introducing a simple penalty function describing the deviation 

from the nominal mode: 

 

* 2

1

| |
2

N

i i

i

k



   r r  
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The control action 

 

** *

,1 ( )i i i

i

k


    


U r r
r

 (8) 

 

attempts to bring the system back to the nominal motion region but does not fully cope with 

the task, for it incites perturbations which will be dealt with by “damping”: 

 
** *

,2 ( )i i ib  U r r . (9) 

 

The numerical simulation helps select the values for the coefficients k  and b  so that the 

formation’s motion remains stable if subjected to the control actions: 

 
* ** **

,1 ,2i i i i  U U U U . 

 

Оther variants of the corrective (feedback) control were considered also. To obtain the 

optimal strategy, one needs to linearize the relative motion equations in the proximity of 

reference motion and solve the linear-quadratic optimization problem with continuous time 

and infinite horizon [10]. The functional to be optimized is  . The optimal corrective control 

is a linear combination of deviations (both positions and velocities) and satisfies a Riccati 

matrix equation, which was solved numerically. Wide range of tether stiffness and viscosity 

coefficients were tested. Numerical estimation has shown, that each deputy satellite should 

respond only to its own disturbance. Hence, relative motion corrective control may be given 

by (8) and (9). 

 

2.4. An estimate of the fuel consumption in the case of unperturbed nominal motion  

 

It follows from (6) that the force keeping the system in the nominal configuration is: 

 

* 2

0 * 2 *

0 * * 2 *

0

sin sin

2 sin sin

 
 

  
  

i i

i

l m

l m

  

   

U  

 

This control action should be provided by the reaction force * i i imF u , where im  is the fuel 

consumption rate for the deputy satellite i, and iu  is the flow velocity vector. Since the 

satellites are arranged into a symmetrical configuration, the subscript i will hereafter be 

omitted. 

 

We calculate the consumption assuming that the control action is created by the change in the 

flow rate m and direction of the vector u  and the fuel flow velocity has a constant absolute 

value: const u u . The relations * *i iF U  yields 

 
2

2 0 * * 1 2

1 2

sin cos| | 13m l m Nm
m

u u m Nm

   
 



U
. (10) 
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Thus the fuel consumption over the time 1 0  t t   is found as: 

 

1

0

2

2 0 * * 1 2

1 2

sin 13
cos ( )

 





 
t

t

m l m Nm
m t dt

u m Nm
. (11) 

For a typical mission largely exceeding the configuration’s rotation period 
*

*

2


P  (i.e. 

* P ), we can assume, with a relative error of about * / P , that: 
 

1

0

2
cos ( )




t

t
t dt   

 

and, consequently,  

 
2

2 0 * * 1 2

1 2

2 sin 13 




 



m l m Nm
m

u m Nm
. (12) 

 

For the numerical estimates, we take note of the fact that the particles’ velocity in the electric 

thruster has the order of 30u km/s and use values 1 5000 ,m kg 2 1000 ,m kg  

* 10000 ,l m 5 1

0 7.29 10 s    , 0

* 10 , 1   year, 3N . Inserting these values in (12) 

yields 18.01m  kg/year. The Table 1 features yearly propellant consumptions for other 

angles *  and the number N of the deputy satellites. The low propellant consumption justifies 

the satellite mass change neglect in (1). 

 

Table 1. Annual fuel consumption in the nominal motion 

Number of the deputy satellites 0

* 5  0

* 10  

N = 3 9.04 kg 18.01kg 

N = 4 8.58 kg 17.11kg 

 

2.5. Stability of controlled motion   

 

Stability studies of periodic regimes in the dynamics of the tethered satellite systems are 

based usually on Floquet theory (e.g. [9, 17, 19]). The complexity of the system at hand 

(multiple components, non-trivial free motion) strongly impedes the theoretical analysis of its 

stability. Nonetheless, there exists an extreme case when the stability conditions can be 

derived analytically - the case of the corrective control 
** ** **

,1 ,2i i i U U U   (see (8) and (9)) with 

fairly high values of the coefficients k , b .  

 

Combining various perturbation techniques with the main ideas of Floquet theory [23], after 

cumbersome calculations (which are omitted here) we obtain the following result: assuming 

that the corrective control action is defined by the parameters k k , b b  with 0k  , 

0b  , at least for 3N   deputy satellites the asymptotic stability of the vertical system 

rotation at the angle 0    and large   is governed by the condition: 
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2

* 0

* 0

sin
1

l l

l l





 


.                                                        (13) 

 

It is worth noting that the stability condition (13) is a rather week one - it can be violated only 

if the tether is strongly stretched, the mass ratio   is high, and/or the rotation angle   is 

close to / 2 . 

 

3. Numerical simulation of controlled multi-tethered satellite formation 

 

The theoretical model of a rigidly rotating pyramidal configuration was implemented in 

Matlab/Simulink. The implementation supports: 

 

 An arbitrary number of deputy satellites with massive or weightless tethers;  

 Models of environment (high-degree Earth Gravitational model, Moon and Sun 

perturbations, solar radiation pressure, etc.);  

  Nominal and corrective control actions, the latter using the feedback on the current 

positions and velocities of the satellites. 

 

Stability is the main challenge in implementing a multi-tethered satellite formation. The 

proposed rotation and nominal motion control laws do not take into consideration the 

environmental perturbation effects and tether mass. Despite the corrective control actions, the 

system may turn out to be unstable.   

 

We are giving below one example of configuration that showed no signs of instability in the 

numerical simulation and one example of unstable configuration. All simulations were 

performed under the following conditions: 

 

 A model of a heavy tether with 1 point mass; 

 Non-central Earth gravitational field;  

 Sun and Moon gravity; 

 Solar radiation pressure.  

 

The first example pertains to the vertically oriented satellite case. Its most significant 

parameter values are listed in the Table 2. The simulation covered 3 months of the system 

operation and revealed no signs of instability.  The main satellite’s orientation vector with 

respect to the CoM diverged from the local vertical by no more than 0.1 degrees (Fig. 2). The 

expense of characteristic velocity by every deputy satellite is about 940 m/s over three 

months. 

 

Table 2. The values of the system’s parameters in the numerical Example #1 

* , 

[deg] 

*l , 

[m] 

 , 

[-] 

N , 

[-] 
1m , 

[kg] 

2m , 

[kg] 

Tether 

mass, 

[kg] 

k , 

[N/m] 

b , 

[kg/s] 

30 20000 3 3 5000 555 50 0.01 1 
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In Fig. 3 we plot the magnitudes of the nominal control *U  and the corrective control **
U  for 

one of the deputy satellites. As expected, the corrective control is less regular than the 

nominal one. We cannot exactly divide the propellant consumption budget into “nominal” 

and “corrective” parts since we deal with a vector sum of the nominal and corrective control 

forces. Let us note, however, that the amount of propellant required to create the total control 

force is less than the sum of amounts used to create both ingredients separately.   

 

Figure 2.  Angular deviation of the main satellite from the nominal position 

                      

Figure 3.  Magnitudes of the nominal and corrective trust in the case of rotation around 

local vertical 

The second example demonstrates the effect of making the system smaller in size. We start from the 

stable vertical configuration considered in the first example, and decrease nominal tether length *l  

from 20000 to 5000 m. In this scenario, we observe a remarkable phenomenon of the system overturn 

related to the instability of the nominal rotation pattern. Specifically, in the first few days of system 

functioning, it rotates more or less as a rigid structure, but shows some signs of instability. Then, it 

suddenly loses stability and rigid structure, and starts to move in a seemingly chaotic manner. Finally, 

it regains its rigid rotating structure, but now is oriented upside down. This new rotating state is 

stable. The time line of main satellite angular deviation is shown in Fig. 4. 
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This phenomenon can be described as a transition from an unstable to a stable equilibrium 

under environmental perturbations. Note that with short linear sizes of the system, the force 

required to keep the main satellite at a fixed position relative to CoM of the system is small 

(it scales linearly with the system size). In our test case this force equals 0.08 N and is 

comparable in magnitude to the lunar and solar gravity perturbations acting on the main 

satellite. These perturbations force the main satellite to move to the stable position beyond 

the nominal orbit. That this new upside down position is indeed stable is easy to see from the 

much larger values of tether tensions – in the new configuration the distance from the main 

satellite to the orbit is much larger, and the force needed to keep it there is much higher. This, 

and the fact that the tethers no longer do their job of balancing the system about the orbit, 

obviously means that the upkeep of the new configuration requires much stronger engine 

forces and hence more fuel.  

 

The described phenomenon is only observed if the environmental effects (lunar/solar 

gravities) are included in simulation – otherwise the system rotates in a stable manner. The 

phenomenon does not depend on whether the tethers are massive or weightless. 

 

Finally, we point out that this phenomenon is related to our definition of the correcting 

control: the deputy satellites move as if they were a part of a system whose CoM moves 

along a strictly circular orbit. The other control strategy might produce different results. 

 

Figure 4.  Angular deviation of the main satellite from the nominal position with respect 

to the system CoM  

 

4. A parametric study 

 

Let us summarize the observed effects of various parameters on the system performance for 

the typical set of their values. Regarding parametric optimization of our tethered satellite 

formation, we note that one might consider several natural objectives, in particular 

maximizing distances between the system's components - tethers and satellites - to prevent 

collisions, minimizing control action to decrease fuel consumption, minimizing the mass of 

deputy satellites relative to the main satellite (assuming deputy satellites are less useful than 

the main satellite). These objectives generally conflict with one another, so that Pareto-

optimal configurations (see [14, 18]) are not unique and form an infinite set (in fact, a two-

dimensional set if we consider the above three objectives formulated as three scalar-valued 

functions). 
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The ratio  of the main satellite mass to the total mass of the deputy satellites.  On the one 

hand, it is desirable to minimize the mass of the deputy satellites and, therefore, to maximize 

the ratio . On the other hand, the theoretical estimates and simulations show that an increase 

in   leads to an increase in the characteristic acceleration of the deputy satellites and, 

consequently, higher propellant consumption. Besides, the simulation testifies to lower 

stability of the systems with a larger . 

 

Number of deputy satellites N . Neither theoretical analysis nor simulations have revealed 

any clear preferences as to the number of the deputy satellites.  

 

Angle *  between the tethers and the system axis. At small *  the required nominal control 

action force decreases but the system becomes more difficult to control and, as a result, more 

stringent requirements are imposed on the corrective control action. Therefore, a decrease in 

the angle *  may not necessarily lead to propellant savings. Moreover, at small *  the 

distance between the tethers and the main satellite becomes shorter, thus raising the chances 

of collisions. 

 

5. Conclusion 

 

Our numerical and analytical results demonstrate that the multi-tethered pyramidal satellite 

formation is implementable, stable and capable of maintaining the main satellite in a 

specified (vertical or other) position with respect to CoM of the system. The configuration 

requires, however, that the deputy satellites’ engines stay in continuous operation. Various 

system optimality criteria (distance between the system and the central satellite, deputy 

satellite masses, fuel consumption, degree of stability, etc.) conflict with one another, so it 

appears impossible to specify a unique optimal set of parameters. 

 

Natural extensions of the current work include the alternative motion configurations of the 

multi-tethered system, which could be maintained with significant reduction of the propellant 

consumption. For example, a continuous and real time control of the length/tension of all the 

tethers between the satellites could be implemented using controlled winches for instance. 

Other shapes of the composite assembly could also be envisaged such as a polyhedral 

composition or any other shape where tethers would connect nodes. We propose to describe 

such configurations in the subsequent publications. 
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