
APPLICATIONS OF GRAPHS IN TRAJECTORY DESIGN

Juan Arrieta
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91109, USA, +1 (818) 393–5611
Juan.Arrieta@jpl.nasa.gov

c© 2015 California Institute of Technology. Government sponsorship acknowledged.

Abstract: This paper proposes to formally adopt the graph data structure and its associated
algorithms into the space mission design community. It introduces basic concepts of graph theory
and their application to four problems in trajectory design: coordinate frame transformation,
representation of gravity-assisted trajectories, modeling of multibody gravity, and calculation of
sparse Jacobians and Hessians.

Keywords: Graph Data Structure, Gravity Assist Trajectory, Multibody Gravity Field, Sparse
Differentiation

1. Introduction

Graphs are mathematical entities capable of representing a binary relation between elements of a set.
If the elements of that set were people, the binary relation friendship between two people could be
encoded as a graph; if the elements of that set were locations in the Solar System, the binary relation
transfer between two locations in the Solar System could be encoded as a graph. In practical terms
they are data structures storing a set of nodes and a set of node pairs called edges.

Widely studied, they have found applications in many corners of human endeavor, and their
pervasiveness has led to a strong theoretical foundation, a broad collection of algorithms, and the
availability of standards and tools for their creation, manipulation, visualization, and storage.

In some domains the relationship between the problem and the graph data structure is instinctively
analogous. In modeling a social network, for example, friends and friendships are naturally
represented by nodes and edges. In other domains the applicability of graphs is less evident: who
could find a relationship between graphs, coloring a map of the USA, and calculating a sparse
Jacobian?

Reviewing existing space mission design literature, I found that the graph data structure (and some
of its specializations, like trees and lists) is often relied upon for various aspects of space mission
design. Examples include the internal representation of trajectories in optimization software such as
CATO [1], Copernicus [2, 3], and SOCS [4], or the coordinate frame transformation subsystem of
SPICE [5].

However prevalent graphs may be, their existence is seldom acknowledged and often implied as
incidental, which I consider a hindrance to the full exploitation of their power and versatility:
recognizing the graph as a first-class data structure—on the same level as matrices, for example—
could bring important benefits to the mission design community, including:

1

• Generalization of fundamental algorithms such as frame transformations, and gravity field
calculation
• Standardization of formats for external representation of spacecraft trajectories
• Exploitation of available libraries for the creation, analysis, storage, and visualization of

complex graphs and networks
• Reduction in the interpretation overhead caused by the choice of different language to

describe similar concepts

In this paper I will introduce some basic graph theory concepts including two fundamental graph
algorithms: depth-first search, and breadth-first search. I will then highlight four case studies,
developed during the implementation of a tool for the preliminary design of gravity-assisted
trajectories, where I found graphs to be effective: coordinate frame transformation; representation
of multi-segment spacecraft trajectories; multibody gravity field modeling; and sparse Jacobian and
Hessian evaluation.

2. Basic Concepts and Algorithms

A graph G is a pair pN , Eq where N is a finite set and E is a binary relation on N [6]. The set N is
called the node set of G, and its elements are called nodes; the set E is called the edge set of G, and
its elements are called edges.

When the binary relation represented by E is independent of the ordering between elements of
N then G is called an undirected graph; otherwise it is called a directed graph or digraph. In the
pictorial representation of a graph, nodes are often represented by circles, and edges by lines or
arrows depending on whether the underlying graph is directed or undirected (cf. Figure 1).

n1 n2

n3

n4 n5 n6

n7

n8

Figure 1. Graph nodes are often represented by circles, and edges by lines or arrows depend-
ing on whether the underlying graph is directed (left) or undirected (right).

If pu, vq is an edge in a graph G “ pN , Eq we say that node u is adjacent to node v. We also say that
pu, vq is incident from, or leaves node u and is incident to, or enters node v. For directed graphs the
relation pu, vq is not necessarily symmetric, but for undirected graphs the edge pu, vq represents the
same as the edge pv, uq; in an undirected graph, self-loops are forbidden, so every edge consists of
two distinct nodes. The cardinality of the set of nodes is denoted by }N }, and the cardinality of the
set of edges }E}.

The degree of a node, deg pNkq, is the number of edges incident on it; a node of degree 0 is isolated.
In a directed graph the outdegree of a node is the number of edges leaving it, and the indegree is the

2

number of edges entering it; the degree is the sum of the indegree and outdegree.

In practice, graphs are generally represented by one of two data structures: the adjacency matrix
representation encodes a graph by means of a }N }ˆ }N } square matrix with elements pi, jq non-nil
when there is an edge between nodes i and j; this representation can be wasteful in terms of memory
when }E} ! }N }2 because most elements of the matrix would be stored unnecessarily. In this case,
a better representation may be an adjacency list, which encodes a graph by means of a list of }N }
entries, with entry k containing a list of the deg pNkq nodes adjacent to Nk. The choice of either
representation will depend upon the structure of the graph and the kind of operations that will be
performed.

A basic operation on a graph is the traversal (more commonly denoted search) of its nodes starting
from a given location; the result of a search is a tree or a collection of trees1 encoding the order in
which the nodes were discovered. Below I outline two basic search algorithms that often serve as
building blocks for other algorithms.

The first algorithm is breadth-first search (BFS), which visits all nodes adjacent to the current node
before visiting any of their adjacent nodes. In this manner, BFS fans out from the starting node
and continues by following edges incident on nodes as close to the starting node as possible [7].
When implemented as in Algorithm 1, BFS associates a parent, π, and distance, d, to every node
found by the search; every reachable node will be visited exactly once. The resulting tree (called the
breadth-first tree) has the remarkable property that it encodes the minimum distance path2 between
the node which originated the search and all nodes visited by the search.

The second algorithm is depth-first search (DFS), which selects a frontier edge incident on the
most recently discovered node of the tree grown so far. When that is not possible, the algorithm
backtracks to the next most recently discovered node and tries again. This process continues until
all nodes reachable from the node that initiated the search are discovered. When implemented as
in Algorithm 2, DFS associates a parent, π, and two timestamps: d recording when node Nk is
first discovered, and f recording when the search finishes examining Nk’s adjacency list. These
timestamps have important applications. For example: they can be used to sort the nodes in a graph
encoding precedence relationships in a manner such that pre-condition constraints are satisfied3.

3. Coordinate Frame Transformation

A coordinate frame encodes a known orientation in space. For example: the International Celestial
Reference Frame (ICRF) defines an inertial orientation relying on precise equatorial coordinates
of extragalactic radio sources [9]. A vector specified in a given reference frame can be expressed
relative to another via a frame transformation (often a rotation matrix).

A given study may entail dozens of reference frames, thus requiring the ability to find the frame

1Called a forest.
2In this context distance refers to the number of edges between nodes. Other algorithms, such as the one due to

Dijkstra [8], are available for graphs with alternative definitions of distance.
3This arrangement is known as a topological sort.

3

Algorithm 1 Breadth-First Search [6, p. 595]
1: procedure BFS(G, s)
2: for each node u P G except s do
3: u.color Ð WHITE

4: u.dÐ 8

5: u.π Ð NIL

6: s.color Ð GRAY

7: s.dÐ 0
8: s.π Ð NIL

9: QÐH

10: ENQUEUEpQ, sq
11: while Q ‰ H do
12: uÐDEQUEUEpQq
13: for each node v P G.adjrus do
14: if v.color “ WHITE then
15: v.color Ð GRAY

16: v.dÐ u.d` 1
17: v.π Ð u
18: ENQUEUEpQ, vq
19: u.color “ BLACK

Algorithm 2 Depth-First Search [6, p. 604]
1: procedure DFS(G)
2: for each node u P G do
3: u.color Ð WHITE

4: u.π Ð NIL

5: tÐ 0
6: for each node u P G do
7: if v.color “ WHITE then
8: DFS-VISITpG, uq
9: procedure DFS-VISIT(G, u)

10: tÐ t` 1
11: u.dÐ t
12: u.color ÐGRAY

13: for each node v P G.adjrus do
14: if v.color “ WHITE then
15: v.π Ð u
16: DFS-VISITpG, vq
17: u.color “ BLACK

18: tÐ t` 1
19: u.f Ð t

4

transformation path that will transform between the current frame and a desired frame. As illustrated
in Figure 2, it is possible to encode all available frame transformations in a frame transformation
graph, where a node denotes a given coordinate frame, and an edge exists between two nodes if and
when4 there is a known frame transformation between them.

FA

FB FC

FD

FE

FF FG

FH

FI FJ FK FL

Figure 2. A frame transformation graph can encode the available frame transformations. A
breadth-first traversal starting at the desired frame (FL in this case) and ending at the cur-
rent frame (FD in this case) can yield a frame transformation path containing the minimum
number of transformations (FD Ñ Fc Ñ FA Ñ FH Ñ FL, highlighted in blue).

With frame transformations encoded as a graph, it becomes straightforward to devise an algorithm
capable to find the optimal frame transformation path between two nodes (cf. Algorithm 3) based
on breadth-first search.

The properties of the breadth-first algorithm guarantee that a path will be found if it exists, and
it will contain the minimum number of frame transformations; the time complexity of the search
is Op|N | ` |E|q and the space complexity is Op|N |q. If the graph is of constant structure5 it is
possible to store the breadth-first tree rooted in a given node; any frame transformation relative to
that node will be available at once without needing to perform a search. Furthermore, the result of
transforming between inertial frames can be stored for later reuse.

It is tempting to encode the frame transformations using a tree instead of a graph6 . However,
such encoding imposes an artificial taxonomy and various conceptual limitations including: frame
transformations have a base or parent frame, and are the base or parent of another; a root frame is
at the top of the taxonomy; frame transformations must be eventually connected (no islands are
allowed); cycles are handled as special cases. After imposing these limitations, one is left with an
ad hoc data structure for which new algorithms have to be studied, developed, and tested.

4Some frame transformations are time dependent, and are not defined for every time instant.
5Which is the case for time-invariant coordinate transformation graphs.
6In fact, leading space mission analysis software libraries offer frame transformation facilities which are implemented

in terms of trees.

5

Algorithm 3 Given a frame transformation graph F , returns the optimal transformation path from
frame f to a different frame t if one exists.

function FRAMETRANSFORMATIONPATH(F , f , t)
for each node u P F except t do

u.color Ð WHITE

u.π Ð NIL

t.color Ð GRAY

t.π Ð NIL

QÐH

ENQUEUEpQ, tq
while Q ‰ H do

uÐDEQUEUEpQq
for each node v adjacent to u do

if v.color “ WHITE then
v.π Ð u
if v is f then

return BUILDPATHpvq
else

v.color Ð GRAY

ENQUEUEpQ, vq
u.color “ BLACK

return NIL

function BUILDPATH(u)
P Ð u
π Ð u.π
while π ‰NIL do

APPENDpP, πq
π Ð π.π

return P

4. Representation of Trajectories

The design of gravity-assisted trajectories for missions such as the Voyagers, Galileo, Cassini, and
the proposed Europa mission often entails a complex piece-wise construction process aiming to
join various flybys together. A mission designer typically starts from given incoming hyperbolic
conditions at some body, generates various possible subsequent flybys, selects a specific one, and
continues in this manner until a satisfactory multiple-flyby trajectory has been created. The manner
in which subsequent flybys are generated depends upon various transfer strategies such as resonant,
non-resonant, and π-transfers; these can be subject to different modeling considerations, such as
the fidelity of the gravity field or the use of maneuvers. The piece-wise construction of trajectories
is not limited to those relying on gravity assists; it can also be as a consequence of the numerical
methods used for their design and optimization.

It seems natural to represent spacecraft trajectories as graphs: a set of locations in the Solar System

6

and a binary relation between them (a transfer between two locations in the Solar System). In
fact, it is standard practice to divide spacecraft trajectories, and the leading software for trajectory
optimization such as MALTO, CATO, Cosmic, SOCS, and Copernicus are all based on similar
concepts: break points and control points; nodes and stages; constraints and phases. The relation of
these concepts to graphs, however, is often secondary and frequently aggregated in terms of lists, as
illustrated in Figure 3.

BP1 CP1 BP2 CP2 ¨ ¨ ¨ BPN

Figure 3. Representation of a trajectory as a list of two different kinds of nodes: break points
(BPk) and control points (CPk).

The list arrangement is rigid because it entails a linear, sequential arrangement of events of specific
types7, thus being limited to a single trajectory that can be extended from the last element; it also
imposes conceptual barriers because it encodes the transfer information implicitly in the nodes.

In contrast, the graph representation can offer a more cohesive methodology for representing
different phases of a trajectory as a directed graph where the nodes denote the junction points
between different phases of the trajectory and the edges represent the dynamical model joining the
nodes; both nodes and edges can contain arbitrary information (cf. Figure 4).

N0

N1

N2

N3 N4 N5

N6 N7E0,2

E1,2

E1,3

E2,6

E3,4 E4,5

E6,7

Figure 4. Representation of a trajectory as a graph, where nodes denote the junction points
between different phases of the trajectory, and edges represent the dynamical model joining
the nodes.

To illustrate the flexibility of the graph representation, consider the incremental design of a gravity-
assisted trajectory based on the patched-conic approximation [10, 11]. The graph can represent
available ballistic, multiple-flyby trajectories centered on a planet such as Jupiter; a node contains
a flyby body identifier, an epoch, and an incoming hyperbolic excess velocity vector v8i; an
edge contains references to its source and destination nodes, and an outgoing hyperbolic excess
velocity vector v8o This representation enables the implementation of complex behaviors such as
the generation of nodes in either depth-first or breadth-first manner; the isolation of tours within the
graph as a list of edges; and the serialization of the graph to various standard formats for storage
and visualization.

7A control point followed by a break point, for example.

7

id, t, v8i id, t, v8iv8o

Figure 5. The incremental design of gravity-assisted trajectories can be represented by nodes
containing incoming flyby conditions, and edges representing outgoing hyperbolic excess ve-
locity. In this manner, various outgoing trajectories can be associated with a given node, and
all available transfers can be considered simultaneously.

In the graph representation, the edges represent the transfer itself; it is not possible for an edge to
exist unless it has both an incoming and an outgoing node. For this reason, the information about
the transfer joining any two nodes is fully available in the edge joining them8. For example: the
time of flight is obtained from the difference between the epochs of the destination and source
nodes; a trajectory tabulation can be obtained by means of propagating the state derived from
the incoming and outgoing v8 vectors (available via the source’s v8i and the edge’s v8o); the
minimum time-of-flight path to a given body or condition can be obtained from a breadth-first
traversal starting at an arbitrary node.

Another advantage of the graph representation is that its storage and retrieval can be handled in
terms of well-understood techniques. For example, a basic JSON representation of a trajectory
graph could look similar to the following text:

"graph" {
"nodes" : [

{"node_id":1, "body_id":"Europa", "t":x, "vinc":[x, y, z]},
{"node_id":2, "body_id":"Io", "t":y, "vinc":[x, y, z]},
{"node_id":3, "body_id":"Callisto", "t":z, "vinc":[x, y, z]},
... more nodes...

],
"edges" : [

{"edge_id":1, "src_id":1, "dst_id":2, "vout":[x, y, z]},
{"edge_id":2, "src_id":2, "dst_id":3, "vout":[x, y, z]},
{"edge_id":3, "src_id":2, "dst_id":4, "vout":[x, y, z]},
{"edge_id":4, "src_id":3, "dst_id":5, "vout":[x, y, z]},
... more edges...

],
... more graph data...

}

Notice that, unlike in the naı̈ve storage of a list, the order in which nodes and edges are stored is not
important. It is possible to build all nodes first (in any order), and edges second (once nodes are
available). The node id and edge id fields are illustrated as integers, but an arbitrary identifier
can be used instead. Detecting structural errors or peculiarities in the graph is straightforward, as

8And, of course, relying on the access to databases for parameters such as µ, or planetary and satellite ephemerides.

8

standard algorithms (again, based on breadth-first and depth-first searches) are available that can
detect cycles, islands9, edges referring to a non-existing node, or nodes without associated edges.

Given that the graph format accommodates for additional information to be associated to nodes and
edges, it now becomes possible to consider more complex transfer strategies without modifying
the underlying data structure. For example: ballistic transfers in the Saturnian system tend to be
inaccurate due to the effects of Saturn’s J210. In this case, it is desirable to add a maneuver between
two flybys before proceeding any further. In this case, a ∆v vector executed ∆t time units from
the source flyby time could be added to some edges to denote maneuver locations for non-ballistic
transfers, as illustrated in Figure 6. Finally, because the graph format contains all the information

id, t, v8i id, t, v8i id, t, v8iv8o, ∆t, ∆v v8o

Figure 6. Some edges can contain additional information, such as maneuver information
encoded as a ∆v vector executed ∆t time units from the source flyby time, and enable non-
ballistic transfers to be considered without having to modify the underlying data structure.

simultaneously, it is possible to investigate various paths (that is: specific trajectories) without
having to commit to one in particular as illustrated in Figure 7.

A

B

C

D

E

F

G

H

I

J K

L M

N O P

Q R S

Figure 7. Simultaneous consideration of various paths within a given session: one may be
interested in the main path (red), or a promising alternative (blue). While the other paths
are not being considered, their information is still available and can be considered at any
time, or deleted from the graph.

9Connected components, in graph theory language.
10All patched conic trajectories are inaccurate to some extent, but their inaccuracies can often be removed by

a high-fidelity trajectory optimizer. On the other hand, the effect of Saturn’s J2 can be so large that the resulting
patched-conic approximations are incorrect, and cannot be converged to a full fidelity solution. A similar situation
arises in the presence of untargeted close approaches to other satellites or planets.

9

5. Modeling Multibody Gravity Using Undirected Graphs

When the dynamical model of a point mass incorporates the gravitational disturbance of more
than one natural body, it is often necessary to adapt the calculation of the disturbance acceleration.
For example: it is reasonable for the simulation of an Earth orbiter to consider the perturbations
due to the Jovian system taken as the barycenter of Jupiter and the four Galileans; this calculation
entails one—and not five—ephemerides evaluations. Similarly, it may be reasonable to consider
the Moon’s distributed potential, but less reasonable to consider, for example, Saturn’s oblateness.
The decision of what gravity sources to treat in what manner at a given time is delegated to a
gravity model, which can also be used to determine the appropriate integration center. Depending
on their distance and potential, the various gravity sources acting on the point mass can be treated as
barycenters, point masses, or distributed masses; the distinction can be important both for numerical
and performance reasons.

From the numerical perspective, the adaptation is necessary due to the large dynamic range of the
distances involved. Consider, for example, the numerical integration of an EVEEGA11 interplanetary
trajectory towards Jupiter. In an imaginary world of infinitely precise computer arithmetic, any
frame and any center of integration would yield exactly the same result. In the real world of limited
precision, a center should be chosen to reflect the body exerting the largest gravitational influence at
any given instant12.

From the performance perspective, in the majority of cases and past a certain distance, it makes
no practical difference to calculate separately the individual contributions of each satellite in a
planetary system. It often suffices to augment their planet’s gravitational parameter by the sum of
their individual masses, and treat this conglomerate as a single point mass located at the barycenter.

@

B C

$

D

D1 D2

X

X1 X2 X3 X4

Figure 8. A graph representation of a multigravity model containing the Sun; Venus; Earth
and Moon; Mars, Phobos, and Deimos; and Jupiter, Io, Europa, Ganymede, and Callisto.

The adaptation can be automated by representing the gravitational system as a graph connecting the
bodies their satellites, as illustrated in Figure 8. This representation13 is able to recenter itself based

11An interplanetary trajectory with gravity assists from Earth, Venus, Earth, and Earth again.
12One would not choose the center of the Sun to investigate with precision the motion of Charon around Pluto!
13It was inspired by the manner in which gravity is modeled in the MONTE library using k-ary trees, structurally

10

on the current position, and notify when the point mass has entered or left a gravitational region
such as the sphere of influence or the oblateness sphere14.

Starting at the current center (which can be any node in the graph), the aggregation is a BFS with
the following set of rules:
• If the point mass is within the sphere of influence of the visited node, mark the visited node

for central aggregation.
• If the point mass is not within the sphere of influence of the visited node, mark the visited

node for barycentric aggregation. Also mark it BLACK, and skip ENQUEUE (to stop BFS
from visiting its adjacent vertices).

In the previous example, assume the point mass is within 250 km of Europa. The algorithm,
visualized in Figure 9, would first visit Jupiter and mark it for central aggregation; then visit Io,
Ganymede, and Callisto; mark them for barycentric aggregation, and stop further traversal. Then it
would discover the Sun and mark it for central aggregation. Finally, it would discover Venus, Earth,
and Mars; mark them for barycentric aggregation, and stop further traversal. At this point there are
no more nodes to visit and the search stops. Another example is illustrated in Figure 10, where the
center of integration is the Moon, Earth and Sun are centrally-aggregated, and the remaining planets
are aggregated as barycenters.

@

B C

$

D

D1 D2

X

X1 X2 X3 X4

Figure 9. The result of the algorithm on a point mass within 250 km of Europa (the inte-
gration center, marked in red). Jupiter and the Sun are centrally aggregated (marked in
yellow), whereas Venus, Earth, Mars, Io, Ganymede, and Callisto are baricentrically aggre-
gated (marked in green). When a body has no satellites, barycentric aggregation is equivalent
to central aggregation. Notice that the search did not find the Moon, Phobos, and Deimos;
they will be considered during the barycentric aggregation of their parents.

6. Graph Coloring for the Evaluation of Sparse Jacobians and Hessians

The graph coloring problem consists of assigning a color15 to every node in a graph in a prescribed
manner. For example: two adjacent nodes must have different colors denotes a distance–1 coloring

identical but implemented differently.
14The sphere within which the disturbances due to a distributed mass are non-negligible.
15The term color is an abstract concept used to denote any distinguishable property.

11

@

B C

$

D

D1 D2

X

X1 X2 X3 X4

Figure 10. Another example considering a Lunar orbiter. Earth and Sun are centrally ag-
gregated (yellow), and Venus, Mars, and Jupiter are barycentrically aggregated (green). The
satellites of Mars and Jupiter will be considered by the aggregation of their corresponding
planet.

problem; any two nodes separated by exactly two edges must have different colors denotes a
distance–2 coloring problem16. The determination of the chromatic number χpGq—the minimum
number of required colors—for an arbitrary graph G is known to be an NP-hard problem [7].

The relationship between graph coloring techniques and the evaluation of sparse Jacobians and
Hessians traces its roots to the work of Curtis, Powell, and Reid [12], who noted that in approxi-
mating the Jacobian J of a vector function fpxq via finite differences, considerable savings in the
number of function evaluations are possible if J has a large number of elements that are known
constant. For example, when J is sparse with a known sparsity pattern, a group of columns can be
determined with one perturbation if no two columns in such group have a non-zero in the same row.

Coleman and Moré [13] were the first ones who noticed that the problem could be attacked from
the perspective of graph coloring: it is possible to reduce the number of function evaluations
required to approximate a sparse Jacobian or Hessian if its columns are separated into structurally
orthogonal groups, and finding such groups is equivalent to coloring a graph17. Later work by
Gebremedhin, Manne, and Pothen [14] extended Coleman and Moré’s approach by introducing
an efficient distance–2 coloring algorithm based on the variable-dependency graph and, most
importantly, extending the coloring approach to automatic differentiation.

As an example, consider the differential equations modeling the two body problem

d2r

dt2
“ ´µ

r

r3
(1)

16There are many applications of graph coloring techniques in practical engineering problems. For example: the
assignment of frequencies to radio stations must be done in a manner such that no two radio stations with overlapping
broadcast area transmit in the same frequency. In this case, a graph is created with radio stations at the nodes and
an edge linking those with overlapping broadcast area; the colors correspond to radio frequencies, and the spectrum
authority is interested in minimizing the number of allocated frequencies.

17From which it follows that minimizing the number of function evaluations needed to estimate sparse Jacobians and
Hessians is equivalent to finding χpGq.

12

and observe that their Jacobian can be separated into three groups (red, green, and blue) of
structurally-orthogonal columns:

structurepJq “

»

—

—

—

—

—

—

–

0 0 0 Bvx 0 0
0 0 0 0 Bvy 0
0 0 0 0 0 Bvz
Brx Bry Brz 0 0 0
Brx Bry Brz 0 0 0
Brx Bry Brz 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (2)

Given a nominal value, one could evaluate the six columns in the Jacobian using three (as opposed
to six) additional function evaluations: perturbing red (rx, vx, vy, and vz), then green (ry), and finally
blue (rz). The distance-2 coloring visualization of the variable-dependency graph is presented in
Figure 11.

r1x r1y r1z v1x v1y v1z

rx ry rzvx vy vz

Figure 11. The variable-dependency graph for fpxq contains one node for every function and
one node for every variable; fi is connected to xj if xj appears in the expression for fi. The
nodes are colored according to their group, which can be obtained from a distance-2 coloring
of the nodes assigned to variables.

Algorithm 4 outlines a sequential coloring process: let N1,N2, . . . ,Nn, be an ordering of the
nodes in G; for k “ 1, 2, . . . , n assign to Nk the smallest possible color. The performance18 of the
sequential algorithm depends entirely on the ORDERNODES function: the simplest alternative is
to return the nodes in whatever order they happen to be (called CPR19 ordering). As illustrated
in Figure 12, even such simple heuristic can lead to reasonable colorings. In fact, it is capable of
finding a four-color map of the United States in a handful of runs when the nodes are sampled in
random order20 (most runs find five- and six-color maps).

Other orderings are possible that, while more complex to implement, lead to better overall perfor-
mance:

Largest First ordering selects the nodes so that deg pNkq is non-increasing.

18Performance in this context refers to the number of colors used; fewer is better, and equal to χpGq is optimal.
19After Curtis, Powell, and Reid because relying on such ordering is equivalent to using the algorithm outlined in

their original paper [12].
20According to the Four Color Theorem, four colors are sufficient to color any planar map. In addition, it is known

that χpUSAq “ 4

13

Algorithm 4 Graph coloring sequential algorithm [12, 13]
1: procedure GCS(G)
2: for each node u P G do
3: u.color Ð NIL

4: for each node u in ORDERNODESpGq do
5: u.color Ð MINIMUMCOLORpuq

6: procedure MINIMUMCOLOR(u)
7: F ÐH

8: for each node v adjacent to u do
9: if v.color ‰NIL then

10: APPENDpF, v.colorq

11: k Ð 0
12: loop
13: if k not in F then
14: return k
15: else
16: k Ð k ` 1

Figure 12. A map of the USA colored using four colors (left) and five colors (right). The
colorings were obtained using the sequential algorithm with random node sampling.

Smallest Last ordering assumes that nodes Nk`1, . . . ,Nn have been selected, and chooses Nk so
that the deg pNkq in the subgraph with nodes N ´ tNk`1, . . . ,Nnu is minimal.

Incidence Degree ordering assumes that N1,N2, . . . ,Nk´1 have been selected, and chooses Nk

so that degpNkq in the subgraph with nodes tN1,N2, . . . ,Nk´1u is maximal.

Coleman and Moré present a comparison of these ordering algorithms when applied to a collection
of over 50 representative and randomly-generated problems; they conclude that Smallest Last and
Incidence Degree orderings tend to perform best overall, and are nearly optimal.

14

7. Conclusions

Graph theory provides a versatile approach to dealing with various problems directly relevant to
space mission design. In this paper I provided a basic introduction to the concepts, terminology and
basic algorithms of graph theory. In addition, I proposed a graph-based approach to:
• Creating a coordinate frame transformation system capable of generating an optimal transfor-

mation path between two coordinate frames.
• Representing multi-segment spacecraft trajectories in a manner that enables one to consider

various alternatives simultaneously, augment the underlying data structure with arbitrary
properties, and serialize/deserialize the resulting graph to a simple JSON format.
• Managing multi-body gravity models in a manner that enables aggregation as center or

barycenter, and can trigger center switching.
• Reducing the number of function evaluations needed to estimate sparse Jacobians and Hessians

by means of exploiting sparsity information under a graph coloring framework.

8. Acknowledgments

The research described in this paper was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space Administration.

9. References

[1] Hatfield, J. N. and Rinderle, E. A. User’s Guide for CATO Computer Algorithm for Trajectory
Optimization. NASA Jet Propulsion Laboratory, 2001.

[2] Williams, J., Senent, J. S., Ocampo, C., Mathur, R., and Davis, E. C. “Overview and software
architecture of the Copernicus trajectory design and optimization system.” “International
Conference on Astrodynamics Tools and Techniques,” 2010.

[3] Ocampo, C. “An Architecture for a Generalized Trajectory Design and Optimization System.”
“Proceedings of the International Conference on Libration Points and Missions,” 2002.

[4] Betts, J. T. Practical Methods for Optimal Control and Estimation Using Nonlinear Program-
ming. Advances in Design and Control. SIAM, 2nd edn., 2010.

[5] Acton, C. H. “Ancillary Data Services of NASA’s Navigation and Ancillary Information
Facility.” Planetary and Space Science, Vol. 44, No. 1, pp. 65–70, 1996.

[6] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Clifford, S. Introduction to Algorithms.
The MIT Press, third edn., 2009.

[7] Gross, J. L. and Yellen, J. Graph theory and its applications. Discrete Mathematics and its
applications. Chapman & Hall/CRC Taylor & Francis Group, 2nd edn., 2006.

[8] Dijkstra, E. W. “A Note on Two Problems in Connexion with Graphs.” Numerische Mathe-
matik, Vol. 1, pp. 269–271, 1959.

15

[9] Fey, A. L., Gordon, D., and Jacobs, C. S. “The Second Realization of the International
Celestial Reference Frame by Very Long Baseline Interferometry.” IERS Technical Note 35,
International Earth Rotation and Reference System Service (IERS), Germany, 2009.

[10] Cesarone, R. J. “A gravity assist primer.” AIAA Student Journal, pp. 16–22, January 1989.

[11] Uphoff, C., Roberts, P. H., and Friedman, L. D. “Orbit design concepts for Jupiter orbiter
missions.” Journal of Spacecraft and Rockets, Vol. 13, No. 6, pp. 348–355, 1976.

[12] Curtis, A. R., Powell, M. J. D., and Reid, J. K. “On the Estimation of Sparse Jacobian
Matrices.” IMA Journal of Applied Mathematics, Vol. 13, No. 1, pp. 117–119, 1974.

[13] Coleman, T. F. and Moré, J. J. “Estimation of sparse Jacobian matrices and graph coloring
problems.” SIAM Journal on Numerical Analysis, Vol. 20, No. 1, pp. 187–209, 1983.

[14] Gebremedhin, A. H., Manne, F., and Pothen, A. “What color is your Jacobian? Graph coloring
for computing derivatives.” SIAM Review, Vol. 47, No. 4, pp. 629–705, 2005.

16

	Introduction
	Basic Concepts and Algorithms
	Coordinate Frame Transformation
	Representation of Trajectories
	Modeling Multibody Gravity Using Undirected Graphs
	Graph Coloring for the Evaluation of Sparse Jacobians and Hessians
	Conclusions
	Acknowledgments
	References

