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Abstract: A novel super-twisting adaptive sliding mode observer based attitude controller is
designed for Mars entry. A continuous uncertain term is assumed to be bounded with unknown
boundary. The proposed super-twisting adaptive sliding mode disturbance observer is designed
to approximate the uncertainty and disturbance in attitude control loop. Sliding compensation
control is designed to offset the harmful effect by application of Lyapunov method. A numerical
example confirms the efficacy of the proposed strategy.
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1. Introduction

Mars landing exploration activities have been and will continue to gather scientific data and
deepen the current understanding about the life origin and the solar system formation process.
All Mars landers to date continue to rely on the entry, descent and landing (EDL) technologies
developed for the Viking missions in the mid-seventies of the last century, which lead to larger
landing error ellipse. With the advances of technologies, estimated Mars landing accuracy to date
has gradually improved from ~150 km of Mars Pathfinder to ~35 km for the Mars Exploration
Rovers to ~10 km for 2012 Mars Science Laboratory (MSL) [1]. It is believed that MSL is
challenging the capabilities of Viking-heritage EDL technologies, defining an upper bound on
the performance of the first generation EDL systems and GNC mode. Future Mars missions,
such as Mars sample return, manned Mars landing and Mars base, need to achieve the pin-point
Mars landing (safe landing within tens of meters to 100 m of a preselected target site) [2]. Since
the current EDL system and GNC methods can not satisfy the requirements for future pinpoint
Mars landing missions, the next generation of EDL system and GNC methodologies are required
in order to deliver the larger and most capable lander/rover to date to the surface of Mars.
It is believed that the model parameter uncertainty and external disturbance are the main

impedient for further improving Mars landing accuracy [3]. For Mars entry, due to the lack of
reliable model of Martian atmosphere at the current stage, and the aerodynamic parameters of
entry vehicle model are obtained by ground wind tunnel test, as well as complex varied flight
environment introduces external disturbance moment on Mars entry vehicle [1,3]. They usually
result in large uncertainty between designed model and real flight state, which inevitably
degrades the performance of Mars entry guidance and control algorithms [3]. In order to ensure
Mars landing missions are executed safely and accurately, the flight control system of Mars entry
vehicle should be designed to compensate and suppress those uncertainty and disturbance.
Disturbance observer is one of the effective means to solve the flight control problem with

uncertainty and disturbance, which utilize some known data to estimate unknown data [4,5]. For
Mars entry with large uncertainty and disturbance, the disturbance observer can online
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approximate the composite uncertain item, which is conducive to design a compensation
controller, so as to achieve high precision and robustness. However, the boundary of disturbance
is needed for traditional sliding mode control. High order sliding mode not only can
commendable overcome the chattering problem of one order sliding mode, but also retain the
merits of the latter [6]. As one of useful second order sliding mode control methods, super-
twisting algorithm is the unique that don’t need any differential information of sliding mode
variable respect to time in advance, and it has less adaptive learning parameters to be propitious
to real-time control [7]. Since super-twisting algorithm contains a discontinuous function under
the integral, chattering is not eliminated but attenuated [8].
The aim of this paper is to develop new robust tracking control in order to further improve the

robustness and accuracy of Mars atmospheric entry in the presence of larger uncertainty/
disturbance. Motivated by the preceding works, we design the novel super-twisting adaptive
sliding mode disturbance observer based attitude control low that continuously drives the sliding
variable and its derivative to zero in the presence of the bounded disturbance with the unknown
boundary. The proof is based on recently proposed Lyapunov function that is used for the
derivation of the novel adaptive super-twisting algorithm. Based on the real-time approximate
value of the uncertainty/disturbance during Mars entry, the attitude of entry vehicle can be
tracked quickly and smoothly by sliding controller.
This paper is organized as follows. Firstly, six degree-of-freedom dynamic model for Mars

atmospheric entry with uncertainty/disturbance is established. Secondly, super-twisting adaptive
sliding mode disturbance observer is designed to estimate the uncertainty and disturbance in
attitude loop. Thirdly, sliding compensation control is designed by application of Lyapunov
method. The information of uncertainty and disturbance approximated by super-twisting
adaptive sliding mode disturbance observer is feed back to control system, and the harmful effect
is offset by compensation control. Finally, the effectiveness of this method is demonstrated
through the simulation test.

2. Description of Mars entry attitude dynamics

In this paper, the following nonlinear rigid body dynamics equations with six degree-of-
freedom and twelve states are used to describe the Mars entry vehicle dynamic model. The
subsequent control law is designed based on these equations as follows [6].
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where, x , y , z are the position of center of mass of entry vehicle, V is the vehicle’s velocity;
 ,  ,  ,  ,  are azimuth angle, flight path angle, angle of attack, angle of sideslip, and roll
angle, respectively; p、 q、 r are roll rate, pitch rate, and yaw rate, respectively; M is mass of
the vehicle; L , Y , D are lift, yawing force, and drag force, respectively; Al , Am , An are rolling
moment, pitching moment, and yawing moment, respectively; rxT , ryT , rzT are tri-axial force by
reaction control system (RCS), respectively; Trl , Trm , Trn are rolling moment, pitching moment,
and yawing moment by RCS, respectively; xxI , yyI , zzI are rotational inertia for x , y , z axis,
respectively; xxI , yyI , zzI are rate of rotational inertia for x , y , z axis, respectively.
The system state of fast loop is T[ , , ]p q rω . The controller should output the RCS command
according to some required command cω . Based on the equations (10) to (12), the attitude
dynamics model can be described as an affine nonlinear system:

    f f f Cω f Δf g M d (13)
where, CM denotes the control moment, fΔf is the uncertain part in the ff , d is external moment
disturbance; let  f fD Δf d .

3. Super-twisting Adaptive Sliding Mode Disturbance Observer based Attitude Control

Because of the moment disturbance has a more influence on the angular velocity while few
influence on the attitude angle, during Mars entry process. Hence, the external disturbance is
considered to be in the fast loop. In fact, it is impossible to predict the complex interference,
much less the change rate of the external disturbance. In this paper, the Super-twisting Adaptive
Sliding Mode Disturbance Observer (SASMDO) is designed to estimate the disturbance of the
fast loop and the compensation control law is derived.
Levant first proposed the idea of higher order sliding mode control [9]. The higher order

sliding mode control can avoids the chattering problem of a first order sliding mode control, and
also inherits the advantages of the latter. As one of the second order sliding mode control
algorithms, super-twisting algorithm is the only one that does not require time derivative data of
any sliding mode variables. The super-twisting controller u is calculated as follows:
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where,  is the sliding surface; and  is not required. Therefore, the super-twisting controller
has robustness.

Theorem 1: Let
1
2

i i iD   , such that
1
2 D δ σ ; where, 1i  , 2 , 3 , unknown 0i  . For fast

loop nonlinear system (1), the Adaptive Sliding Mode Disturbance Observer (ASMDO) is
constructed as:
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where
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Adaptive law of parameter 1l is
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where,σ is assist sliding surface, ω is the state of fast loop, z is the state of observer, v is the
input of assist control,  and  are any positive number.

Lemma 1: Consider the nonlinear system as follows [8,10]:
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This equation can be rewritten as
1
2

1 1 1 1( ) ( ) ( )x x sign x sign x d t      , parameters  and  are
designed to enable 1x and 1x converge to zero in a limited time. Therefore, parameters 1l and 2l
should be designed to enable the sliding surface σ and σ converge to zero in a limited time, and
1l reaches its stable value

01
l . Here, σ and σ corresponding to 1x and 1x . Then, the compound

disturbance observation D̂ could uniform converges to the real value.
Proof: Time derivation of σ equation is

  σ ω z      f f f ff g u D f g u v  D v (20)
After transposition, that is

 σ v D (21)
Let’s plug eq. (16) into eq. (21), and rewritten eq. (21) as the form of eq. (19), that is
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In fact, if 1i and 2i can converge to zero in a limited time, then i and i can also converge

to zero in a limited time.

We select the Lyapunov function as:
T 2
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This completes the proof.
Therefore, for adaptive sliding mode disturbance observer (15), under the assist control of v ,

the assist sliding surface σ and σ can converged to zero in a limited time; in this case, ˆ D v ,

which means v is a precise estimation of uncertain item D . Then, we get the compensation

control law 1 ˆ 1 fM g D for the uncertainty. Hence, the control law of fast loop is
2 2/1

2 2
ˆ( ( ) ( ) )q p

c a b K          f f c f aw f aw e eM g f ω f ω g h ω ω ω s D (38)
where, T[ , , ]ctrl ctrl ctrll m ncM are the control moment on rolling, pitching, and yawing; their
expression are

 c f,δ c RCSM g δ M (39)
(1 )ck  aero f,δ c cM g δ M (40)

ckRCS cM M (41)
where, cδ is the deflection angle of aerodynamic surface, aeroM is the moment of force generated
by aerodynamic surface, RCSM is the moment of force generated by RCS, ck is the control
authority coefficient which is determined by the aerodynamic press q̂ .

System close-loop stability analysis
According to the description above, the adaptive sliding mode disturbance observer (ASMDO)

is able to approximate the uncertainty, and the compensation control law is utilized to offset the
influence of uncertainty.
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Theorem 2: Adopting the adaptive sliding mode disturbance observer (15), the system (13)
could be asymptotically stable by the control law (38).

Proof: We plug the control law (38) into the state equation (13), then we get
2 2/
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We select the Lyapunov fuction of the entire close-loop system as
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where, min ( ) 0 fQ is the least eigenvalue of fQ .
Hence, the compound system consisting of eq. (13) and eq. (15) is asymptotically stable by the

control law (38). This completes the proof.

4. Simulation Case

For preliminary verify the contribution described above, a simulation case is given. We
adopt the Mars entry vehicle simulation parameters mentioned in literature [6]. Some initial
value is set as 0   , 1   , 2.5   , 3   , and 0p q r   . Tracking command: 1 ~ 4s :

6c   , 0c   , 0c   ; 4 ~ 7s : 12c   , 0c   , 0c   . Fast-loop uncertain disturbance moments
of forces: 5

1 1 10 (sin(4 ) 0.2)d t   , 6
2 2 10 (sin(11 ) 0.6)d t   , 6

3 2 10 (sin(5 ) 0.2)d t   . Slow-loop control
parameters: 1 2a  , 1 1b  , 1 7q  , 1 9p  , 7 / 9k  . Fast-loop control parameters: 1 1a  , 1 3b  , 1 7q  ,

1 9p  , (15,15,15)K diag , initial value of 1l is 1 =10l  . Authority coefficient of moment of force is
 ˆ285 /1000 1000ck q  . To simulate the large uncertainty, here, aerodynamic coefficients

multiply 1 0.5sin( )t , aerodynamic moments of forces multiply 1 0.4sin( )t . The simulation results
are shown as follows.
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Figure 1. Attitude angles tracking profiles

In Figure 1, we can found that in the case of large uncertainty exists and ASMDO absents, the
commands of attitude angles are oscillating tracked. While after the ASMDO presents, the
observer can timely observe the external uncertain disturbances and feedback them to the control
system, the designed compensation control law is able to counteract the adverse effects caused
by uncertainty. They enable the commands of attitude angles are tracked rapidly and smoothly.
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Figure 2. Observation of uncertainty

In figure 2, we can found that the ASMDO can timely approximate the disturbance and
uncertainty. The derivation of disturbance is not required, so it has good robustness.

5. Conclusions

The external uncertain disturbances of moments of forces exist during the Mars atmospheric
entry process, and the derivative boundary value of the uncertainty is unpredictable. In this paper,
an adaptive sliding mode disturbance observer based on super-twisting algorithm is designed,
which does not require a priori value of external uncertainty. The learning law of adaptive
parameters is derived, and the adaptive learning parameters are little. The adaptive sliding mode
disturbance observer based attitude control law is suitable for real-time operation. The
preliminary simulation results show that the observer can approximate the uncertain disturbance
while the commands of attitude angles can be tracked rapidly and smoothly.
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