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ABSTRACT

On the basis of existing orbit determination soft-
ware, ESOC is preparing to make use of laser rang-
ing data from the SIRIO-2 LASSO experiment (Laser
Synchronisation from Stationary Orbit). Four
areas have been proposed for investigaticn: precise
orbit determination, improvement of resonant grav-
ity coefficients, polar motion, and calibration of
the ESA VHF ranging system. The paper outlines
the aims of this off-line software experiment and
the preparations under way in support of them.
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Earth gravity field, polar motion, ionospheric
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1. INTRODUCTION

The clock synchronisations to be carried out with
the SIRIO-2 spacecraft by means of laser ranging
(LASS0 = Laser Synchronisation from Stationary
Orbit) offer a unique opportunity for high preci-
sion determination of a geostationary orbit, using
tracking data of decimeter or sub-decimeter
accuracy. Starting from the basis of existing
operational software, a proposal was made by ESOC
to use this laser ranging data for four related
experiments, whose objectives would be:

1) Precise orbit determination:

- to determine accurately the orbit from
laser ranging measurements;

- to assess the achievable orbit accuracy;

- to compare with radio tracking.

2) Determination of gravity coefficients:

- to try to obtain improved estimates of
resonant gravity coefficients;

- to assess the effect of improved gravity
coefficients on orbit accuracy.

3) Polar motion:

- to determine polar motion using laser rang-
ing measurements;

- to evaluate the effect of improved model-
ling of polar motion on orbit determination
accuracy;

4) Ionospheriec calibration:

- to calibrate the ESA VHF tracking system;
- to evaluate the performance of the cali-
brated radio system.

In principle, none of these experiments will
interfere with the normalmission operations of the
spacecraft, since the laser and VHF ranging data
are collected in support of the basic mission.
However, since the time synchronizations will nor-
mally be carried out during one hour/day, additio-
nal ranging data will be required in order to give
round-the-orbit coverage during at least some
orbits.

The paper explains the experiment aims and des-
cribes the preparations under way in support of
them.

2. PRECISE OREBIT DETERMINATION
2.1 Introduction

In the past, ESOC has performed orbit determin-
ation for several geostationary satellites (GEOS
2, 0TS, METEOSAT, GOES) with radio tracking in
VHF and/or S-band (accuracy from some metres to
hundreds of metres in range). Laser ranging to

a geostationary spacecraft sets new standards of
accuracy on software models and processing methods.

2.2 Perturbations on the geostationary orbit

The principle perturbing forces acting on the
geostationary orbit arise from:

- anomaliesin the earth's gravity field;

- the gravitational fields of the Sun and the
Moon;

- solar radiation pressure.

The earth gravity field is considered in detail
in Section 3. It generates mainly in-plane
perturbations.

Sun and Moon cause short period variations of the
semi-major axis with amplitudes near 500m and
1200m respectively. More important are the per-
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turbations of the node and inclination. There is
a forced precession of the orbit normal with a
perind of about 52 years. In a first approxi-
mation, the orbit pole performs a circular motion
centred at right ascension 270° and declination
82.5°. The inclination of an initially equator-
ial geostationary orbit will reach a maximum near
15%

Solar radiation pressure mainly affects the semi-
major axis (short period) and eccentricity vector
(annual effect). The magnitudes depend linearly
on the spacecraft area-to-mass ratio. For an
effective cross-section of 1.5m? and mass of

230 kg (SIRIO-2), the perturbations have ampli-
tudes

da n 23m
and ade v 5500m

An initially circular orbit develops an eccen-
tricity with the line of apsides maintained ortho-
gonal to the sun direction. The eccentricity
reaches its maximum amplitude after 6 months, and
returns to zero after 1 year, see Ref. 1.

The tangential accelerations at 25°W and 20°E (the
two gositions foreseen for SIRIO-2) are 0.25 x

10 10 and -0.53 x 10 '%m/s? respectively. By
comparison the total acceleration due to solar
radiation pressure is about 0.5 x 10 | /s?. The
acceleration due to the Earth albedo radiation
pressure is about two orders of magnitude less
than this.

2.3 Radiation pressure model

A eritical factor inour proposed experiment is
thus the feasibility of accurately modelling the
radiation pressure perturbation. The main prob-
lems are:

i) Data defining the physical properties
(absorption, reflection, emission) of the
spacecraft surfaces are not usually avail-
able except for normal incidence. The
distribution of reflected radiation as a
function of angle from the normal to the
surface is not known (amount of specular
versus diffuse reflection).

ii) Ageing of the materials after launch ceuses
the values of these data to change.

iii) Most spacecraft have non-convex surfaces
due to antennae and other appendages, so
that shadowing and multiple reflections
can be significant, and models become rather
complex.

On the other hand, due to the nature of the per-
turbation on the orbit, it is hardly feasible to
identify more than one or two parameters of such
a model from the tracking data.

A model for SIRIO-2 has been developed assuming

a somewhat idealized configuration consisting of

(see rig. 1)

- the main body, a cylinder;

- the flat antenna, inclined at angle of 45° with
respect to the spin axis, and supported by a
rod of negligible surface area;

= the launcher adapter and ABM nozzle, considered
as truncated cones. The nozzle furthermore is
divided into two parts with different optical
properties (see Table 1).

The forces are calculated according to the
formula

T = -k(R) ff[cos ﬁ] {{ a+2ccose )fi+b8 dA

where k(R) is the solar constant at distance R

- Xo k = solar constant at 1 AU

Rg 2 Re= earth-sun distance in All

fi = unit vector perpendicular to the surface
element dA

g2 = unit vector pointing to Sun

cos® = f.8§

a=2[r(1-8) + k(1-v)]

b = 1- By

c =By

Y = fraction of photons which are reflected

By= fraction of photons which are specularly
reflected (diffuse reflection is according to
Lambert's cosine law)

N
o “ %
T + b 4
B o G
e.,e, = emissivities of front and back surfaces

b

Tf’Tb = temperatures of front and back surfaces
Due to the lack of data, k has been taken = 0.

Shadow effects are taken into account, both as
regards eclipses by the earth and shadows cast
by parts of the spacecraft onother parts, with
the following restrictions:

- no penumbra effects are considered, neither
are the associated thermal effects;

— the forces on those parts of the spacecraft
which are at times partly covered by shadows
are calculated under the assumption that the
ratio of the forces on the illurinated area
and the forces on the whole area = the ratio
of the corresponding projected areas.

Multiple reflections are not considered but
should not be important.

The forces acting on those parts of the space-
craft which are solids of revolution only depend
on the declination of the sun, whereas the force
acting in the antenna also depends on the posi-
tion of the spacecraft in its orbit.

Figs. 2 and 3 show the total acceleration and
perturbation in position over 10 days around the
summer solstice. The components of the latter
are shown separately (radial Ar, tangential At,
normal An). The extreme cases of totally diffuse
or totally specular reflection are shown, using
the data of Table 1. The difference between the
two sets of curves is v20% in position over this
time interval.

Further details are given by Anselmi (Ref. 2). In
order to save computation time during orbit det-
ermination, tables of the radiation pressure
acceleration as a function of time of year and
position in the orbit will be generated in
advance, using an appropriate set of values for
the surface properties. A multiplicative free
parameter will be estimated during each orbit
determination to further reduce the influence of
modelling errors.
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Table 1 - SIRIO-2 surface properties

. o Total
Element Absorption Emissivity s
coeff. € 2
area(m
ABM nozzle (upper) 0.938 0.826 0.211
ABM nozzle (lower) 0.109 0.165 0.092
Launcher adapter 0.314 0.264 0.871
Solar array(i)upper 0.817 0.801 2.20k4
(eylinder)(ii)lower 0,814 0.812 2.105
Upper base 0.315 0.4Y 1.409
Lower base 0.315 0.4k 1.27
Flat antenna 0.2 0.88 0.554
! Flat antenna
Cylinder ; 1
,- |
H -
! 2
|
|
|
I
| | Adapter
|
asm/ |
1438

R.P. ACCELERATION (10" 7mis?)

Fig.1 Schematic view of Sirio-2 spacecraft
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2.4 Coordinate system

The usual reference frame for satellite orbit
calculations adopts the equatorial plane as fun-
damental plane and the equations of motion are
integrated as if the reference frame were iner-
tial. For precise orbit computations, the
rotations represented by precession and nutation
must be carefully taken into account.

A convenient reference frame is defined by the
instantaneous equator and equinox of date I_,
since (apart from polar motion, which does not
come into the orbit integration) this is the
frame in which the satellite observations are
made. In this non-inertial frame the equations
of motion of the spacecraft with position vector
-~

T are

fef- 0 xP-Gxf-0x@xd)

where F = perturbing accelerations and # =
angular velocity of I, relative to the mean
system Et at some epoch t,.

o

The angular rotation vector relative to the
mean system of date is

Q(Et/ft) = (écosdw-éJT1+(écosesinﬁw+5@sinc)32

+ (Esinesinﬁﬂ:-—ﬁ@cose}?3

where e=true obliquity, e=mean obliquity and
S¢=nutation in longitude. &e=e- £ is known as
the nutation in obliquity. The unit vector T
points to the instantaneous vernal eqguinox an&
T, is the unit vector along the instantaneous
Earth rotation axis. E.W. Woolard (ref. 3) has
computed the expressions for 8y and ée. They
comprise 109 sine and cosine terms (69 fordy,
Lo forée). The principal term in longitude has
an amplitude of 1772 and in obliquity of 9V2 with
a period of 18.6 years.

The angular velocity relative to the mean system
at epoch can be written as

ﬁ(ztlitoj = G(Ec/Ec’+NG{Et/EtO)

N denotes the nutation matrix and connects true
and mean equatorial frame of date:

N = R, (-€)Ry(-69)R, (£)
ﬁ{gtfi ) takes into account precession between
to And €. For details see ref. U.
Since # and ¥ enter the differential equations,
also the second time derivatives of the trans-
formation angles are required. For practical
applications the epoch t, is selected and # and
W are computed once and for all for a suffici-
ently long period of time.

2.5 Stations coordinates and tidal deflections

It is obvious that for orbit determination of

a geostationary satellite by ranging from ground
points, accurate coordinates for the ground
points have to be known in advance. Due to the
fixed geometry of the satellite-ground station
configuration only the component of station
position errors lying in the direction station-
satellite could give a signature to the tracking
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residials, and this would be indistinguishable
from 1 fixed bias. Consequently there is no
possibility of estimating the station coordinates
from the tracking data.

The positions of most existing laser stat'ions
have been determined by means of several coord-
inatel campaigns (EDOC, EROS,...) whose aim was
to locate the stations in a uniform geodetic
datum. Both Transit doppler and satellite laser
ranging techniques (LAGEOS, STARLETTE, GEOS 3)
have been extensively used for this purpose.

The solid Earth is not perfectly rigid. The lunar
and solar tides cause displacements on the Earth's
surface of a few decimetres. Since laser ranging
may reach accuracies of a few centimeters the
tidal deflection of the station coordinates has to
be modelled.

The differential gravity potential of Sun and Moon
at a station (R, B, A) may be written as (R =
radius, B = geocentric latitude, A = geographic
longitude):

R
= ]:;5- RZ [P2(cosw¢) + ;‘Pa(cos%)]

+ 2052 Ip (cosy ) + 2 Po(cosy ).
T 2 ] T, 3 [}
R Y :
Terms of order —5 and -5 are ignored. Y
and Y are the geocentric @ angles station - Sun
and station-Moon, respectively. r_ and rg are the
geocentric distances of Sun and Moon. The station
coordinate deflections are proportional to the
tide-rising potential ¢p scaled by the local
gravity. Takeuchi (Ref. 5) gives the following
expressions:

- h
AR = 2 ¢T
3¢
AB = L 2og

gR 3g
99,
A = i 1
gR cosf  3A

h and 1 are known as Love and Shida numbers:
h 0.60 # 0.1
= 0.075 + 0.005.

I

The gravity acceleration may be calculated from

g [cm/sec®]= 978.026k (140.005302kk. sins g
+0.00001196 sin“2 g ).

For stations located substantially above the geoid,
the gravity acceleration should be corrected for
Bouguer anomalies.

Differentiation of ¢p leads to (Ref. 6):

h

AR = E ¢T
g

4 = § (6g Gg + G, G})

M = ——— (Gg G + G GY)
gR cosp (S ® ®

where
G‘b = ‘;‘_%:;2— |:31:c1511.nb = %b(% = 1—25 cos21pb)]
G; = sin6b cosfp - cos Gb sing cos (8 - ab)
G: = —cos§, cos B sin (e - ab)

cosy, = sin 8, sinf + cos ﬁb cosB coe (B-abl

b stands for  and e. and &, denote right
ascension and declination. 8 is the station's
right ascension.

2.6 Qutline of Software

The basic tool is the orbit determination program
BAHN developed at ESOC as part of the Multi-
satellite Support System (MSSS). This program
uses the method of weighted least squares to
apply differential corrections to an a priori
estimate of the orbit. The state cof the
satellite at the epoch can be estimated in ter=zs
of cartesian coordinates or osculating Xeplerian
or equinoctial elements, and in addition, a wide
variety of parameters can be improved. These
include tracking measurement biases, parameters
of ionospheric correction models, timing biases,
station coordinates, pole position, parameters
defining air drag and radiation pressure,
selected components of an impulsive velceity
increment., a correction factor to the norinal
thrust applied during a long orbit manceuvre, and
selected components of an unknown perturting
acceleration assumed constant in spacecraft or
inertial axes. Each parameter froma set of 123
is given the status 0, 1, or 2 indiecating respec-
tively: known with zero uncertainty; to be
improved from a given initial value with specified
uncertainty; to be considered to have a fixed
value but of non-zero uncertainty. Thus para-
meters of the last class permit the computation
of a realistic covariance matrix for the
estimate parameters without overburdening the
estimation process with observability and other
numerical problems.

For the SIRIO-2 experiment the orbit will be
integrated in the true-of-date system by an
eighth-order multi-step method (Adams-Bashforth)
Adams-Moulton) with the Runge-Kutta-Fehlberg 7.8)
method as starting procedure. According to the
options chosen the following perturbations can be
included: earth potential up to given degree n
and order mj; luni-solar gravity; air drag;
radiation pressure; manoeuvres (impulsive or
otherwise) due to the attitude and orbit control
system; and a constant acceleration given in
spacecraft or inertial axes.

A number of different types of tracking data can
be handled by the program (combinations of 1-,

2-, and b-way range; range-rate or range-differ-
ence; azimuth and elevation; GRARR antenna angles;
and interferometer measurements). In addition to
the corrections made at the pre-processing stage,
i.e. those independent of orbital position or
station position, corrections for polar motion,
ionospheric and tropospheric refraction, propa-
gation time delay, and ambiguity resolution errors
can be performed, and the measurements edited
according to various criteria.
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2.7 Conduct of the Experiment

Orbit determination using the laser data will be
carried out on a regular basis. The optimal arc
length for a determination will depend on the
accuracy of the models and of the software in
general. The frequency with which the orbit
determination will be done will also depend on
the availability of the laser data (utilisation
of LASSO, weather conditions,...).

From orbit determinations over adjacent and over-
lapping arcs, and the information contained in
the state covariance matrix, the accuracy of the
determined orbit will be estimated.

3. DETERMINATION COF GEOPOTENTIAL COEFFICIENTS
3.1 Introduction
A convenient formulation of the Earth gravitational

potential is the series expansion in spherical
harmonics (Ref. T)

£ L ®
v=2:8 5§ 3 T3 Voo = %? +IR
T =2 mo p=0 g=-= TPa
where
GM,Re .
= Q2
meq a{a) P(U %yéemhmém,M,.ﬂ
Oy (£-m)even sim (E—m)even_
Slmpq = cos Y+ siny
Sem (2-m)odd Com (4-m)odd

= (2 -2p)w+ (& —2p+g) M+ m (2 - 8).

In these equations &, e; i, 0, w, M are the
osculating Kepler elements, GM the product of
Earth mass and gravitational constant, R_ the

mean equatorial radius, @ the Greenwich sidereal
time, F, (i) the 1ncllnatlon function and G, (e)
the eccenbricity function. (e) is of tnEPdraer
of e|qi, thus only a few terms Plre required in
eccentricity expansions for near-circular orbits.

The index g designates the degree while m the
order of a spherical harmonic
A
v = I z v

im PG g 2mpq

and 5 are constants to be determlned from
o&servgtlan of satellite orbits. takes
the largest value of 1.082 x 1073 wﬁéle tﬁg other
coefficients are of the order of 10

The determination of the gravity coefficients is a
two stage process: the zonal coefficients (m=0)
are first estimated, followed by tesseral and
sectorial coefficients. Current earth gravity
models give spherical harmonic expansions up to
(36,36) (GEM 10B, SEASAT models PGS 1 to 4).

GEM 10 (592 coefficients] is complete to degree
and order 22 with some selected higher degree
coefficients.

The calculation of a gravity solution is a
formidable task. First several hundred thousands
of observations are processed. Subsequently a sys-
tem of equations with several hundreds of unknowns
is established. The unknowns comprise not only

the gravity coefficients but also coordinates of
stations providing tracking data. The accuracy
of the individual coefficients derived is there-—
fore guestionable, particularly those of higher
degree and order.

An independent check of the validity of a solu-
tion can be made with resonant orbits, i.e.
orbits with an exactly or nearly repeating ground
-track.

Mathematically, resonance can be described by the
condition s(8 - &) =M + 4. Thus s is essentially
the number of satellite revolutions during one
day. If s is an integer then the orbit repeats
exactly after s nodal revolutions.

For g = o the time derivative of the argument of
the disturbing function becomes

i = (2-2p)(a+) + m(2-6),
which vanishes for s =,——.
E-Qp
In linear perturbation theories ) appears as
divisor in the element perturbations.

For exact commensurability ; vanishes and the
classical perturbation theory breaks down.
Special provisions have to be made to cope with
this case. For a near-resonance orbit ¢ is small
and consequently the element perturbation large.

Thus for resonance or near-rescnance the pertur-
bing effect of certain spherical harmonics is
significantly increased. This property can be
exploited in the reverse direction to estimate
the spherical harmonic coefficients from the
perturbations of a resonance orbit.

For geostationary orbits we have s = 1 or 1-m=2p.
Thus resonance occurs with

(1m) ==£(252)5 (35105 (3580, ((4,2)5:
The effﬁct of Fhe harmonics is attenuated by the
factor :;- el between consecutive degrees.

The case of the geostationary orbit is fortunate
in that the effect of the non-resonant spherical
harmonics is extremely small due to the large
distance Earth-satellite. Thus only a few
spherical harmonics have a significant effect at
the geostationary distance. With accurate
tracking techniques the estimation of the gravity
coefficients could be a rather simple task
compared to near-earth satellites where a large
number of spherical harmonics are involved.

After several tens of geostationary satellites in
order there is still a considerable uncertainty
in the knowledge of the resonance gravity coeff-
icients. For station-keeping and long-term orbit
prediction a precise model of the anomalous earth
gravity field is desirable.

3.2 Resonance Perturbations of Geostationary
Satellites

The dominant resonance perturbations of geo-
stationary satellites affect the semi-major axis
and the mean longitude. For 1:1 resonance of
near-circular orbits the potential terms with
indices g = 0, ™ = £-2p give rise to an almost
constant longitudinal acceleration.
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The resonant disturbing function can be written
as

G4

R=="—1Z J } F, £~m(i) G, 2-m (e}
E. E.,II'I. lm a 2 L5 2 30,
\i-m)even

X cosm (A - llm‘-a),
where
2 2
= -
JEm sz Snm
S5
.
tm  m B (C )
im
A = Q+ w+ M= mean longitude.

The rate of change of the semi-major axis is

-2 arR _ _2 : - =
& “na 2 na lzm & Q!Lm sinm (3 A!.m e)
(2-m)even
where
_GM (Re, 2 =T
Qf.m T a J?.m v a) Fi‘.m, tTm(.l) G, E'T,o (e)

Since the arguments of the trigonometric functions
are slowly varying, the rate of change 4 is almost
constant for some period of time.

For a description of the longitude history the
second derivative is required:

gwiz s w AR e 3 + i D
(r-8) =1 = sa 8= gim m le sin m (A ltm a)
(L-m)even

In case of a triaxial Earth all Q, disappear
except for Q The equatorlal cross-section
becomes an efilps It is convenient to change
the longitude of the origin to the minor axis of
the equatorial ellipse: A = A-8 -Ay,+ %, 50 that

e 5 K sin 2 A= o,

2
vhere k° = 36 e I 2(Eg) This is analogous to
the mathematical pendﬁium differential equation
X + g/l sin x = 0. The types of motion are
libration (around the nearest equilibrium
pDSltloﬁJ or circulation. The libration period
is T = — K (sinX ), where K is the complete
elliptical 1ntegrgl of the first kind and lm the
amplitude of the libration.

The pendulum—-type motion provides a close approx-
imation of the actual longitude evoluvtion. Gther
resonance terms, luni-solar accelerations and
solar radiation pressure merely represent
perturbations.

3.3 Current Estimates of Resonance Coefficients

Table 2 shows the estimates of the second, third
and fourth degree resonance coefficients (norm-
alised). Table 3 lists references and geodetic
constants used in the different models:

Reference GM(kmsfsa) Refkm)

GEM 7 Ref. 8 398600.8 6378.145
GEM 8 ' 398600.8 6378.1L5
GEM 10 Ref. 9 398600.47 6378.1k0
GRIM 2 Ref.10 398601.3 6378.155
SA0 II Ref.11 398601.3 6378.155
SAO 1980 Ref.12 398600.5 6378.136

Table 3 References and Geodetic Parameters

Correction for differing values of GM and Re does
not affect the coefficients up to the degree and
precision shown in Table 4 There is fair agree-
ment among the C,, and 8 estimates, apart from
GRIM 2 which gives a slightly larger value for
C,p- The spread in the third and fourth degree
coefficients is significant. The Goddard earth
models tend to similar values while GRIM 2 and SAD
II deviate considerably.

3.4 Estimation Approach

We outline three approaches to attack the problem.
The most interesting is the first one where the
longitude acceleration function is establisned

in a first step using tracking data over a rela-
tively short time span.

3.4.1 Short-Arcs

A promising approach for the determination of

S is to caleculate first the accelerstion
1nmlongltude % which is linearly related 1o the
coefflslents % can be derived from'i = ——a,
where <24 is calculated from the orbit deffr-
mination results. A, which depends on the geo-
graphical longitude A of the subsatellite poinzt,
should be determined in the ideal case for all
longitudes 259W <A< 20°E

During its lifetime SIRIO-2 will be positioned
within the longitude band 25°W <A< 20°E, hence
the acceleration profile can only be established
within this interval.

The coefficients C are determined from the
function A(A), 25°%m<nclEO°E either through
Fourier analysis or least squares estimation.

The solution obtained in this way is only valid
within the interval 25°W <A< 20°E. Hence we
cannot expect to obtain a global improvement of
the gravity coefficients. However within the
"European longitude band" where the ESA satellites
are located, a better knowledge of the gravity
field should result.

3.b.2 Long Arcs

We assume the satellite is slowly drifting (1A] <
1 fday) Tracking data is collected over a longer
period of time (some ten of days).

The list of solve-for variables in orbit deter-
mination comprises usually the state variables

at epoch and possibly a measurement bias or
spacecraft parameter (solar radiation pressure
coefficient). In the long arc approach this list

is augmented by the gravity coefficients Clm and
8. .
im
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Coox10° 522)(106 531x106 531::106 g..x10° §33x106 6,42;(106 §h2x106 Ehhx106 éhhst
GEM T 2.4303 -1.3946 [2.0296 0.2032 0.7263 1.4108 | 0.3465 0.6623 -0.1966 0.3063
GEM 8 2.4345 -1.3953 [2.0317 0.2496 0.7162 1.4169 | 0.3473 0.6657 -0.1954 0.3053
GEM10 2.43k0 -1.3991 [2.0285 0.2520 0.7003 1.4125 | 0.3526 0.6627 -0.1966 0.2989
CRIM 2 |2.4878 -1.364L [1.9617 0.1848 0.7124 1.5569 | 0.297k 0.6653 -0.0996 0.3865
SAO II |[2.4129 -1.3641 [1.9698 0.2601 0.6863 1.4304 | 0.3302 0.7063 -0.0797 0.3393
SAO 1980f2.4231 -1.3855 2.03?8 0.2748 0.6708 1.4964 | 0.3567 0.6635 -0.1544 0.3053

Table 2 :

3.4.3 Lumped Gravity Coefficients

In this approach the non-spherical part of the
gravity potential is approximated by the second
harmonic and the second degree tesseral harmonic.
Two best-fitting parameters C§2 and 852 are
estimated (or J3, and Ag,).

This method was applied by Merson (Ref. 13) to
estimate J§ and A% from SKYNET data in the long-
itude band aOOE to §0°E. The formula derived by
Allan (Ref. 1b) was applied (unnormalized coeffic-
ients):

T = 180255, (88)% *sina (A 23

2
~12n1J§2(%§ ceihc2-1)sin2(l-lge),

; i
where n = mean Motion and ¢ = cos Ee

The left-hand side X is the observed acceleration
in longitude which is the result of all tesseral
harmonics. An approximation with the second

degree tesseral harmonic will therefore produce
different J%, and A%, depending on the geographical
longitude.

3.5 Conditions of the Experiment

It is clear that only a fixed linear combination of
the resonant gravity codfficients can be observed
if the spacecraft is maintained at a given
longitude. Hence the gravity experiment has to be
concentrated on tge drift phase between the long-
itudes 25 W and 20 E. A slow drift of 1-2° /day
and sufficiently frequent orbit determinations
should allow at least some of the resonant coeff-
icients to be determined.

Disturbances due to attitude and orbit control
during this phase should as far as possible be
avoided.

L4, DETERMINATION OF POLAR MOTION
4.1 Introduction

Polar motion is the motion of the earth's spin
axis relative to the earth's surface. In 1765
Leonhard Euler predicted a 305 day period assuming
a rigid earth. The existence of polar motion was
for the first time demonstrated by F. Kiistner in
1888. In 1892 S.C. Chandler showed that the polar
motion is composed of two oscillatory components

Resonance Cravity Coefficients (normalised)

with 12 months and 14.2 months period. The 1k-
month component is a free oscillation arising from
the spheroidal shape of the earth. The 12-month
component is a forced oscillation caused by
meteorological effects. The amplitudes of both
oscillations comprise a random part. Thus polar
motion cannot be reliably predicted (Rer.. 15).
On the other hand a precise knowledge of the pole
position is required for certain applications.
For example, polar motion affects the position
of tracking stations in an inertial frame, thus
influences the accuracy of orbit determination.

Fig. U (from BIH Annual Report 1978) shows the
path of the pole from 1977.0 until 1979.0. The
linear dimension amounts to approximately 15
meters cr 0OVS.

In 1899 the International Latitude Service (ILS)
was established to monitor the path of the pole.
ILg comprises five stations which are all near
39" 08' north.

790

Fig.4 Path of the pole from 1977.0 to 1979.0 (smoothed)
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Beginring with 1962 IPMS (International Polar
Motior. Service) and BIH (Bureau International
de 1l'Heure) provided more accurate determinations
of the polar motion using astrometric methods.

Recent. pole determinations use satellite obser=
vatiors, lunar laser ranging, or VLBI techniques.
DMA (Defense Mapping Agency) derives pole coor-—
dinates from Doppler observation of NAVSAT
spacecraft. At Goddard Space Flight Center and
the University of Texas the pole position is
determined from laser tracking of LAGEOS. " These
new methods are currently being compared system-
atically in the MERIT campaign (Ref. 16).

All space techniques are based on the fact that
the equations of motion of the spacecraft are
defined with respect to an inertial frame of
reference. The ground-stations however are
fixed to the earth and rotate around the actual
spin axis. Ignoring the polar motion (pole
coordinates m,, m, on unit sphere) leads to
apparent orbit perturbations (ref. 17)

Al = m sin (0 - 8-¥)
Mw+ f) =mcos (2 - 8-Y¥)cosee i

A = m cos (Q - 8-Y¥)cotan i

1 -1 10

where m = (m2 + mg)Jz s ¥ = tan TGEiaand 6 is the
. 2

sidereal angle.

4.2 Observability of pole coordinates

The instantaneous position of the earth's spin
axis is defined by the rotations x_, y from the
CI0 along the Greenwich meridian (gothpassumad
fiéed with respect to the crust) and along the

90 "W meridian, as shown in Fig. 5. The definition
of the Earth-fixed reference system is inherent

in the adopted values of the laser station coord-
inates.

Since x_, y_ are small (typically <0'S, or 15m at
the eargh'spsurface), we can use the approximate
transformation

R = Wk,

where £ = station position in the true of date,
equatorial system rotating with the
earth (IR system)

X _= station position in CIO/Greenwich

system
1 0 -
W= “p
0o 1y
P
X - 1
P yP

If further % = spacecraft position in the I
system, then the ranging measurements p are given

o° = (8 - w&)? = 82 - 28TwR_ + (WR)°
(2T denotes transpose of X). Since X does not
depend on x_, y_ and (Hﬂs) is invariant under
pure rotatlgns,pdifferentiation with respect to
ives

X0 ¥y Eive "

pdp = -%X dWig
AT
-x —stxp

styp

){sﬂx:l:I * styp

Instantaneocus | CIO
pole

sow

Greenwich meridian
(BIH)

Fig. 5 Definition of pole coordinates Xp¥p

- - ; _ o
(st 2Xg) dxy + (2¥g ¥z} dy, (1)
i.e. 3p= xZs - zXs B =2zY¥; - y7q
axy p >y [}

For an equatorial orbit (z=o), (1) becomes

Zs
dp = “E{xax_ - ya
) D(xxp yayp)

which implies that for a geostationary satellize
at a fixed longitude (constant x, y) always the
same linear combination of the pole position
errors 6x, and Gyp will appear in the measurerent
residuals &p, irrespective of the location and
number of the tracking stations. Hence polar
motion cannot be determined by ranging to &

geostationary satellite. The individual compon-

ents are well-observable, but the combination
X50¥p is not, using a single spacecraft.

Assuming the orbital position and the y_ compon-
ent to be precisely known, then the stahdara
deviation of the ranging measurements maps onto
the standard deviation of xp by

%
a = |2l a
*p Iap a
Zgrg|cosh | %p
o 20
re|cosk|

where r_, r_are the geostationary radius and
earth radius respectively and )\ = spacecraft
longitude in the I, system. The approximation
is valid for a mid-latitude station.

Similarly if xp is known

oy v =22
P re|31n1|

Hence for a geostationary satellite at A=0 orm,
the y-component of the pole position could not
be observed even if the x-component were assumed
perfectly known. An analogous conclusion holds
for A=t /5.
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At the Sirio-2 longitudes 25°W amd 20°E we find

20 hag
9z 1:2 » Yy VT
Y e P

Thus 10cm laser ranging accuracy would give 20cm
and 4Oem accuracy for the x- and y-components if
they could be made separately observable.

k.3 Covariance Analysis

The partials for range measurements with respect
to x_,y and the facility for estimating or
cons?de?ing X ,y. have been implemented in the
BAHN orbit deferRination program. Table U shows
the results of some simulations using lasér rang-
ing data of 10em. accuracy from the stations
listed in Table 5. The observability of x_,y  is
clearly shown by the a posteriori standardp P
deviations g _,o
covariance 1
assumed = 2").

derived from the estimate
(a priori standard deviation

Given that the currently achievable accuracy using
Transit doppler tracking or Lageos laser ranging
is better than S0cm or 0Y017, it seems unlikely
that for inclinations of 1° or less (SIRIO-2
value) a good determination of x ,y is feasible,
while with a 10" inclination, 2 Stations would be
enough to determine the pole position with high
precision, provided the station positions can be
determined independently with decimeter accuracy.

Table 5 Positions of laser stations used in

Table L.
East Longitude Latitude
Station Name (deg) (deg)
Kogtwijk (NL) X00 5.81 52.18
GSFC (UsA) GSF 283.16 39.00
Grasse (F) GRA 6.92 43.75
Calgiari (I) CAL 8.97 39.13

5. CALIBRATION OF VHF SYSTEMS
5.1 ESA VHF Network

The ESA VHF tracking network comprises the b
stations Redu, Kourou, Malindi, and Carnarvon

(see Table 6). Its main function is the support
of transfer and near-synchronous orbit phases of
geostationary missions, but it may provide

support in other cases where accuracy requirements
are not very stringent, e.g. GEO0OS-1 12 hr. orbit,
GE0S-2 S0, CO0S-B. A2l L stations have the same
standardized hardware.

Table 6 Locations of ESA VHF Ranging Stations

Station Country East Longitude Latitude
(deg) (deg)
Redu Belgium 5.1k 50.00
Kourou French-Guyana =-52.80 5.25
Malindi Kenya Lo.32 -2.99
Carnarvon Australia 113.72 -2k.90

Ranging support for SIRIO-2 in NSO and SO phases
will be provided by Redu and Kourou. Malindi
will also have good visibility of the spacecraft
in both of its nominal positions (25°W and
20°E), but there are no plans to make routine
use of this. There will be no visibility at
Carnarvon.

5.2 Errors in VHF Ranging

The errors affecting VHF ranging measurements
are

(1) delays due to atmospheric refraction
(ionosphere, troposphere)

(2) delays due to the on-board transponder

(3) delays due to ground hardware (cables,
filters,...)

(L) other random and systematic hardware effects
(phase instabilities, phase measurement
errors,...)

A special calibration loop at the station allows
the errors (3) to be measured conveniently on a
regular basis (ideally, before and after each
ranging operation). The transponder delay
{typically of the order of iens of us, 1 us
corresponds to 300m) is calibrated cnthe ground
before launch, and curves showing its variation
as a function of relevant parameters (temperature,
frequency, AGC) are normally available for use
in range data preprocessing. Any other drift in
the transponder delay after launch will however
not be directly measurable.

Refraction in the troposphere causes a delay of
approximately 2.5/sinE(m), where E = spacecraft
elevation; the exact delay depends on local and
regional atmospheric conditions (temperature,
pressure, relative humidity). However since the
total effect is small compared with the ionos-
pheric effect at VHF, a simple a priori model for
each station is in practice sufficient.

5.3 Ionosphere

The ionosphere is the highly ionized region of the
atmosphere between altitudes 80 and 1000 km
approximately. It can be shown that the ionos-
pheric effect on a ranging measurement is a

delay proportional to the total electron content
along the signal path. Various theoretical

and empirical models have been developed to

model the electron density (e.g. Chapman,

von Roos, Willman, Bent et al), which is in
general a function of

(i) phase in the 11-year solar cycle (usually
accounted for by 10.7 cm solar flux mean
values) and sun spot activity (10.T cm
daily values)

(ii) latitude
(iii) local time

(iv) date.

The GSFC-Bent model used in the operational ESOC
software approximates the electron density as a
function of height by a curve consisting of five
pieces (a bulge at the height of maximum density
consisting of a bi-parabola on the bottom-side
and a parabola on the top-side; a top-side decay
modelled by three exponential functions).
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Tatle 4 Covariance Analysis of Polar Motion Determination

Tnelinstion Estimate Consider cnxp anxp
(Deg) Stations Parameters Parameters
0.1 KOO ,GSF ,CAL i,%,xp,yp = 0.430 | 0.920
0.1 K00, GSF,CAL p < - 0.002
o | K00,GSF,CAL XpsYp - 0.263 0.563
0.1 K0O,GSF,CAL,GRA | Xp,¥p - 0.2k | 0.525
1.0 KO0,GSF i,é,xp,yp - 0.562 1.209
1.0 *K00,GSF i,é,xp,yp = 0.243 | 0.523
1.0 K00, GSF i,é,cn,xp,yp % (0=0.5m) 0.247 | 0.530
1.0 KOO ,GSF ,CAL,GRA i,é,cﬁ,xp,yp = 0.055 | 0.115
1.0 K00,GSF,CAL,GRA | %,%,%p.vp - 0.054 | 0.11k
1.0 K00, GSF , CAL,GRA i,i,en,xp,y %¢(0=0.5m) 0.292 | 0.535
1.0 *100,GSF , CAL,GRA i,i,ca,xp,yp % (0=0.5m) 0.072 é 0. 141
1.0 #KOO,GSF,CAL,GRA i,%,cn,xp,yp xs(a=0.5m) 0.0k47 0.095
10.0 K00 ,GSF 2,%,cﬁ,xp,yp = 0.010 | 0.018
10.0 KOO ,GSF R,2,ep.% ¥ fs(o=1m) 0.037 | 0.053
10.0 K0O,GSF ,GRA ﬁ,ﬁ,cﬂ,xp,yp = 0.007 | 0.011
i,§ = position and velocity of spacecraft at epoch
ey - r&diatio? pressure coeffi?ie?t )
pr,oyp: a posteriori standard deviations of estimates of xp,yp (arc sec)

Ranging accuracy of 10em over 1 day 1/hr (perfect atmospheric conditions!)

% means ranging over 2 days, * means ranging over 3 days

In periods of high solar activity (e.g. 1978-81)
the ranging delay due to the ionosphere may be of
the order of 500m for a spacecraft in the local
zenith, so that for lower elevations corrections
of up to 4 or 5 km may be necessary.

5.4 Calibration with SIRID-2

Since the orbit of SIRIO-2 will be known with
very high accuracy from the laser ranging measure-
ments, and in particular the distance of the
spacecraft from those regions where the lasers are
situated, a very accurate reference is available
to compare with the measured VHF ranges. It
should also be noted that the locations of the
reference points of the VHF ranging antennae at
Redu, Kourou, and Malindi are known with a few
meters accuracy from Transit doppler campaigns

at the stationms.

In making the comparison of computed and measured
ranges, information could be gained on:

(1) the total delay in the VHF ranges due to
hardware and ionosphere as a function of
time of day (typical behaviour: rise to
maximum around 14 hr local time, large
fluctuations around sunrise and sunset,
uniform low level during night)

(2) the accuracy of the corrections computed by
the Bent and other models (shape of the
function w.r.t. time of day, and magnitude

at specific times).

(3) the stability of the ranging system.

Since the most important hardware delays should
be removed by calibration, we are effectively
studying the behaviour of the ioncsphere in
the region above the VHF ranging stations. It
may be possible to develop simple empirical
models for the ranging corrections required for
SIRIO-2 at a single longitude.

5.5 Data Required

In principle there are no special requirements
for data beyond the VHF ranging which will be
carried out routinely in any case in support of
80 operations. However it would greatly enhance
the study of the VHF system if special VHF
ranging campaigns could be carried out during
which more intensive tracking is performed

(e.g. every hour from each participating station
during several consecutive days). The campaigns
would be repeated at convenient intervals as
necessary (e.g. monthly or less freguently).

The optimal campaign durations and frequency will
depend to some extent on the consistency of the
measured delays themselves.
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6. CONCLUSIONS

The SIRI0-2 laser ranging data will offer a
fascinating challenge for precise orbit deter-
mination. By providing a rigorous test of our
models it should lead to improved operational
software.

It may be possible to determine the values of
some resonant gravity coefficients if the solar
radiation pressure can be modelled accurately
enough and if sufficiently dense tracking is
performed during a slow drift Bhase from the
two spacecraft positions at 25 W and 20 E.
Ideally no thrusters should be activated during
the drift phase.

The aim of using SIRIO-2 for polar motion deter-
mination is probably not feasible with an accuracy
comparable with that of the best methods current-
ly available, at least during the initial low
inclination phase. However with higher incline-
tions (e.g. 10°) the geosynchronous orbit could
provide very precise polar motion determinstions.

Finally SIRIO-2 provides an ideal opportunity to
calibrate a general tracking facility (the VHF
ranging network) which will be used to support
all planned geostationary missions of ESA.
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