281

SOFTWARE FOR THE RESCUE OF NON-NOMINAL MISSIONS

Guy Janin

European Space Operations Centre
Darmstadt, Federal Republic of Germany

ABSTRACT

A software system for mission planning of
emergency situations occuring during partial
mission failures is presented here.

It will be shown that by properly designing
software for routine mission analysis and
preventing the build-up of mammoth programs,
such software will also be ideal for contingency
analysis.

RESUME

On présente un logiciel pour 1'analyse de mission
dans le cas d'une situation d'urgence se
produisant lors d'un échec partiel de la mission.

On montre que, par une conception judicieuse du
logiciel pour 1'analyse de mission de routine et
en prévenant la création de programmes-mammouth,
un tel logiciel est aussi idéal pour l'analyse
urgente de cas imprévus.

Keywords: Mission analysis, Software Design,
Contingency situation, Emergency operations.

1. INTRODUCTION

Several times in the history of spaceflight a
partial malfunction of one of the rocket stages
sent the spacecraft into a non-nominal orbit. If
subsequent stages were still to be ignited, the
mission planning had to be revised in order to
cope with this unforeseen situation.

A set of alternate final orbits had to be
instantaneously estimated according to the
available possibilities and taking into account,
at least partially, the original mission
requirements.

Such a set of possible final orbits were then
proposed to the mission experts who made a
choice and initiated the corresponding
operations.

Such a mission analysis has to be done fast:
in a few hours or in the best case in a few
days.

How to be prepared for it?

First idea: to foresee all possible failures and
to prepare corresponding software and procedures.

Unfortunately in todays situation of severe
budgetary restrictions, there is nothing left in
a project budget for such considerations. In
addition it is difficult to foresee exhaustively
all possible failures.

Alternate idea: nothing particular is foreseen
but a general mission analysis software is
available, which can be quickly adapted to any
new situation.

The realization of such a software is feasible
if the following software design concepts are
applied:

1) the structure of the progream closely follows
the structure of the problem to be solved;

2) the structure of the program is such that a
more general problem could be solved;

3) the program represents only the structure of
the problem, it does not contain any
functional modules, it is just a skeleton
program calling dummy modules;

L) all functional modules are stored in a
library of modules;

5) for each particular application, a
particular version of the program is built
by replacing dummy modules by appropriate
functional modules in the skeleton program;

6) functional modules having the same funetion
have the same name and calling sequence,
they are interchangeable.

The advantage of applying these concepts, namely:

- simplicity and transparence of software
structure,

- tailor-made program for each particular
application,

- programs easy to modify,

- programs easy to extend,

- small core storage during execution,

Proc. Int. Symp. Spacecraft Flight Dynamics, Darmstadt, FRG, 18-22 May 1981 (ESA SP-160, Aug. 1381)



282 G. JANIN

are particularly precious in the context of
contirgency mission planning.

Sections 2 to 5 will be dedicated to the problem
of large software systems and how to prevent the
development of mammoth programs. It will be shown
that the software design concepts introduced here
on a general level are particularly adequate for
rescue missions. This will be discussed in
section 6.

2. HOW A PROGRAM BECOMES A MAMMOTH PROGRAM

A program, once delivered to the user, is usually
not kept unchanged. While using the program,
errors and deficiencies are discovered which need
corrections, adjustments and modifications. Later
on, new tasks appear which require the extension
of the program.

The users implementing the modifications and
extensions of the program are usually not the
same persons as the ones who designed and wrote
the program. The original programming philosophy
may not be understood and respected. Due to lack
of time and often lack of scruples the
modifications and extensions are often not
documented.

After such a treatment, the program loses its
initial structure and becomes more and more
complicated and voluminous. Finally it becomes
monstruous, a so—called mammoth program.

Everybody dealing with software has been con-
fronted with such a situation. Can it be
prevented?

The traditional way of dealing with such a
situation is by introducing a tough management
which strictly controls the work of the designers,
programmers and users. However, such a heavy
management frame applied to the working level
makes work unpleasant and inefficient. It is a
poor and expensive remedy which does not solve
the actual problem.

3. A NEW TYPE OF SOFTWARE PACKAGE

A large program is usually run by several users
for various applications. In order to prevent the
situation described in the preceeding section,
the idea of having a large program has to be
given up.

A new concept is proposed here by means of a set
of remarks:

1) The task which is associated with the soft-
ware package has a logical structure. It has
to be clearly isolated.

2) Can the structure be generalized in order to
cover more general tasks? If yes it should
be defined.

3) A computer program corresponding to the
structure of the most general task is
designed. This program is just a skeleton. It
is only a succession of calls to subroutines
but it does not contain any functional modules.
However, this program could formally run by
satisfying the missing entries by dummies.

4) Independently, a collection of functional
modules is built. They are stored in a
library. Their calling arguments are
compatible with the parameters of the
skeleton program.

5) 1If two or more functional modules have the
same purpose, they have the same name and
the same calling arguments. They are
homonymes .

6) If two homonymes are to be used in the same
run, they have to be part of different over-
lay segments in order to prevent ambiguous
entries during linking.

7) The overlay structure is therefore not used
for reducing core storage as traditionally,
but rather the overlay structure represents
a part of the original structure of the task.
It contributes to a more transparent
structure of the software.

For using such a software package for a given
application the user does the following:

1) to take the skeleton program;

2) to take from the library of the aveilable
functional modules the modules which are
relevant for the particular spplication, and
to plug them into the skeleton;

3) to fill all non-used entries by dummies;

L) to run the program.

In this way, the user has a tailor-made program
which fits exactly his needs.

More important: This personalized version
belongs to one user. He can modify it without
degrading the system. He can extend the
capabilities of this program seccording to his
needs. If the new extensions are of general
interest, the person responsible of the soft-
ware package may include them in the library so
that they will be available to other users. As
an additional feature, the personalized program
is small in core storage as it contains only the
modules necessary for the given task.

Such a concept is successful only if the

skeleton program, common to all applications,

is sufficiently general for coping with all
possible new extensions. Therefore great
attention has to be dedicated to the design of
the skeleton program. Section 5 will emphasize
the importance of respecting the proper hierarchy
of the functions.

L. A PREPROCESSOR

The concept developed in the preceding section
suffers from a considerable drawback: the user,
in order to build his personaslized version of
the program, needs to be acquainted with the
design of the system. This takes considerable
effort and discourages some users.

An elegant solution to this problem is to set up
a preprocessor. This is an interactive
independent program which fills up the skeleton
program with functional modules and builds the
necessary data file. This is done interactively



SOFTWARE FOR MISSION RESCUE 283

by asking questions to the user and offering him
the available options. The user chooses the
options convenient for the foreseen application
and enters the corresponding data.

After the preprocessor run, the user just needs
to load the personalized program and to run it.
At any moment he can modify the data or replace
modules by homonymes.

If the user needs modifications or extensions,

he has to pay attention only to a few modules.

His effort will be limited to & minimum and his
chances of making errors are small.

An extremely nice feature associated with the
preprocessor is that it replaces the program
documentation. The effort foreseen for
documenting the system can be used for designing
the preprocessor. In addition, every user prefers
to run a preprocessor than to read a program
documentation.

5. THE HIERARCHICAL STRUCTURE OF THE SKELETON
PROGRAM

When designing the program structure, care should
be taken of respecting the natural hierarchy of
the various parts of the system. For instance, in
all programs some standard algorithms are used:
quadrature or root of a function, integration of
an equation, etec. These algorithms are available
in mathematical libraries. They are coded by
mathematicians. In their point of view, they
emphasized the algorithms itself. Of secondary
importance is the function to which the algorithm
is applied. In test samples, the chosen functions
are rather simple. As a consequence, the algorithm
calls the function. In the calling sequence only
the interface arguments between the algorithm and
the function are present.

But the point of view of the user is different:
emphasized is the function, the algorithm being
only a tool to be operated on the function. The
function is usually the main part of the program
and contains many modules (for instance the
pertubations evaluation when integrating the
differential equations of the motion of a
spacecraft). A large number of parameters have to
be communicated.

When programming in FORTRAN in the traditional
way, these parameters can be transmitted from
the main program to the function only via COMMON
statements. But COMMON blocks are always a
potential source of trouble.

If instead of the traditional way, it is not the
algorithm which calls the function but the
funetion which calls the algorithm, the relative
importance of the modules is reestablished and
the problem of transmitting additional parameters
does not exist any more.

Such analysis of the proper hierarchy of the
system is essential for designing a successful
skeleton program.

6. APPLICATION TO A MISSION ANALYSIS SOFTWARE
FOR RESCUE MISSION

The concepts proposed in the preceding sections
have been applied to a Unified System for Orbit
Computation (USOC). This system is used for
reference trajectory estimation and in-orbit
auxiliary calculations.

Such a system is precious for the rescue of non-
nominal missions as it allows quickly verifying
orbital stability, eclipse times, visibility

from ground stations and other mission constraints
for the proposed new orbit. The final choice of
the orbit depends on the output of such an
analysis. Therefore the software system should be
easy to adapt to any particular situation.

If a non-standard situation occurs during a
mission due to a failure resulting in a non-
nominal behaviour of the satellite, a mammoth
program for mission analysis is of little use.
One is not able to use it as such and adepting
the program to the non-standard situation
involves a considerable effort.

USOC, due to its design, is friendly to
modifications which can be done without effort
in a short time.

This is why USOC, which has been initially
designed as an efficient tool for routine mission
analysis work, reveals to be not only most
appropriate for rescue operations but the most
successful approach for the design of a software
package for emergency mission planning.

The design of USOC, its method and algorithms is
described in Ref. 1.

T. REFERENCE

1. Janin G 1979, Mission Analysis for
Terrestrial Satellites and Planetary Orbiters:
Software Design and Algorithm Description,

ESA STM-208.



