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STATION KEEPING OF A QUASIPERIODIC HALO ORBIT USING INVARIANT MANIFOLDS
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ABSTRACT

We study the station keeping of quasiperiodic orbits
near a periodic halo orbit of the Earth+Moon-Sun
system. The full solar system is considered as a
perturbation of the RTBP. For the RTBP the halo
orbits near the libration points L1 ot L2 are well
known but they are unstable. In the  full“solar
system the periodic orbits are lost but the system
still has quasiperiodic solutions relatively close
to the previous halo orbits. They are approximately
obtained analytically and refined numerically. These
orbits can be taken as nominal orbits for halo
missions. They inherit the unstable character of the
halo orbits. Despite they are no longer periodic we
can still introduce their invariant manifolds, which
are approximated by analytical and numerical
solutions of the variational equations. Simple
geometrical considerations allow us to develop a
very cheap station keeping algorithm.

Keywords: Halo orbits, quasiperiodic orbits,
instability, invariant manifolds, station keeping.

1. INTRODUCTION AND GENERAL OVERVIEW

As it is well known since Euler and Lagrange epoch,
the three body problem and, in particular, the
restricted three body problem,RTBP, has 5 libration
points. The RTBP describes the motion of a particle,
of very small mass (the spacecraft), under the
gravitational attraction of two massive bodies (Sun
and Earth+Moon barycenter), that are in circular
motion around their center of masses (Ref. 14).
Synodical coordinates are introduced to keep fixed
both main bodies. This is accomplished by
introducing axes which rotate with the same angular
velocity as that of the main bodies.

The libration points are equilibrium points in these
coordinates. At them the attraction of the massive
bodies is exactly cancelled by the centrifugal
force. Three of them are in the line joining both
primaries and the one between primaries is called
L,. The two remaining libration points are the
equilateral ones. They will not be discussed here.

The previous situation is quite idealistic. However,
real world can be considered as a not too large
perturbation of this ideal behaviour in many cases.
We will focus on the Sun-Barycenter system for which
we modify slightly the mass of the Sun to satisfy
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Kepler's third law, and we add the following terms:
(a) Due to the real motion of the Barycenter and to
the previously skipped part of the mass of the Sun,
(b) Due to the fact that instead of the Barycenter
there is the Earth-Moon system,

(c) The effect of planets, mainly Venus and Jupiter,
(d) The solar radiation pressure.

In this field of forces the dynamical libration
points do not subsist. However we can introduce
geometrical libration points, with respect to Sun
and Barycenter, given by the same relations that are
obtained in the RTBP. A particle placed on them
moves slowly, provided it is not too far from them.

Due to these nice properties of the libration
points, they are suitable for space missions. The L
point of the Sun-Barycenter system is an ideal site
for a solar observatory. The Sun's surface is always
available, the Earth is far enough to have low noise
and near enough to allow for good communications.
However, L, is not suitable because the signals from
the spacecraft disappear in the solar noise. Some
angular deviation from the Sun is required. There
are periodiec orbits (the so called halo orbits) in
the RTBP which do exactly what we want: they are not
too far from L, and the angular distance to the Sun
is big enough. For previous work on these orbits see
Ref. 3, 4, 5, 7. In this work we deal with this type
of orbits and we study how they are modified when
the perturbations (a) to (d) are considered. The
definition of the nominal orbit cam be strict or
not, that is, we can force the spacecraft to follow
the nominal orbit closely, or we can only ask to the
spacecraft to be not too far from a given path. For
the ISEE-3 mission the second procedure was adopted
(Ref. 7). In this work we propose to follow the
orbit closely. This means a substantial reduction in
the expected fuel consumption for station keeping.
In the real world periodic orbits no longer subsist.
They are replaced by quasiperiodic ones (Ref. 1). A
quasiperiodic motion can be seen as superposition of
harmonics with different incommensurable
frequencies. A halo orbit should be replaced by a
nearby quasiperiodic orbit, and the possible
escaping components should be avoided because the
halo orbits of small and medium size are unstable. A
particle starting at a distance d from a halo
orbit, leaves this orbit as d exp(mt). For the L
case considered, and t in days, a typical value of m
is 0.042. In one year an initial error will be
multiplied by more than 3-10°. An important fact is
that, in the range of interest only one unstable
direction appears. For the basic definitions and
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properties of invariant stable/unstable manifolds
see Ref. 12. The basic idea to cope with the
escaping direction is to perform on/off manceuvres
to annihilate the unstable component of the motion.
This should be done in the most effective way.

The on/off control is asked to satisfy the following
requirements:

(a) The manoeuvres should not be too small,

(b) The manoeuvres should not be too frequent,

(e) Allow for delays or advances in the execution of
the manoeuvres with small additional cost,

(d) If the unstable component is bigger than a given
value a manoeuvre should be done,

(e) Between too small and too large controls, a
manoeuvre can be done if the time since last
manoeuvre is big enough and it is checked that the
unstable component increases as exp(mt),

(f) It should be possible to continue the control
for long mission durations. This is specially
critical for the Moon case where the time scale is
short. A typical mission, 6 vears long, using the L
halo orbits for the Earth-Moon system, means near
150 revolutions. It seems feasible that the total
cost of the station keeping for this mission can be
reduced to less than 25 m/sec.

The study of the station keeping of halo orbits is
divided in two main steps: (i) The determination of
the nominal path, (ii) The definition and
implementation of the control strategy. The RTBP is
used as first approach. Periodic halo orbits have
been computed analytically and numerically having
good agreement between both computations. The study
of the behaviour near these orbits has also been
done by analytical and numerical integration of the
variational equations. A first idea of the on/off
control can be given considering the real situation
as a perturbation of the restricted problem. This
gives insight on the robustness of the control
parameters and shows the optimality of the (x,y)-
control in front of the other ones. The next step
has been the obtention of the equations of motion,
accounting for the different forces, in a suitable
reference system, in which they are seen as a
perturbation of the RTBP.

The quasiperiodic orbits are obtained using an
extension of the Lindstedt-Poincaré method (Ref. 9)
as we did for the halo orbit. Next, the definitive
nominal orbit in the full real solar system is
produced. A parallel shooting method (Ref. 13) is
used with 'starting' orbit the quasiperiodic one
computed in the previous step. Then the control
strategy can be implemented for the real case. A
large amount of control simulations have been done
using different values of tracking errors, errors in
the execution of manceuvres and ranaom errors in the
radiation pressure.

In this paper we summarize the main methods and
results, Full details appear in Ref. 6. This work
was done under ESA contract. The technical
supervision of the late Dr. E.A.Roth and Dr.
J.Rodriguez-Canabal is acknowledged. We are also
indebted to Fundacié Empresa i Ciéncia.

2. PERIODIC HALO ORBITS

We consider the equations of motion of the RTBP with
mass parameter u , in synodical coordinates (Ref.14):

x‘2¥=!2x,51+2x=s3y,z=uz' (1)

- i
where Q= = (x2+y2) kg — £
2 T, T, 1

7 e

= (x-u)"+y"+2°,

R
T
B
P

gorRrocoOonTY ~=pp

2
2

CARLES SIMO &AL

Analytical computation
of halo orbits.

[Numerical computation

“lof the halo families of

eriodic orbits.

Analytical integration
of the variational

tion of the magnitudes

equations and computa- |.

[Numerical study of the
local behaviour near a
halo orbit. First idea

related toLPhe control.

of the on/off control.

The reference system. |

as a perturbation of
the RTBP ones.

The equations of motion| |

[Numerical determination
of a simplified model of]
solar system for the
study of halo orbits.

i
Numerical expansions of
the equations of motion.

|Analytical computation
of quasiperiodic or-
bits, close to halo
ones, for the adopted
|model of solar system.

Numerical refinement of
the quasiperiodic or-
bits, via a parallel
shooting method, for th
full solar system.

Numerical computation of the control para-

meters related to the*refined orbit.

“{The control strategy. Numerical simulation)}——

¥
|Results for on/off control

Block diagram

2 2

= (x-ﬂ+].)2 +y° 4+ 25,

We look for periodic orbits of the spatial RTBP in
synodical coordinates (the family of orbits called
halo orbits), around one of the collinear libration
points Li » i=1,2. We consider a reference system
with origin at the libration point, the x axis
directed from the bigger primary to the smaller
one,the z axis oriented as the sidereal angular
momentum of the secondary around the primary, and
the y axis completing a positively oriented
coordinate system. Let }y= d(m,,L,) ,i=1,2. We scale

variables in such a way that p

bécomes the unity. A

new time, v, is introduced according to T= Fafzt .

The standing equations are (Refs. 10, 11).
2 K =75 n

wox"-2wy (1+2c2)x = ch+1(n+l)p Pn(xfp], (2)
264 = = ;

Wy +2wx‘+(c2 )y = Te qyEQ., » (3)
2 % 2 - :

Wz +A%z Lcn*lz Lan+_\.z . (4)

where Q = pn_1(1+&m-2n)P (x/p) , the sums
mn n-2m-1

are for n32,m from 0 to

aadis . v =2
=qrw) * VlHSiveye A=A

[(n-1)/2]

. 2. .2 32
- =2. =
c, i)lJZi’P X+y 42,

and where
2

A is the positive zero of jﬁ+(c2-2)jz-(c2-l)(1+2c2),

and ¢ = P oEDYWH-D - e ™

with upper sign for L, and lower sign for L

. We set

b=r, obtained by solving Euler's quintic equation.

Taking into account the symmetries, for instance

(x,y,z,t) —> (x,-y,z,-t), and using ¢ =

exp(ilwT),

we look for a solution of the type

x=Xa,

ijk

uiﬁjwk =y‘J:r2:bijku}ﬁka ;z=£cijkaiﬁj¢k ’

w= 1+xd, a'pd ._\=.".'f..ui;ij ;
ij ij

with some symmetries in the coefficients (Ref. 11)
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and where i,j2 0 , k € Z and i+j> 2 in w and A,
The parameter .1 is the modulus of the imaginary
eigenvalue related to the planar equations in the

= 20
neighborhood of Li (Ref. 14), and biOl_ A/(A%41 cz).

The quantities \ and w appear in the Lindstedt-
Poincaré method when the periodic orbit is searched
(Ref. 9, 11). By substituting the expected, solutions
into Eqs. 2-4, and equating terms in a fJ)° in the
left and right parts, all the coefficients are
determined recurrently.

For the L, case in the Sun-Barycenter problem using
the value™ [ =0.07, the Table 1 gives the
differences in initial conditions and period with
respect to the llth order theory when theories of
order n,n=10,...3 are used. As a check the
differences between the 11th and 15th order
analytical theories and the numerically periodic
orbit are included. If we compare with Ref. 11, 4, a
notorious improvement is obtained.

Case x(Km) z(Km) y(mm/s) Period(s)
All1-A10 2.499 264 -4.,544 10.874|
All1-A9 2.030 1.417 =44,777 10,874
All1-A8 23.600 4,144 -42.356 49,169|
All-A7 24.526 10.728 -43,156 49,169|
All-A6 250.093 -16.874 452.638 -875.130
All-AS5 -190.220 -99,387 438.237 -875.130
All-A4 -3817.41 -554.727 6836.76 -13108.2
All-A3 -5442.82 [-1602.12 6677.25 -13108.2
All-Num -0.090 -0.048 0.192 0.07
A15-Num -0.0005 0.0009 0.0007 ‘U.OU%

1 Unit of lenght = 149597906 Km,
1 Unit of velocity = 29785898.0 mm/s,
1 Unit of time = 5022440.67 s.

Table 1

Using a continuation method for computing zeros of a
system of non linear equations (Ref. 13) a program
has been developed to compute numerically families
of periodic orbits. Then the full family of halo

orbits in the L1 and L2 cases for the Sun-Barycenter

and the Earth-Moon problems has been produced
numerically. For previous results (Ref. 2, 8).

3. LOCAL BEHAVIOUR. INVARIANT MANIFOLDS

To know the dynamics near a halo orbit we have
studied the variational equations associated to (1)
along the periodic orbit. Let Da{t) be the
variational flow. The eigenvalues of the monodromy

matrix, M, are A1>1 ¥ Az<1 . J3=Aﬁ=1 ~ 15—A6 , with

ﬂlsl- 1 (at least for small and medium size halo

orbits). The three pairs have the following
geometrical meaning:
(a) The first pair (il,lz) with 11 12=1 is

associated to the unstable character (hyperbolic
behaviour according to (Ref. 18)) of the small and
medium size halo orbits: ‘l is the dominant

eigenvalue, and the associated eigenvector, e (U},
is the most expanding direction. Then
e (T) =Da{7).e (U) and the tangent vector to the

orbit span the tangent plane to the local unstable

manifold W'l (Ref. 12). Following the flow forward
the full unstable manifold is produced. Using the
symmetry the stable manifold is obtained.

(b) For the second pair (AS‘AQ) there is only one

vector e,(0), with eigenvalue equal to l.e.(7) is
the tangent vector to the orbit. The other

eigenvalue equal to 1 is associated to variations of
the energy. The monodromy matrix restricted to the
eigenspace related to the eigenvalue 1 has the form

o 1
period when the orbit changes along the family.
(c) The monodromy matrix restricted to the plane
spanned by the real and imaginary parts of the
eigenvectors associated to 15. 5 is a rotation of
angle I'.

(1 ‘). ¢ is not zero due to the variation of the

Instead of e ,(7) , i=1,...,6, we introduce the
Floquet modes, e (T), as 6 periodic vectors from
which e,(7) are easily recovered (Ref. 15). For
instance, e (T) is defined as e (T) exp(-r.lnllfT).

where T is the period of the halo orbit. The Floquet
modes have been computed both numerically and
analytically.

4. A FIRST APPROACH TO THE ON/OFF CONTROL

In this section we explain, for the RTBP, the
proposed method of station keeping using on/off
manoeuvres. The small modifications to account for
the perturbations are technical. The basic idea is
to cancel just the unstable component.

Let & = (hx,ﬁy,éz,éi,ﬁf,&i)T be the error vector,
i.e., the difference between the actual coordinates
and the nominal ones. At the current moment, 7, & can
be expressed in the local basis {e,(7)} as
d=ZXc,e,(r) , i=1,...,6. We are LnEerested in ¢, ,
the component along the unstable direction. We have

c =1'11(1')hx+Hz(‘r)éy+H3(T)azHZ(T}6k+.'fs(’r)h§+ff6(r)hi

1
The magnitudes I1,(r) are called the projection
factors. II,(r) is the (signed) minor, m.(7), of the
i-th element in the first column of the matrix of
Floquet modes divided by the determinant of the
Floquet basis. Using as 20 values for the tracking
errors (supposed to be normal variables with zero
mean) 3,5 and 30 Km in x,y and z and 2, 2 and 6
mm/s in the related velocities, the 2¢ wvalue for

c, due to tracking errors is, at most, 10-? in
adimensional units. Hence it is not useful to do a
manoeuvre to cancel the unstable component if this
one is too small. From some preliminary numerical
explorations it is readily seen that the optimal
manoeuvres should not include 2z component.

We define the unitary control as the jump in
velocity to be applied to the spacecraft to cancel
one unit of unstable (normalized) component. Let

dl' A, the unitary controls along the x and vy
directions. If we write

i - 6
el(T)f“el(T)"+ (0,0,0, &1 Az.ﬂ) sz ﬂjej(TJ L

and try to minimize Af+ 4% , it follows that:

A= ~det(rIm, (V) ((m, (D) 2mg ())&, (@)])), 1=1,2.

i i+3
The gain function is defined as g(7) = |a(T)Il =1
Comparing the useful controls: (x,y)-plane, x-axis
and y-axis, it is found that the x-axis control has
an average of efficiency of 0.84 with respect to the
(x,y) one, ranging from 0.72 to 0.96. For the
y-axis control the average efficiency is 0.48 and
ranges from 0.26 to 0.70. Therefore the x-only
control is almost as good as full control and the
y-only control has a cost that is roughly the
double. For the full control (i.e. (x,y) control),
the gain factor is rather uniform: the quotient of
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the maximal to the minimal values is roughly 1.43.
These results are not very sensitive to [ nor u .
It is natural to ask whether it is reccomendable to
wait for a given manoceuvre trying to reach another
epoch with a better gain. Of course the gain can
increase but also the unstable component increases.
We should look for the function exp((lni, /T)7)/g(T)
in every case. It turns out that this function is
always increasing. Therefore it is never good to
wait for a manoceuvre.

5. THE REAL LIFE EQUATIONS

For the comparison of numerical results and for the
obtention of the equations of motion in a suitable
way we have introduced two systems of reference:
adimensional and normalized. We denote by e and a
the coordinates of a point in the ecliptical and
adimensional systems. The ecliptical one is centered
at the center of mass of the solar system_We go from
one system to the other through e = kCa+b , where
k (change of scale factor), C(orthogonal matrix) and
b (translation) must be computed. Of course they
depend on time. The parameters b and k are
computed using that the primary is placed at (#,0,0)
and the secondary at (#-1,0,0) . To end the
determination of C we require that the velocity of
the secondary with respect to the primary be
contained, in the (x,y) plane.

For the collinear libration points we define the
normalized system to be centered at the libration
point with the axes oriented as in the second
section. The distance from the libration point to
the nearest primary is taken as unity.

The time is changed so that the mean sidereal period
of the secondary with respect to the primary be 2n.
We change slightly the mass of the primary in order

that Kepler's third law holds. The remaining part of
the mass is seen as a perturbation.

Bs By Ry By

be the position vectors with respect to an inertial

frame centered at the center of masses of the solar

system (resp. the masses) of spacecraft, Sun, Earth,
Moon, Barycenter and the i-th planet, respectively.

The motion of the spacecraft is governed by

Let R, and BP (resp. O.S,E,H.B.Pi)
i

G A(R,-R)
i = ¥ % (6),
AE{S,E,M,P,...,P} |[R,-R|

where G is the gravitational constant. The
position of the Sun, R, , satisfies a similar

equation. We introduce™ r=R- BS and SA_RA Rs . We

write the Lagrangian in ecliptical coordinates and
transform to nomalized ones. In this system the
coordinates of the spacecraft are denoted by a=
(x,y,z) and the modulus by a. The body A is
placed at £ﬁ=(xﬁ’yA’zA) and with respect to the Sun

t ESA'(xSA'ySA'zSA) The angle from I, toais

denoted by A, . So, the equations (6) around L,

for i=1,2 are transformed to
" o_ "o n
x 2y (1+2c2Jx = ¥ (n+l)e 1418 Pn(xfa)
n)Z
+ c(0) = ncna“- al(xfa)

n2
+ c(1)x+c(2)y+c(3)z+c(4)x"+c(5)y +c(7)

an~2
+ Kk '”§(x X L% T P“(cos Sl}
n32 ‘rs‘
I z HOVINE *§ﬁ -
AG{E,M,B,P ,...,P,} o)
A 2
+ (x-xA) B Pn(cos A s (7)
n32 L
y'+2x'-(l-c, )y =y X c P (x/a)
2 n n
n33
+c(0)y X c. a" P (x/a)
n)Z
+c(11)x+c(12)y+c(13)z+c(14)x"+c(15)y"+c(16)z"+c(17)
n-2
-3 -3 o2
+ Kk "y ng ;2 E—T;;I—Pn(cos S )
S
Sy ¥
+ Kk 3r 3 = i(A)y [- —§§ +
hS{E,H.B.Pl,...,PK} SA
an-z
+(y-y,) £ —7 B (cos A))] , (8)
n32 r
z" o+ cz=2z X cnan_zﬁn(xfa)
nz3
+e(0z ¥ ca?B (x/a)
n32
+ c(21)x+c(22)y+c(23)z+c(25)y'+c(26)z"+c(27)
n-2
a
o | . =
+ Kk ") “pgz ;2 = Pn(cos 5))
n |rS|
z
Xy ¥ (), - % +
AE{E,M,B,P ,... B} 93y
n-2
+ (z-z ) g = Pn(cos A, ) (9)
n32 Ty
where ' denotes derivation with respect to the

normalized time, ?n denote the Legendre polynomials,
Pn(z)=*dPn_l(z)fdz and c(i) are known functions of

time related to the noncircular motion of the
secondary w.r.t the primary. Furthermore K=G(S+E+M)
and pa—AI(S+E+H) The mass S is the part of the
solar mass required to satisfy Kepler's third law.
The remaining part and the effect of the radiation
pressure are included in S. The index i(A) is equal
to -1 for the Barycenter and to 1 otherwise. The
first line of each one of Egs. 7-9, i.e. what is
obtained skipping perturbations, reduces to the Egs.
2-4 given in the second section.

All the time dependent functions in the equations of
motion have been Fourier analyzed. To each term it
is associated a weight in such a way that the global
effect of the halo terms of order m has weight m.
Only terms with weight less than or equal to 9 have
been retained. For instance only Jupiter and Venus
in circular orbit have to be retained concerning the
effect of planets. For the motion of the Barycenter
around the Sun some dozens of periodic terms coming
from the effect of the planets must be retained, and
for the Moon to keep the dominant 6 periodic terms
in longitude, 4 in latitude and 4 in parallax is
sufficient.
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6. QUASIPERIODIC SOLUTIONS. LOCAL BEHAVIOR

According to the last expansions the non halo terms
of the equations can be written as one of the
following :
ijk
CX YZ

1 F(rt+e), or czv'F(rt+cﬂ.

where i,j,k>0, c, and c, are two real coefficients,r
and ¢ are the frequency and the phase, respectively,
associated to the corresponding term, F means one of
the trigonometric functions sinus or cosinus, and v'
stands for one of the derivatives x',y' or z'. It
has been useful to take only cosinus terms in the
first and in the third equations, and sinus terms in
the second equation. As in the second section a new
time, wt , is used, where w is anknown series in

@, [, introduced when the Lindstedt-Poincaré method is
applied. The function w contains the halo terms plus
terms appearing in the course of integration to
avoid resonances. In the same way, the function A=
A(a, ) is modified to include new terms.

The solution of Eqs. 7-9 can be written as
a= aH + aN = ¥

T »
n31 %n T Sp Nn

where a stands for x,y or z and where T (yseis e )
contains all the terms of weight n corresponH¥n3 Eg
x (v,2z) of the halo orbit, and in e e )
are included all the non halo term:Hn SRS
of weight n of the x (y,z) coordinate. Suppose that
all the terms of x, y and z are known up to weight
n-1. By substitution of the coordinates x, y and z
in Eqs. 7-9 we get in the right hand side some terms
which have weight equal to n. These are cosinus or
sinus terms of the following type

CtéﬁjF(klwr+ﬂt+w), (10)
%

and ¢=t o0 +Ls »1. and @

qPrq q rq
being some of the frequencies and phases involyed in
the equations, sq6{+l,—1}. and the parameter t is

Ealan such that the angle in the halo part of the

solufion is equal to zero foi this epoch, that is,7
=t-t . Hence, and asA(x,f)=X -c, gives a relation

where o =X¥s p
q rq

between @ and 5, the quasiperiodic solutions fgund
depend on two parameters, for instance s and t .

Till now we have obtained analytical quasiperiodic
solutions. To improve such a solution numerically we
use a parallel shooting algorithm (Ref. 13). The
initial data are: (1) An initial time tos (2) A

value of z, in normalized coordinates when y
(normalized) is equal to zero. The values
xO'i0’90'20 remain free. We remark that those data

plus the sign of } determine one quasiperiodic

solution. From y=0, z=z, for t.=t0 the parameters ﬁo
*
and to are obtained. We will denote by
a = .a * s
X (ﬁo,to.t}.....z (ﬂn,to,t) the values of x,...,2

given by the analytical theory.

Let tortyseeest be the successive time passages
through y=0. From one passage to the next one we go
from a point (ti,xi.yi=0,zi,xi,yi,zi)=qi to a new
point which is denoted by P(Qi} (to remember that
this is a Poincaré map). This is done by numerical

integration using the full solar system. The correct
points Qi should satisfy the matching conditions

Fi(Q)=P(oi)-oi+lno, i=0,1,...,N-1

i.e. 6N equations. We recall that the number of
variables is 6N+4, the last four coming from the
free initial parameters. There are several ways to

(11)

choose the last 4 equations. The possibility finally
chosen, showing good properties concerning condition
number and physical meaning is the following:

Fone1 = xg-xg-(xu-xﬁ) =0, (12)
Fonez = NN = O 0 (13)
Fogen = I, (kg %0) HIs (=90 )+l (2g-20),  (14)
Fones = MOy Gy (ay2y) » (15)
where xit=xa(ﬁ0,t;,ti) with ty choosen such that

t -a ® o s LA 2
N—z (ﬁo’tﬂ'tN)' *Ozx (ﬂontostu)l

are the last three projection

a %*

Y ('Bﬁ’t[]’ti) U’ 2z
etc., and ”4,5,6
factors at t.. The equation F=0 obtained by adding
the equations from (11) to (15) is solved by

%
Newton's method. As initial values xit=xa(ﬁo,t0,ti),

+E
sy 2

.a #
=t (ﬁo.to,ti) are taken.

As the tangent spaces at two different points of R6

can be identified, we have used the variational
matrix as if it was a monodromy matrix. In fact, the
quasiperiodic orbit is not too far from the halo
orbit. We have adopted the criterion of computing
the eigenvalues and eigenvectors just every one
"revolution", i.e., after 2 passages through y=0 .
From these initial vectors the equivalent to Floquet
modes are obtained using the variational flow of the
full solar system. From the modes the projection
factors and unitary controls are computed.

7. THE STATION KEEPING METHOD. SIMULATIONS AND
DISCUSSION

To do the station keeping of the spacecraft
scheduled to follow the computed nominal orbit the
following method is proposed:

(1) For a given time a point, Xe, is estimated by
tracking. In the simulation this point has been
taken as the point obtained by integration of the
equations of motion plus random tracking and model
errors.

(2) For that time the nominal point, X , is
computed. Optionally this point can be taken as the
point in the nominal path at minimum (local)
distance from the current point. This modified
nominal point corresponds to a time different from
the current time, but in the simulations with
numerical nominal orbit and projection factors,
using ogfoff control, the time difference is less
than 15 in time intervals of 4 years.

(3) The residue vector, X X, is computed. Its

unstable component (UC) is obtained by inner product
with the projection factors at the epoch.
(4) If the unstable component is less than some

25
value Ucmin (usually around 2 to 4 times 10 in

adimensional units), the manoeuvre has no sense. The
unstable component can be due, exclusively, to
tracking errors. Some upper bound UCmax of the

unstable component has been given such that an
unconditional manoeuvre is done if |UC|> UC 1

max
(5) When |UC|2 uc .. or uc.. <luci< uc . and

(e) of §1 is satisfied, a manoeuvre should be done.
The x and y components of the jump in velocity are
computed using the unitary controls and the
manceuvre is done. Usuallz UCmafoCminnu_?xp(l).

’ Ucmin = 4.10 are
good candidates. Typically one month, at least, has
been asked between 2 consecutive manoeuvres.

For instance UC =10
max
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To test the behavior of the proposed control a
simulation program has been implemented. When a
simulation is started, at a given epoch, the nominal
point is computed. Then, random variations in the 6
coordinates are introduced due to tracking errors
according to the given laws. Random errors are
introduced at each step of integration (a one step
method is used and the errors are, of course, kept
fixed during one step). Usually these errors are 2o
=57 normal errors in the radiation pressure. At
every step the unstable component is computed, but
to this computation (not to the current point) again
tracking errors are applied. Then we proceed as
described in (3) to (5). Some execution errors are
also introduced. They can be due to wrong direction
for the manoeuvre or wrong modulus of the same.

Several runs of the simulation program have been
done (see table 2 for a small sample). As a summary,
for the standard values of the different parameters
(case A of table 2) at most 20 cm/s per year are
required. The time interval between manoceuvres
ranges form 1 to 6 months, with an average slightly
less than 3 months. In the most pessimistic case
(big errors in tracking, model and execution of
manoceuvres) at most 50 cm/s per year are required
(compare with the ISEE-3 values as given in Ref. 7).
The comparison of results for different values of
the amplitude of the tracking errors shows that the
tracking errors are responsible (with the standard
values taken) of one half of the total Av
Hence, it is important to reduce them as much as
possible. The errors in the execution of the
manoeuvres are responsible for some 10Z of the total
Av . The random errors mean some 15% of the total Av
(even in our case where a large S/m is used). This
means that the remaining 25% is due to inaccuracies
of the model and to the numerical simulation errors.
This can be seen as the action of neglected terms in
the acceleration.

As a final remark, the proposed method for the
nominal orbits and station keeping should be easily
applied to any binary perturbed system (Sun-planet
or planet-satellite) in the solar system, if the
time scales of the motion are not too small.

Han Av tmin tmax Egin Vmax
17 65 50 155 1.7 5.7

18 75 44 151 2.4 Sod

Al 19 74 31 142 21 5.7
17 71 40 125 2.6 5.4

17 71 46 174 2.1 6.3

17 67 39 137 2.2 5.4

22 200 38 91 4.6 12.2

22 206 34 91 4.8 11.9

24 222 36 99 6.6 11.7

B 22 192 33 114 4.2 11.6
16 141 51 126 4.6 10.8

20 166 34 120 4,2 10.9

Table 2

Man = number of manoceuvres in a 4 years long mission
Av = total amount of increment of velocity (em/s).
Control done in the (x,y)plane.

t = minimum and maximum time interval

: t
min’ “max
between manoeuvres.

v » ¥ = minimum and maximum values of the

min

manoeuvres (cm/s).
Adopted values of the parameters:
Wuc  =10°;uc, =410
max min

desired minimum time interval between manoeuvres if

t = 60 days,

required.

possible; 2« tracking errors 3,5 and 30 Km, 2.2 and
6 mm/s in x,v,Z,X,¥,Z ; 2v relative error in the
execution of manoeuvres 5% of the modulus in x,y,
2% in 2z ; lo relative error in the size of the
radiation pressure 57 , in their latitude and
longitude 0.05 rad; systematic error in the size of
the radiation pressure 0%.

(B) Used values 2.10°%; 8.1077; 60; 6,10,60,4,4,12;
10Z,4%; 20%,0.2; 10%, respectively.
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