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ABSTRACT

This work is concerned with the study of orbits
in the proximity of the L1 and L2 libration
points of systems similar to the ones of the
Earth-Sun or the one of the Earth-Moon. In
particular, it presents the method of orbit
maintenance proposed in the feasibility study of
the SOHD mission. This method is based on the
computation of a reference orbit by solving a
simple constrained minimisation problem. This
orbit has a very small residual acceleration and
can be used as the reference orbit for a control
of the spacecraft by means of the well known
linear-quadratic control theory. This type of
control not only minimises the manoeuvres used
for the orbit maintenance but stabilises the
operational orbit as well. The simplicity,
robustness and flexibility of the method makes it
very well suited for its direct application in
the operational flight dynamics software for the
control of the SOHO mission.
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1. INTRODUCTION

The study of the motion of a point of negligible
mass subject to the gravitational attraction of
two primary bodies of masses ml > m2 that, under
their own gravitational forces, move along
circular orbits around their centre of mass, is
the subject of the so-called Restricted Problem
of Three Bodies, RPTB. The study of the RPTB is
simplified by introducing a synodical system of
coordinates, defined as a rotating system with
origin at the centre of mass; the x-axis in the
direction m2 to ml; the z-axis parallel to the
momentum vector of the system ml, m2, and the
y-axis to complete the right handed system, Fig.
1.1. The equations governing the motion of the
point mass are (Szebehely, 1967):

o B s 5y (1.1)
2 =S,
where
S = (x2 + y2)/2 + (1-u)/rl + u/r2
r12 = (x-u)2 + y2 4+ 72
r22 = (x-u+l)Z + y2 4+ 22
u =m2 / (ml+m2)

The unit of length is taken as the distance
between primaries and the unit of time such that
the angular velocity of the circular motion is
equal to one.

Euler and Lagrange discovered more than two
centuries ago that the system of equations (1.1)
has five equilibrium points. Three of these
points (denoted L1, L2, L3) are collinear with
the primaries, with the point L1 between ml and
m2; the points L2 and L3 on opposite sides with
ml and m2 in between them and L2 close to m2. The
points L4 and L5 are on the x-y plane and form
equilateral triangles with the primaries and the
centre of mass.

Fig. 1.1 RPTB and Libration Points
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The distance g of the libration points L1, L2 to
the primary of mass m2 is given by the solutions
of the Euler's quintic equations:

2 5 (3-u)rb+(3-20)r3-urlt 2ur - u = 0 (1.2)

where the upper sign is used for L1 and the lower
one for L2. A similar equation exists for L3.

The RPTB has occupied a central position in the
fields of celestial mechanics, dynamics of
systems and applied mathematics where it has been
a fertile ground for the development and testing
of theories and methods. Several examples of pri-
mary bodies and associated libration points are
found in the solar system. The Trojan family of
asteroids is one case of natural bodies trapped
near the triangular equilibrium points of the
Jupiter-5un system.

The importance of space sciences in our days has
renewed the interest of the study and possible
use of the RPTB. Farquhar (1966) suggested to use
the L2 point of the Earth-Moon system for a com-
munication relay satellite with the far side of
the Moon. This pioneering work led to several
proposals for application of the libration
points: solar observatory at the L1 point of the
Earth-Sun system (ISEE-C, SOHD); optical interfe-
rometry with free flying spacecraft at the trian-
qular points (TRID).

In order to use those libration points and in
particular the collinear ones the following
problems have to be solved:

a) the RPTB is an idealisation of the real world
and the libration points do not exist in the
real planetary system;

b) the motion of a particle near the points L1
and L2 is very unstable, therefore a space-
craft will leave the neighbourhood of the
libration point;

c) the exact collinearity will prevent ground
telemetry and tracking of the spacecraft.

An analysis of the motion near the libration
point of the RPTB (linear theory) shows that the
motion alonqg the x, y and z contains an exponen-
tially growing part and a periodic oscillation.
The x and y motion are coupled and have the same
frequency and the z motion is uncoupled and has a
nearby. frequency. It is therefore possible to
select initial conditions such that only the per-
iodic part is excited and the resulting motion
remains in the neighbourhood of the quilibrium
point and away from collinearity. As the orbit
evolves with time collinearity will occur since
the motion projected onto the x-z plane is a Lis-
sajous curve. For orbits further away from the
libration point, the non-linear effects will
introduce a coupling on the motion along x, y and
Z such that periodic orbits can be obtained. Such
three dimensional periodic orbits are called a
Halo Orbit. A spacecraft following that type of
orbit will stay away from collinearity with the
primaries. The instability of the motion will
produce an amplification of any residual error
and if the spacecraft is not controlled it will
depart from the halo orbit and in fact go very
far away from the libration point. For a system
with the mass and distance parameters of the Sun-
Earth or Earth-Moon system the amplification fac-
tor is about 1800 per revolution.

In these cases the spacecraft will escape in less
than 1B0 days or 14 days, respectively.

The full planetary system can be considered as a
mild perturbation of the theoretical RPTB, and
local geometrical libration points can be defined
at each instant of time by the same equations
(1.2) of a RPTB with parameters as the real world
at that given time (mass, distances, angular vel-
ocity). The motion of a spacecraft near these
points will have the same basic properties as the
motion in the RPTB. The ISEE-C was successfully
maintained near the geometrical libration point
L1 of the Sun-Earth system for almost four years
(Farquhar et al., 1979, Muhonen, 1983) by means
of 15 manoeuvres with an average value of 2 m/s
each.

The S0HD mission of the ESA scientific programme
will be injected into a similar orbit. However,
the high sensitivity of the instrument for spec-
trography requires that the orbital control man-
oeuvres be as small as possible. Hence it is not
possible to use the same control strategy as for
ISEE-C and different new techniques have been
developed to reduce the magnitude of these manoe-
uvres to a minimum, (Rodriquez, 1984), (Gomez et
al., 1985). Both techniques have in common the
idea of defining a reference orbit with a very
small residual error accelaration, i.e., in the
absence of errors in the modelling and control
manoeuvres, the spacecraft will follow the orbit
using very small manceuvres (typically less than
1 mm/s per revolution).

Roth methods have the same performances with res-
pect to the total manoeuvre capability required,
but the techniques used are very different. The
required manoeuvres are only due to inavoidable
errors of: injection manoeuvre into the halo
orbit; orbit determination errors; execution of
manoeuvres errors; the planetary model used; the
spacecraft model used; etec. This paper presents
the method of halo orbit maintenance proposed for
SOHD in the feasihility study. The simplicity,
robustness and flexibility of the method make it
very well suited for its direct application in
the operational flight dynamics software for the
orbit maintenance of SOHO.

2. ANALYTICAL THEORIES OF HALO ORBITS

The fundamental work of Farquhar (1970) and Far-
quhar et al. (1977) on halo orbits around the L1,
L2 libration points was Ffollowed by the work of
Richardson (1980a, 1980b) with a third order ana-
lytical theory for the description of halo orbits
in RPTB. The theory is formulated in a synodical
adimensional coordinate system centred at the
libration point under consideration. A Lindstedt-
Poincaré method is applied to obtain the solu-
tion. The small parameter of the theory is d/g,
where d is the distance of the spacecraft to the
libration point and g is the distance of the lib-
ration point to the nearest primary, given by
equation (1.2). The theory was used for the con-
trol of the halo orbit of the ISEE-C mission Heu-
berger (1977), Farquhar et al. (1977), Muhonen
(1983). Since the theory is of order 3, the
errors to be expected for a halo orbit like the
one of the ISEE-C spacecraft are of several thou-
sand kilometers in position and several meters
per second for the velocity.
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Using the same methodology Gomez et al. (1985)
have succeeded in developing a semianalytical
theory valid up to any order.

The theory computes the position and velocity of
the spacecraft by Fourier series of the form:

Y aijk al pl ok
Z bi.jk al ,B-] wk (2.1)
Y cijk al pJ ok

where the summations are over i, j>0, k€ Z, ¢=
exp ( VCI f t); a and B are the amplitudes of
the halo orbit along the x and z axis, respec-
tively.
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The theory is semianalytical in the sense that
given the mass parameter u = m2/(ml+m2), the
coefficients a, b, ¢ and f are computed numeri-
cally by recursive relations. Those coefficients
are independent of the halo orbit size, hence,
once fixed the z-amplitude of the halo orbit, the
x-amplitude is computed and the position and
velocity at any time can be obtained by equations
(2.1). The amplitudes a , obey a relation of
the form A =A (a, ). This relation has a solution
for A=A (a, 0), therefore, there is a minimum
x-amplitude @ below which a halo orbit cannot
exist.

The theory is implemented in a computer program
available at ESOC. Table 2.1 gives the computer
time required on a Siemens 7880 to compute the
coefficients of the theory for different orders.

Table 2.1 Comuter Time vs Order of the Theory

ORDER 3 5 7 2111 |13 | 15

TIME (sec)|0.07| 0.3 2.1{11.5| 47 |159 [461

The accuracy of the theory can be assessed by
comparison with the numerical results obtained by
a numerical integration with initial point in the
plane y = 0 and refinement of the initial condi-
tion xg, zg, Vypgs to obtain a periodic orbit.
Table 2.2 shows the difference between the theory
for different orders and the numerical results
obtained for a system of bodies with mass and
dimension properties like the Sun-Earth, and for
a halo Orbit similar to the one of SOHO (Gomez et
al., 1985).

Table 2.2 Values at y=0. Different order of the

analytical theory versus numerical

solution.

CASE A X{Km) A Z(Km) AY(mm/s) | APeriod(s)
A11-A10 2.499 0.264 -4.544 10.B74
All-A9 2.030 1.417 =44.777 -
A]l-48 23.600 4. 144 -42.35%6 49.169
A11-47 24.526 10.728 -43.156 ¥
All-n6 250.093 -16.874 452.638 -875.130
Al11-A5 -1%0.220 -99.387 439.237 o
All-A4 -3817.41 -554.727 6836.76 -13108.2
All-A3 -5442,.82 -1602.12 6677.25 !
All-Num -0.090 0.048 0.192 0.076

Even with these very accurate initial values a
numerical integration of the equation of motion
of the RPTB will produce an orbit that will
escape of the vicinity of the libration point in
less than 2 revolutions.

When the values of the RPTB theory are used as
initial conditions for the numerical integration
of an orbit in the real planetary system, the
resulting orbit will escape after having com-
pleted half a revolution but before completing
one full orbit. That behaviour is already good
enough- to permit the use of those initial condi-
tions as starting values to be refined by the
method presented in section 3.

3. NUMERICAL GENERATION OF QUASI-PERIODIC ORBITS

The libration points of the RPTB do not exist in
the complex field of forces of teh real planetary
system. Near the L3, L4 and L5 points of the Sun-
Earth system, the effect of Mars, Venus and
Jupiter are at least as important as the attrac-
tion of the Earth. However, for orbits near the
L1, L2 points of the Sun-Earth or the Earth-Moon
systems, the influence of other bodies is not so
important. These are the systems and points that
will be considered in the following, with the
understanding that for the Sun-Earth system, the
Earth is replaced by the Earth-Moon barycentre.

We ,can define the geometrical libration points at
a given time, by the same Euler's equation with
the mass, length and anqular velocity as those of
the real main bodies at that instant of time. The
dynamical behaviour near these points will be
very similar to the one in the case of the RPTB.
The concept of periodic halo orbits is replaced
by the one of quasi-periodic orbits, i.e., orbits
that are like the halo orbits from the point of
view of geometrical and dynamical properties but
not strictly periodic. In a loose manner, we
shall refer to these geometrical points and to
the quasi-periodic orbit by the same terminology
used for the RPTB.

Gomez et al. (1985) have developed a very refined
semianalytical theory for quasi-periodic orbits
in the real planetary system. The theory uses
Fourier development similar to the one used for
the RPTB. For orbits of the size of the one of
SOHD (Az = 120000 km), there are 132, 165 and 57
terms to be used in the analytical development of
x, y and z, respectively. But even with that very
refined theory, a numerical integration, using
the initial conditions given by the theory, will
produce an orbit that will escape in less than 2
revolutions.

The highly unstable character of the motion near
L1, L2 and the unavoidable numerical errors make
it impossible to devise a method to compute some
initial conditions such that the numerical inte-
qration of the equation of motion produces the
desired quasi-periodic orbit. The only possibi-
lity is to define some initial conditions and a
set of orbital manoeuvres (dVi) such that by in-
teqrating numerically the equation of motion and
applying the prescribed manoeuvres, the orbit
stays close to the geometrical libration points
for as long as required. Ideally the manoeuvres
dV¥i should be zero but due to the numerical
errors they have a very small value (numerical
noise); typically they are less than 1 mm/s per
revolution.
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The proposed algorithm has two main steps:

i) Values given by an analytical theory are
numerically refined to obtain a numerical
orbit that is almost periodic for N revolu-
tion (N is a function of the computing pre-
cision and typically N = 2).

ii) Small manoeuvres are computed such that by
execution of these manoceuvres at time Tp +
Tman(i), the new orbit is almost periodic for
N revolutions after Tp + Tman(i). The inter-
val between manceuvres is half a revolution.

The first step is based on the fact that analyti-
cal theories give values that can be used to
compute a numerical orbit that crosses again the
plane y=0 before going away from the libration
point. The algorithm refines this value to pro-
duce an orbit that crosses twice the plane y=0.
Thereafter, the values are refined to cross the
plane three times and so on. The condition used
for the refinement of the values is based on the
fact that the errors in position are not very
important (because we are interested in a quasi-
periodic oribt); the errors in the velocity are
bigger in the y component than in the x and z
component; and the velocity at the next y=0 plane
crossing should be almost perpendicular. The
second step was suggested for the RPTB in the
final report of the DISCO phase A study (BAe,
1982).

The algorithm is as follows.

1. Initialise TO (epoch), and NCMAX (maximum
number of desired crossing);

2. Compute X0 (T0), Z0 (T0) and VYO (T0) (given
by the analytical theory for the y=0 plane);

3. Set NCROSS = 1
4. Do steps 5 to 9 until NCROSS  NCMAX
5. Do steps 6 to 8 while (VC,2 + VEKZJIH > eps
6. Integrate numerically the full equations of
motion up to the NCROSSth crossing of the y=0
plane;
7. Compute DVD as a solution of:
min (DV0,2 + DVD,2)
subject to the constraints:
VCx = 0 and VC, = O

where VC is the velocity at the NCROSSth
crossing;

8. Set VO to VD + DVO;
9. Set NCROSS to NCROSS + 1.

The algorithm performs very efficiently and is
very robust. At every new crossing of the y=0
plane the norm of the correction DVO decreases.
Typically, the correction for the first crossing
is of several m/s, while the correction for the
fourth crossing is of the order of 0.001 mm/s. A
maximum of three iterations at each crossing is
enough to obtain such a solution.

The constants eps have to be chosen in the range
of 0.5 to 1.5 m/s and converqence has to be
tested for cases where after several iterations
the velocity VC stays non-orthogonal to the y=0
plane. This might happen since the quasi-periodic
orbit is not symmetrical with respect to the y=0
plane.

Other methods based on the minimisation of diffe-
rent magnitudes or components than the ones
recommended here have been tested and failed to
converge to a quasi-periodic orbit valid for two
revolutions.

Fig. 3.1 presents the difference between the ini-
tial condition given by the theory of Richardson
and the numerical values obtained by the above
algorithm for initial epoch throughout one year.
The error of the VDy is of 4 to 12 m/s. The sinu-
soidal component is due to the eccentricity of
the Earth's orbit. Fig. 3.2 gives the same values
when the nine order theory of Gomez et al. (1985)
is used. The mean error is negligible, the sinu-
soidal component with 4 m/s amplitude is due to
the Earth's eccentricity and the small sinusoidal
component is due to the effect of the Moon; the
effect is not present after the date Feb. 1
because the step used for computation after that
date is too big.

Fig. 3.1 Difference between Richardson analytical
theory and numerical quasi-periodic
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Fig. 3.2 Difference between Gomez et al.analyti-
cal theory of order 9 and numerical
quasi-periodic orbit
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It is clear that after a certain number of
crossings the finite computer word length will
produce numerical problems. Thus the proposed
method cannot produce a reference orbit for more
than 4 crosses of the y=0 plane or, equivalently,
two revolutions. However, a small modification of
the method will produce an orbit for as long as
desired. After an orbit that crosses four times
the y=0 plane has been obtained, it is possible
to modify the velocity of that orbit at the first
y=0 plane crossing in such @ form that the
resulting correction required is of the order of
tenth of milimeters per second. With this newly
obtained orbit it is possible to modify the
velocity at the second crossing in such a form as
to cross the y=0 plane up to the sixth cross, and
so forth.

With this method a reference orbit will be
obtained with discontinuities in the velocity of
less than 1 mm/s at each y=0 plane crossing. The
spacecraft ~ could be maintained in the
quasi-periodic orbit for a very long period of
time with a negligible cost, if: a) the physical
model of the planetary system and of the
spacecraft could be known with enough accuracy;
b) the spacecraft could be injected with high
precision; c) the orbit could be well known and
d) the small manceuvres were -executed properly.

Fig. 3.3 presents the evolution of the reference
orbit of the SOHO mission, obtained by the
described method.

Fig. 3.3 S50HO: Proposed operational orbit
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The algorithm to generate a reference orbit can
be formulated such that it is valid for the
different phases in the generation of a
quasi-periodic orbit, i.e. refinement of the
values qgiven by an analytical theory and
extension of the wvalidity of a quasi-periodic
orbit.

The general algorithm is as follows:

1. Initialise TO

2. Initialise X0 (T0), Z0 (T0), VY0 (T0)

3. Initialise NB, NBSTEP, NC, NCSTEP and IC
4. Do step 5 to 12 until NB+MC IC

S Set NB to NB + NBSTEP

6. Set NC to NC + NCSTEP

T Propagate state for NB crossing
applying all computed corrections,
pv(1), bv(2), ... DV(NB-1), and
obtain V(NB)

8. Set DV(NB) = O

9. Do step 9 to 12 until conditions at

cross NB4NC are satisfied

10. Propagate state from cross NB to cross
NB+NC

11. Compute DV at cross NB to satisfy the
conditions at cross NB+NC

12, Set V(NB) to V(NB + DV

13. Set DV(NB) to DV(NB) + DV

where NB, NBSTEP, NC and NCSTEP are parameters of
the algorithm and IC is the requested number of
crossings. To refine an initial condition given
by an analytical theory to obtain an orbit that
crosses the y=0 plane four times the combination
NB=0, NC=1, NCSTEP=1, IC=4 should be used, while
to obtain a reference orbit valid for six years
(12 crosses) the following values have to be
used: NB=0, NBSTEP=1, NC=4, NCSTEP=0, IC=12.

The method has been applied to obtain quasi-peri-
odic orbits near the L1 point of the Sun-Earth
system with sizes of up to 500000 km in the
amplitude of the motion along the z-axis. The
stability of the method has been demonstrated by
producing an orbit of the L1 point of the Earth-
Modn system up to more than 50 revolutions. The
robustness of the method with respect to errors
of the initial wvalues X0, 70, VY0 given by the
analytical theories have been tested by starting
with wvalues X04DX0D, 7Z0+4DZ0. The results of the
test show that, for orbits like the SOHD one, it
is possible to obtain a guasi-periodic orbit with
DX0 and DZ0 of more than 5000 km each.

4. CONTROL OF QUASI-PERIODIC ORBITS

Let Xr(t) be the state vector (position and velo-
city) at time t of a quasi-periodic orbit gene-
rated with the method described in section 3 and
using a particular planetary system, say the JPL-
DE 119 ephemerides tape. Let X(T) be the state
vector of a spacecraft moving along a trajectory
in the real solar system and controlled such that
X(t) = Xr(t) for all times t. It is obvious that
some forces will have to be applied to the space-
craft to make it follow the trajectory which is
not a natural trajectory in the real planetary
system. That force is called the residual accele-
ration and it is only due to the differences
between the planetary models and the errors of
the numerical calculations. By using a good
planetary model and precise numerical methods of
integrating the differential equations of motion,
the residual acceleration can be reduced to
negligible levels (of the order of mm/s when the
effect is inteqrated over one revolution). Of
course, it is neither possible to inject the
spacecraft into the given orbit Xr(tg), nor
to know the exact state vector of the spacecraft
at a given time, nor to execute precisely the
control forces required to cancel the residual
accelerations, nor to avoid other modellisation
errors.

Nevertheless, the idea of a reference orbit with
very small residual acceleration to be followed
by the spacecraft by a suitable control is very
attractive.

75
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The well known theory of optimal Linear-Quadratic
Control (Bellman, 1967) together with the stoch-
astic separation principle (Bucy, 1968) provide
the required method for the control and stabili-
sation of a quasi-periodic orbit in the real
planetary system. The proposed control method
applies to the following linear dynamical system:

Vx
8X(tj41) =@(i,i+l) 8X(t;) + G(i) [avy (4.1)
AVz

with
0o 0
0 0
G(i) = o(i, i+1)|0 O
Cx 0O
0L E
0o 0

y

Oooooo

F 4

where Cx, Cy and Cz are 1 if it is desired to
have manoeuvres along the x, y and z axis, res-
pectively, and zero otherwise.

@ (i,i+l) is the orbital transition matrix from
time t; to tj,1- &x are the differences X-Xr,
where X is the spacecraft estimated estate and Xr
is the reference state computed with the method
of section 3 and using the most accurate model
available.

The quadratic function to be minimised is:
N-1
3= |2+ 2, ol el > @

where Hj and R; are weighting matrices semide-
finite, positive and positive semidefinite,
respectively. The norm of the a wvector X with
respect to the matrix A is defined as

”x”i = xT Ax

Equation (4.2) expresses that the weighted
deviation between the real orbit and the
reference orbit and the total cost of the
manoeuvres to be executed should be minimised.
The solution to that problem is given by
computing the so-called control gain:

K(i) = B(i) @ (i,i+l)

where

Bi(1) = Pyyy Gr(R4GTPL,6)-1

and P is the solution of a discrete Riceati
equation

Pk = He + @ ((1-867T)Py ) (1-GBT)+8RBT) @

with initial conditions P = T

At each time step the manoeuvre to be executed is
given by:

AV = K§&X.

The proposed algorithm for the control of the
quasi-periodic orbit can be summarised in the
following steps:

1. Compute a reference orbit with the best
available model for the spacecraft and for
the planetary system.

2. Compute and store the gain matrices for the
selected reference orbit.

3. Form the differences between the estimated
state (provided by the orbit determination)
and the reference state.

4. Compute the manoeuvres by means of the gain
matrices.

5. Execute the manoeuvres.

5. SIMULATION AND PERFORMANCES

The methods presented have been implemented in a
suite of computer programs to perform simulation
of the full halo orbit maintenance process. The
structure of the software allows to simulate all
the Ffunctions that have to be executed in an
operational software. The simulation have the
structure defined in Fig. 5.1

Fig. 5.1 Structure of the simulation software
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Table 5.1 presents the results of simulations
performed to show the effect of the different
error sources on the control of a quasi-periodic
orbit like the one of SOHO. The initial injection
errors are supposed to be of 100 km for each
position coordinate and of 1m/s for each velo-
city.
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VIRANS is the total manoeuvre used to correct the
transient effect of the injection errors; VOPER
is the total manoeuvre used to control the orbit
for a period of six years after the transient
initial errors have settled down; VMAX is the
maximum single manoeuvre executed.

Table 5.1 Effect of single error source

Error source VTRANS | VOPER | VMAX
T el T (m/s) (m/s) |(mm/s)

Solar radiation pressure

5 % model error 42 0.5 8
15 % " 4.2 1.6 22

Orbit determination error

bias in position : l00Km 6.7 10.5 16
50Km L) 5.3 8
random in positicn: 100Km 26.6 16.2 540
S0Km 17.9 9.0 240
bias in velocity : 50mm:s 4.5 127 210
L0mm, s 4.3 2.5 2
random in velocity: 5S0mm/s 5.0 16.8 122
10mm,/ s 4.5 3.5 75

A covariance analysis of the orbit determination
process of SOHD shows that the orbit can be esti-
mated to the values given in Table 5.2, where
'baseline' indicates the values that were taken
for the mission analysis study of S0HO and 're-
fined' means that some errors are supposed to be
estimated by ground testing of the spacecraft and
by in-orbit calibration.

Table 5.2 SOHO. Orbit determination errors (1-o)

position (km) velocity (mm/s)
CASE
—_— bias random bias random
% 0 1.2 7 i)
baseline y 12 12 3:3 12,0
- 12 12 4.0 4.5
x 4.5 1.5 1.2 0.6
refined y .5 itg 3.0 0.9
z 6.0 1.5 2.4 0.9

With the orbit determination errors qiven by
Table 5.2, the solar radiation modelling error of
5% and manoceuvee execution error of 5% in the
modulus, the result of simulating the control of
the orbit for a period of six years give the
following results: for the baseline case: VOPER =
3.7 m/s, VMAX = 11.2 mm/s; and for the refined
case: VOPER = 1.44 m/s, VMAX = 2.7 mm/s.

The manoeuvres are executed every 20 days if the
computed value is greater than 1 mm/s, otherwise
they are delayed by 20 days.

For the SOHO orbit and for the conditions of the
refined case mentioned above, Fig. 5.2 shows the
total delta-V used and the components of the
manoeuvres. Fig. 5.3 shows the differences bet-
ween the components of the reference orbit and
the one of the controlled orbit. It is clear that
the control produces a very stable orbit where
the control cost increases linearly with time.

Fig. 5.2 SOHO. Maintenance manoceuvre history
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Fig. 5.3 SOHO. Difference between the reference
orbit and the controlled orbit
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If the manoeuvres are executed very frequently,
the orbit determination errors might mask the
real differences between the estimated state and
the reference one, and the control performance
will be rather poor. If on the other hand a bhig
interval is taken between manoeuvres, the cost o
correcting the differences increases due to the
high instability of the motion. The effect of
executing the manoeuvres at different intervals
of time is presented in Fig. 5.4.

Fig. 5.4 Total delta-V cost for different inter
vals between manoeuvres
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6. CONCLUSIONS

A review has been made of the Restricted Problem
of the Three Bodies and of the available analy-
tical theories. An orbit started with initial
conditions like those given by the analytical
theory will escape very quickly from the rneigh-
bourhood of the libration point. A method has
been developed to compute a quasi-periodic orbit
that will have a small residual acceleration for
very long periods of time. The method finds the
solution by solving a constrained optimisation
problem and it will provide a solution even in
the most complex cases like the collinear points
of the Earth-Moon system.

After a reference orbit is available, the well
devloped theory of Linear-Quadratic Control pro-
vides the method to control and stabilise the
motion of the spacecraft along the quasi-periodic
orbit. The results of full scale simulations of
the SOHO operational orbit is presented.
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