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ABSTRACT

In artificial satellite theory, even including all
zonal coefficients, Cid-Deprit's radial intermedia-
ry defines a system with only one degree of freedom
describing the spacecraft's radial motion. In the
case of small eccentricities, appropriate truncati-
on of negligible terms produces a system integrable
in closed form by elliptic integrals, giving r as
a harmonic oscillator, provided the independent va-
riable be changed to either a true or an eccentric
anomaly. The solution is simple and concise enough
that it could serve as the basis of an ephemeris

generator running in real time on board a satellite.
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ry, Time transformation.

1. INTRODUCTION

In previous papers (Refs. 1, 2) we have made a new
treatment of the artificial satellite theory. De-
parting from Brouwer's approach and following the
ideas of Refs. 3, 4, our first step consists of the
transition to an intermediary. After the elimina-
tion of the perigee, we get the Cid-Deprit's radial
intermediary (see Eq. 2) which is an integrable
Hamiltonian with one degree of freedom.
Here we consider the case of orbits with small ec-—
centricity, assuming that e2e2=0(e3) where e=J,
and e 1is the eccentricity, removing terms having
e2e2 as a factor. Thus the intermediary reduces
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where J3n=Jn/J%,p = 02/yu,c = N/© = cosl,s?=Fci1I
stands for the inclination of the satellite's orbi-
tal plane, and BY, is a function of © and N.
Then, instead of solving the problem by a Delaunay
normalization (see Refs. 5, 6), which would lead to
an approximate solution in powers of €, we look
for a closed form solution of the problem. Our aim
is an ephemeris program that can be held in the me-
mory of presently available microcomputers to be
put on board satellites. To this effect we propose
to integrate the differential equations after a
transformation of the type r = F(p), dt = g(r)d~,
as in the Kepler problem, i.e. introducing 'anoma-
lies' such that p = pft) 1is an harmonic oscilla-
tor. These transformations have been applied to
some types of planar motions, in particular to cen-
tral force—-fields. The present paper shows that
motions in three dimensions, as the one defined by
J, may be analyzed with the same methods.

The time transformation giving t = t(1) as a ge-
neralized Kepler equation is integrated in closed
form by means of Jacobian elliptic integrals. This
equation reduces to a Kepler equation for the un-
perturbed problem. The variables 8 and v re-
sult then in closed form by means of Jacobian ellip
tic integrals. This is in contrast with what ha-
ppens with others analytical theories (see Refs. 7,
8) which have proposed a generalized Sundman's tram
sformation of the form dt = kr®r, k,x e R. With
those theories, its time transformation is integra-
ted numerically. In our case, despite the fact
that the transformation we propose is more complex,
nevertheless we give t = t(t) in closed form.
This is because our solution is based on the Hamil-
tonian J, and not on the initial Hamiltonian.

2. TRANSITION TO A RADIAL INTERMEDIARY

In this paper the polar nodal variables (r, &, v, R,
@, N) will be used. The variable r 1is the radial
distance from the Earth's center of mass to the sa-
tellite, 8 1is the argument of latitude, and v is
the argument ofthe ascending node. The variables
R, ©, N are the momenta conjugate to the coordina—
tes r, 8, v respectively.

It is assumed that the satellite moves in an axia-
1ly symmetric gravitational field whose potential
is of the form

© n
v = -% [1 - gz Jn[%] Pn(sind:)]

n=
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where a stands for the equatorial radius (from
now on we will take a=1), Pn(sin $) is the Le-
gendre polynomial of degree n in siné¢ and ¢
is the satellite's declination.

Denoting by
] 02
H=-2—[R2+?z]'.\|'
the Hamiltonian function, we make two canonical

transformations of Lie type (Ref. 9). The result
is Cid-Deprit's radial intermediary
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which is an integrable Hamiltonian of one degree of
freedom in (r, R). As one of its features let us
mention that the system defined by H still con-
tains short periodic terms due to the factors r~
and 12 Yet the angles © and Vv are ignorable
which results, among other things, in the orbital
plane having a fixed inclination.

We consider here the case of orbits of small eccen-
tricity, such that e2e2 = B(ea). We remove those
negligible terms, and then, Cid-Deprit's radial
intermediary reduces to the Hamiltonian J mentio-
ned in Eq. 1.

The differential system defined by J is

3J
ol e 3

and two quadratures for the variables 0 and v
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Although the system Eq. 3 may be solved by a qua-
drature using Eq. 1, we will follow the classical
way introducing 'anomalies' and the corresponding
'generalized Kepler equation'. For an approximate
solution of this problem see Ref. 2.

3. TIME TRANSFORMATION AND LINEARIZATION OF THE
RADTIAL MOTION

It is well known that, in the Kepler problem, the
radial motion reduces to a harmonic oscillator when
we make the time transformation t=*E given by
dt = — dE ,

na

n standing for the mean motion. Then we have

r = a(l-e cosE),
e_eﬂ /]+e E
tan 3 = I_etani,
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where 6p 1is the argument of the perigee.

If we change not only the independent variable but
also the variable r: (r,t)—+ (p,f), by means of the
formulas
5 e dt=—'-_r2df,

i up
we face yet another harmonic oscillator in the fo-
llowing manner

1
p = E(h ecos f) ,

8 =68g+1f ,
n(t-tg)= E-esinE ,

E_/l-e £
tm:z—/T:? tany .

The aim of our research is to analyze 'natural'
estensions of those transformations when we consi-
der the radial intermediary J.

Let us consider a change of variables of the form
(r,t)+(p,T) given by

r = F(p) , dt = g(r)dr , (5)

where F#*(p) = dF/dp # 0 and g(r)>0 in the do-
main of motion. If one denotes

= - 2
V‘z[hi-%l'e_rzﬁz'-rE%;] >

the integral of the energy may be written in the
form

1 [dr]2

1l
2 lae] "2V

Making the transformation Eq. 5 we get

d2 1 d [ g&
F'EE[%?T]' &

In particular we look for functions g and F
such that

= Ap +B , (7)

(<A {=T
|
™

where A and B are constants. In case A<0,
with p, and py as the extrema of p, the solu-
tion of the harmonic oscillator Eq. 7 is

p =0(l-ncosy) (8)
where
g=PatPP  ,-fatPp  y /A

2 Pa+ Pp

with ppsp, and X is a constant (see Ref. 10,
11 for Hetails).

From Eqs. 6, 7 we get

Y
g=F"~"/ﬁp +2-IED+C : 9)

v
where C 1is a constant.

In our problem, looking for 'elliptic' motions, the

equation V = 0 has three real roots er]<rpsra,
and we may write

FV= I (ro ) (e-rp) (x-erp) (10)
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where Tps rg>0 and
depending on whether by is
tively.

r] may be 20 or <0
>0 or <90 respec-—

In this paper we consider the transformation Eq. 5
such that F(p)=p. Then from Eqs. 9, 10 we obtain

£3/2
gl e———————— an
V-2h/AVr - er)

Now, we write Eq. 8 in the form

r=a(l-EcosE) (12)

— i i o s i —_ o=t
E=1/-A, 3= a2+D ,e=ra rD,p=a(l-e2).
a-l-rp

where we take E=0 when T=0, i.e. A=0. Then,
we may introduce the 'true' anomaly f, such that
tan%= -}T—Etan-i—. (13)
In the polar coordinates (r, f), Eqs. 12, 13, defi-
ne an ellipse (£). According to the expression of
g(r), a scale factor A exists between the inde-
pendent variables t and T. We chose here A=-1
and we have T =E, which means that the new inde-
pendent variable is the eccentric anomaly for the
ellipse (g).

4. GENERALIZED KEPLER EQUATION

From Eq. |1 and the previous paragraph we have
3/2 -
dt= ———— dE ,
VY-2h(r-€ry)
where r is given by Eq. 12. Making the change

cosE=1y and integrating, we may write

el ¢ 4 X, 2
-ty = - B2 (y-1/®) dy,
¥-2h (y=1/8) (y=1/@)(1-y) (1 + y¥)
° (14)
where
s ae
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and we assume that r(t0)=rp, thus E(tg) =0 and
yo=y(tg)=1. We consider here the case :
r1<0,(8<¥®). According to Ref. 12, Formula 253.24

Eq. 14 takes the form

—"Ezh (t-tg) = C;F(£/2,k) +CoE(E/2,k) (15)
sinf 1-kZsin? (§/2)
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In this formula,
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where F, E and 1 are the normal elliptic inte-
grals of first, second and third kind respectively.
It is worth to notice that the generalized Kepler
equation is given explicitly in terms of f ins-
tead of the eccentric E, as in the Kepler problem.
In the case r]>0 analogous expressions can be
obtained.

5. THE QUADRATURES

5.1 The position of T in the orbital planme.

From the Eq. 4 we have

do _ Py Py
E-?%*'ErS ,

where

i
u " =
Py = 0= e235oy (1212541452 + 3) + J{ (5255"-690s2
~192)}
=g
B, = = 3]!{; 54)
G
and we have only retained J; 1in order to simpli-
fy the expressions. From Eq. 4, applying Eq. 3
and integrating we get

1

B = g —— (PIIO +EP211)’ (16)
=

where

In= dr , m=0,1

rM/(a, - ) (r-a,) (r-ay)(r-a,)

with a;2r>ay>ag>a,. We consider here the ca-
se 1y <0. Then a;=r4, a,=r1rp, a =0 and

a,=¢egry. From Ref. 12, Formula 331.01, the solu-
tion o} Eq. 16 is given by

0 = 0y = LiF(E/2,k) + LE(¥/2,k)

where
2 Py b g
L 5 LlﬂL(PI+ = ). L,=LP, (-ﬁ+ = )
J—Zhra(rp-grl) 1 P
(17)
and the modulus k is given in Section 4. For the

case ry>0 we get similar expressions.

5.2 The motion of the node

From Eq. 4 we have

dy _ Q2 S0y

T e(?§+s;f}

where

Q = - oo { 6(8s2-3) +3} (10552~ 60)} ,
Qz = 3;1(:;"29.

r, <0, the solution is
and Q, for

Considering again the case
similar to Eq. 16, substituting ¢2Q

P, and P, respectively. The result is
v = vg= LIF(E/2,K)+ LE(E/2,k) (18)
where
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& = 2 Q_Z. o= - !_ i 08
Lf = L2 +7D), 13 = 1 g-og) 6.
and L 1is given by Eq, 17.
6. THE PARTICULAR CASE ry = 0 T
When b3+ 0, which means that tanl 4—/5, we arrive
to the case r;+0 which needs a particular ana-
lysis, because some previous expressions lose their 8.
meaning. After a development in k of the ellip-
tic integrals, the formulas Eqs. 15, 16 and 18 re-
duce to the following ones
/ufas(t-tyg) = E-% sinE s
S“Su =+ r_Pl"‘EPzi)?"‘EPzE Si[‘l? ’
V=2hr,rp P P
1 B ) . 10
v-vg =e— {(Qo—+eQy)f +Qo— sinf |.
J—Ehrarp R P
6. CONCLUSION il
For a long time, intermediaries have been viewed
in satellite theory as providing a simpler way of
developing an accurate ephemeris than the conven- 12

tional Delaunay normalizations. Recently it has
been suggested that they can also serve as orbit
generators over long arcs. In this regard, they
have the marked advantage of being so concise and
so fast that they may be contained in very small
microcomputers embarked on a satellite. An orbit
generator based on Cid-Deprit's intermediary in-
cludes the long term perturbations of first and
second order; it covers not only J, but zonal
harmonics coefficients to an arbitrary order. It
is -probably the first one to be so extensive. The
present paper took care of all details needed to
convert the algorithm into an efficient computer
code.
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