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Abstract 

 This paper presents algorithms for estimating the 
angular-rate vector of satellites using quaternion 
measurements. Two approaches are compared, one that 
uses differentiated quaternion measurements to yield 
coarse rate measurements which are then fed into two 
different estimators. In the other approach the raw 
quaternion measurements themselves are fed directly 
into the two estimators.  
 The two estimators rely on the ability to decompose 
the non-linear rate dependent part of the rotational 
dynamics equation of a rigid body into a product of an 
angular-rate dependent matrix and the angular-rate 
vector itself. This decomposition, which is not unique, 
enables the treatment of the nonlinear spacecraft 
dynamics model as a linear one and, consequently, the 
application of a Pseudo-Linear Kalman Filter 
(PSELIKA). It also enables the application of a special 
Kalman filter which is based on the use of the solution 
of the State Dependent Algebraic Riccati Equation 
(SDARE) in order to compute the Kalman gain matrix 
and thus eliminates the need to propagate and update 
the filter covariance matrix. The replacement of the 
elaborate rotational dynamics by a simple first order 
Markov model is also examined. 
 In this paper a special consideration is given to the 
problem of delayed quaternion measurements. Two 
solutions to this problem are suggested and tested. 

 Real Rossi X-Ray Timing Explorer (RXTE) satellite 
data is used to test these algorithms, and results of these 

tests are presented.  
 

Key words: Quaternion, Spacecraft, Angular-rate, 
filtering, non-linear filtering. 

 
Introduction 

 

 In most spacecraft (SC) there is a need to know the 
SC angular-rate. Precise angular-rate is required for 
attitude determination, and a coarse rate is needed for 
attitude control damping. Classically, angular-rate 
information is obtained from gyro measurement. These 
days, there is a tendency to build smaller, lighter and 
cheaper SC, therefore the inclination now is to do away 
with gyros and use other means and methods to 
determine the SC angular-rate. The latter is also 
needed  even in gyro equipped satellites when 
performing high rate maneuvers whose angular-rate is 

out of range of the SC gyros.  
 There are several ways to obtain the angular-rate in a 

gyro-less SC. When the attitude is known, one can 
differentiate the attitude in whatever parameters it is 
given and use the kinematics equation that connects the 
derivative of the attitude with the satellite angular-rate 
in order to compute the latter1. Since SC usually utilize 
vector measurements for attitude determination, the 
differentiation of the attitude introduces a considerable 
noise component in the computed angular-rate vector. 
To overcome this noise, the computed rate components 
can be filtered by a passive low pass filter. This, 
however, introduces a delay in the computed rate1. 
When using an active filter, like a Kalman filter (KF), 

the delay can be eliminated2,3.  
 Another approach may also be adopted to the 

problem of angular-rate computation where the vector 
measurements themselves are differentiated. This 
approach was used by Natanson4 for estimating 
attitude from magnetometer measurements, and by 
Challa, Natanson, Deutschmann and Galal5 to obtain 
attitude as well as rate. Similarly, Challa, Kotaru and 
Natanson6 used derivatives of the earth magnetic field 

vector to obtain attitude and rate. 
 All these methods use the derivative of either the 

attitude parameters or of the measured directions 
which normally determine the attitude parameters. 
Another approach is that of using the attitude 



  

parameters, or the measured directions themselves, as 
measurements in some kind of a KF. In this case the 
kinematics equation that connects the attitude para- 
meters, or the directions, with their derivatives are 
included in the dynamics equation used by the filter 
thereby, as will be shown in the ensuing, the need for 

differentiation is eliminated7,8. 
 New sensor packages have been introduced lately 

that yield the SC attitude in terms of the attitude 
quaternion9. Therefore it is possible to use the 
quaternion supplied by such sensors as measurements 
and, as mentioned before, eliminate the need for 
differentiation. In this paper we investigate this 

possibility. 
As mentioned, in the ensuing we will apply two 

special KFs which make use of the SC angular 
dynamics model; therefore, by way of introduction, in 
the next section we present the development of the SC 
dynamics model, and in Section III we present the two 
filters. For comparison purposes, in Section IV we treat 
the approach where the angular-rate is still extracted 
from derivative but here we pass the resultant noisy 
quaternion through the two active rather than through a 
passive filter as was done in Ref. 2. The other 
approach, where the raw quaternion measurements 
themselves are fed into the filter, requires the addition 
of the quaternion to the state vector which is comprised 
of the angular-rate vector. This is treated in Section V. 
In Section VI we consider the case where the filter 
dynamics is drastically simplified by reducing the 
dynamics equation of the SC to a first order Markov 
process. The issue of quaternion normalization is 
presented in Section VII, and in Section VIII we solve 
the problem of measurement delay. The last section of 
this work is the Conclusion section. 

 
II. Filter Dynamics Model 

 
 The main dynamics model is that which describes 

. The ωωωωthe propagation of the SC angular velocity, 
angular dynamics of a constant mass SC is given in the 

following equation10 
 

        Thh =+×++ )I(I ωωωωωωωωωωωω &&  (1) 
 

where  ] , ,[ zyx

T ωωω=ωωωω , I is the SC inertia tensor, h 

is the momentum of the momentum wheels, and T is 
the external torque operating on the SC. The 
components xω , yω  and zω  are the three components 

, of the SC body ωωωωrate vector,  -of the sought angular

with respect to inertial space when resolved in the 
body coordinates. Eq. (1) can be written as 

 
         )(I])I[(I 11 hTh && −+×+= −− ωωωωωωωωωωωω   (2) 

where ])I[( ×+ hωωωω  is the cross product matrix of the 

vector )I( h+ωωωω . Define 
 

 ])[(II)(F 1 ×+= − hωωωωωωωω        (3) 
and 

 )(I)t( 1 hTu &−= −  (4) 
 

then Eq. (2) can be written in the form 

 (t))(F u+= ωωωωωωωωωωωω& (5) 

As was shown in Ref. 2, there are 8 primary models, 
and infinite linear combinations of them, which 

express Eq. (1) in the form of Eq. (5). 
 Eq. (5) describes the SC correct dynamics; 

however, we usually do not know the exact values of  
I, T , h and its derivative, therefore we do not know the 
exact relationship between ω&  and these elements. We 

express our lack of knowledge by adding a stochastic 
process to the dynamics equation of Eq. (1). We 
assume that this stochastic process, w(t), is a zero 
mean white noise process. The resulting model which 

is used by the estimator is   
 

     (t)'(t))(F wu ++= ωωωωωωωωωωωω&  (6) 
 

If we denote  ωωωω   by  x, then Eq. (6) can be written as 
 

     (t)'(t))(F wuxxx ++=& (7) 
 

where obviously 
 

       ])[(II)(F 1 ×+= − hxx  (8) 
 

For the time being we assume that we measure the 
angular-rate; that is, x, therefore the measurement 

equation is 
 kkk H vxz +=      (9) 

where  
 3IH =      (10) 

kv is a zero mean white measurement noise, and  3I  is 

the third dimensional identity matrix. 



  

  
III. Angular-rate Estimation 

 
 As mentioned in the introduction section, we use 

two filtering algorithms to estimate the angular-rate. 
These algorithms are described next. 

 
 The dynamics equation presented in Eq. (7) is a 

nonlinear differential equation due to the term xx)(F . 

A standard filter for this case is the Extended Kalman 
Filter (EKF). One can also apply the Extended 
Interlaced Kalman filter3 where three linear KFs are 
run in parallel. Other possibilities which are applicable 
to the form of non-linearity presented in Eq. (7) are the 
Pseudo-Linear Kalman (PSELIKA) filter and the State 
Dependent Algebraic Riccati Equation (SDARE) filter 
which were used successfully in Ref. 2. In view of 
their performance, the latter two filters are used in this 

work too.  
 

III.1 The Pseudo-Linear Kalman (PSELIKA) Filter 
 

 The PSELIKA filter algorithm disregards the non-
linearity and treats the dynamics system as if it were 
just a time varying system, consequently, the ordinary 
KF algorithm is applied. First, the continuous 
differential equation (7) expressing the SC dynamics is 
discretized and then the KF algorithm is applied as 

follows. First evaluate:  
 

 })(t')(t'E{W' T
kkk ww= (11) 

 }{ER T
kkk vv= (12) 

and choose an approximate value for, 0x̂ , the initial 

estimate of the rate vector. In the absence of such 
initial estimate, choose 0ˆ

0 =x . Next, determine 0P , 

the initial covariance matrix of the estimation error 
according to the confidence in the choice of 0x̂ . The 

recurrence algorithm is then as follows. 
  
- time propagation: 
 

 Let kA  be the discrete dynamics matrix obtained  

when )(F x  of  Eq. (8) is discretized, and let ku  be the 

discrete deterministic input signal, then propagate the 
state estimate according to: 

 
                      kk/kkk/1k

ˆAˆ uxx +=+      (13.a ) 

and  the covariance matrix according to: 
 

 k
T
kk/kkk/1k 'WAPAP +=+           (13.b) 

 
 
 
 
- measurement update: 
 

 Compute the Kalman Gain as follows:  

1
1k

T
k/1k

T
k/1k1k ]RHHP[HPK −

++++ +=             (13.c) 

Update the estimate according to: 

]ˆH[Kˆˆ
k/1k1k1kk/1k1k/1k ++++++ −+= xzxx             (13.d) 

and update the covariance matrix using:  

T
1k1k1+k

T
1+k31/k+k1+k1+1/kk KRKH]K-[IH]PK -[IP +++ += 

  (13.e) 
 

III.2 The State Dependent Algebraic Riccati 
Equation (SDARE) 

 
 The continuous-discrete-time SDARE filter which 

was used in Ref. 2 was based on the work of Cloutier, 
D’Souza and Mracek11,12, Pappano and Friedland13, 
and Mracek, Cloutier and D’Souza14. That continuous- 
discrete-time filter for the continuous-time dynamics 
and the discrete-time measurement is as follows (see 

Ref. 2).  
 As with the PSELIKA filter, choose an approximate 

value for the initial estimate of the rate vector. In the 
absence of such initial estimate, choose again 0ˆ

0 =x . 
 

- time propagation: 

Propagate the state estimate according to: 

 kk/kkk/1k
ˆAˆ uxx +=+             (14) 

- measurement update: 

At the measurement updating time, tk+1, solve the 
following algebraic Riccati equation for 1kP + :  

 
0W'HPRHP )ˆ(APP)ˆ(A       1+k1+k

-1

1+k

T

1+kk/1k

T

1+k1+k1/kk =+−+ ++ xx  
  (15.a) 



  

 
and compute the gain matrix: 

 -1
1+k

T
1k1k RHPK ++ =  (15.b) 

 
Finally compute the updated state estimate: 

 
]ˆH[Kˆˆ

1/kk1k1k1/kk11/kk ++++++ −+= xzxx  (15.c) 
 

IV. The Filtered Quaternion-Rate Approach 
 

As mentioned before, it is possible to derive rωωωω , a 

crude estimate of ωωωω  using the quaternion first time-

derivative1,2; however, the resultant estimate is noisy. If 

rωωωω  is passed through a passive low-pass filter the noise 

may be filtered out at the expense of a delay1. Here we 
investigate the quality of the filtered rates when the two 
active filters described before are used to filter rωωωω .  

First we show how rωωωω  is derived from q& , the 

differentiated quaternion. As is well known [see e.g. 
Ref. 10], the quaternion dynamics equation is  

 
     qq Ω= 2

1& (16) 
where 

 










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0
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 (17) 

It is also known [see e.g. Ref. 1] that Eq. (16) can be 
written as 

 ωωωωQ2
1=q&  (18) 

where 
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Q  (19) 

 
Define the pseudo inverse 

 
       T1T# Q)QQ(Q −=  (20.a) 

   
where  T  denotes the transpose. Note that 

  
       3

T IQQ =  (20.b) 
 

where 3I  is the fourth dimensional identity matrix. 

From Eqs. (18) and (20.a) it is easily seen that a rough 
estimate of the rate vector can be computed as follows 

 
 q&#

r Q2=ωωωω                    (21.a) 

 
which in view of Eqs. (20) can be written simply as 

 
 q&T

r Q2=ωωωω       (21.b) 
 
The dynamics equation for the estimator was introduced 
in Section II (see Eq. 7); thus, in view of Eq. (21), like 
Eq. (10), the measurement equation which corresponds 
to that  dynamics model is 
 

         ωω += vHr ωωωωωωωω (22.a) 
where 

                            3IH =ω (22.b) 
 

and ωv  is a zero mean white noise. 
 The Pseudo-Linear Kalman Filter (PSELIKA) and 

the State Dependent Algebraic Riccati Equation 
(SDARE) filter were used to obtain the angular-rate 
from quaternion observations using the Quaternion- 
Rate approach. The data which was used to test this 
approach was real measurements downloaded from the 
RXTE satellite, which was launched on Dec. 30, 1995. 
We chose a segment of data starting Jan. 4, 1996 at 21 
hours, 30 minutes, and 1.148 sec. The quaternion which 
was used was based on the SC attitude as determined by 
its star trackers. Fig. 1 presents ωωωω , the nominal angular-

rate and Fig. 2 presents the error between 
r

ωωωω , the raw 

angular-rate, and ωωωω , the nominal rate. In order to 

quantify the error, a single figure of merit (FM) is 
computed. First the average square error of each 

component is computed as follows ∫−=
T

t

2
itT

12
i

0
0

dtee  i=x, 

y, z. This computation yields 2
z

2
y

2
x e and e ,e . Then the 

FM is computed as 2
z

2
y

2
x ee eFM ++= . In order to 

exclude the transients we set sec100t 0 = . It was found 

that secdeg/103998.7)2(FM 3−⋅=  where FM(2) is the 

FM of Fig. 2. Fig. 3 presents the estimation error when 
the PSELIKA filter was applied to 

r
ωωωω . It was found that 

secdeg/105311.1)3(FM 3−⋅= . Finally, Fig. 4 shows 

the same when the SDARE filter was used and it was 



  

found that secdeg/104550.1)4(FM 3−⋅= . As indicated 

by FM(2), the computed angular-rate, rωωωω , particularly 

its x component, was rather noisy. When either the 
PSELIKA or the  SDARE  filter were  applied to rωωωω  , 

other than a few spikes, the resulting ω̂  was smoother. 

In this example there was no real difference between the 
performance  of  the  two filters (see FM(3) and FM(4)). 
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Fig. 1: The Nominal Angular-Rate. 
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Fig. 2: The Error Between the Raw Angular Rate,rωωωω  , 

and the Nominal Angular-Rate. 
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Fig. 3: The Error in the Estimated Angular-Rate, ωωωω̂  ,  
After the PSELIKA Filter was Applied to rωωωω . 
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Fig. 4: The Error in the Estimated Angular-Rate, ωωωω̂ ,  

After the SDARE Filter was Applied to rωωωω . 
 

 
As expected, the computation of 

r
ωωωω  using Eq. (21) 

produced a noisy estimate due to the differentiation of 
the measured quaternion which was corrupted by 



  

measurement noise, and the application of the 
PSELIKA filter to this rωωωω  filtered out most of the noise. 

When the SDARE rather than the PSELIKA filter was 
applied to rωωωω , the filtered estimate of the angular-rate 

was visually identical. In other words, the effect of the 
application of the SDARE filter was practically 

identical to that of the PSELIKA filter. 
 

V. The Quaternion Augmentation Approach 
 

 Although we also tested the Quaternion-Rate 
approach described in the preceding section, in this 
work we are mainly interested in estimating ωωωω  using 

the measured quaternion itself rather than its 
derivative. However, the quaternion is not a part of the 
state vector of the system (see Eqs. 6, 7). One solution 
to this problem was examined in the preceding section. 
Another solution is the augmentation of the quaternion 
with the angular-rate state of Eqs. (6, 7). For this we 
can use the quaternion dynamics equation given in Eq. 
(16) and obtain the following model which augments 

Eqs. (6) and (16) 
 

     (t)t)()('G geyyy ++=&    (23) 
where 

    







=

q
y

ωωωω
  (24.a)  
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)t(
)t(

u
e    (24.c) 

 

     

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
=

0

)t('
)t(

w
g    (24.d) 

 
The measurements of the quaternion are taken at discrete 
time points; therefore the measurement model is a 
discrete one. The discrete measurement model that 
corresponds to the dynamics model of Eq. (23) is 
 

        k

k

k,m  C v
q
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
=

ωωωω
  (25)  

where k,mq  is the measurement at time kt ,  
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and kv  is the measurement noise at that time.  
An inspection of the matrices )('G y  of Eq. (24.b) 

and C of the last equation reveals that even when ω  is 

constant this pair is deterministically unobservable. This 
problem can be overcome though  using the fact that Eq. 
(16) can be written as Eq. (18) which can also be written 

as  

       







=

q
q

ωωωω
 ] 0 | Q[ 2

1&    (27) 

 
therefore Eq. (23) can be transformed into 

 
 (t)t)()(G geyyy ++=&      (28.a) 

 
 where 

      







=

0Q

0)(F
)(G

2
1

ωωωω
y      (28.b) 

We note that the measurement equation (see Eq. 25) is 
unchanged although the dynamics matrix of the system 
changes from )('G y  to )(G y . Unlike the pair )('G y  

and C, the pair )(G y  and C is not necessarily 

deterministically unobservable. In fact, the results which 
are presented in  Fig. 5 show that the pair is observable 
even when ω  is time varying. Moreover, in the 

computation of Ω which is needed in Eq. (24.b) we use 
our best estimate of ω . At least initially, this estimate 

may be way off yielding a wrong Ω and, consequently, 
a wrong )('G y . On the other hand, in the computation 

of )(G y , given in Eq. (27.b), we use Q rather than Ω, 

and since Q is based on the computed q which is fairly 
accurate, we obtain a pretty accurate )(G y . In other 

words, not only is the pair { )(G y ,  C} observable, the 

use of )(G y  yields a more accurate filter model than 

does )('G y . The FM of Fig. 5 was found to be 

secdeg/101839.6)5(FM 4−⋅= . When comparing the 

FM of Fig. 5 to those of Figs. 3 and 4, it is realized that 
the addition of q to the state vector yields a better filter. 
It is noted that the level of the spikes present in Figs. 3 

and 4 was reduced when this filter was used. 
 



  

500 1000 1500 2000
-0.01

-0.005

0

0.005

0.01
    X - Axis

Time in Seconds

500 1000 1500 2000
-0.01

-0.005

0

0.005

0.01
    Y - Axis

(d
eg

 / 
se

c)

500 1000 1500 2000
-0.01

-0.005

0

0.005

0.01
    Z - Axis

 
 

Fig. 5: The Estimated Angular-Rate, ωωωω̂ , After Applying 

the PSELIKA Filter to the Augmented Model. 
 

While kv , the measurement noise vector, can be 

assumed to be statistically independent over time, its 
components are correlated with one another; moreover, 
it cannot be assumed that kv  has a constantly zero 

mean, consequently we model the measurement noise as 
 

      k,2k,1k vvv += (29) 

 
where between the measurement points , k-1, k, k+1, the 

noise component,1v , changes according to 
 

       
111 N µµµµ+−= vv&   (30) 

 
It is further assumed that k,2v  is a zero mean white 

noise process whose covariance matrix contains, in 
general, non-zero off diagonal elements. As usual, the 
covariance matrix of the white noise vector, 

1
µµµµ , which 

drives 1k,1 +v , is selected15 to fit the covariance matrix 

of 1k,1 +v . That matrix too may have non-zero off 

diagonal elements in order to generate the correct 
covariance between the components of 1k,1 +v .  

Since the measurement noise has a non-white 
component, one needs to augment the non-white state 
with the existing state vector to form a new augmented 
state. The resultant model is then as follows 

 
                      wfxx ++= F&           (31) 
where 
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Since 

 k,2k,1kk,m vvqq ++=  (33.a) 

then the corresponding discrete measurement equation 
is 

          1k,21k1k H +++ += vxz   (33.b) 
where 
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VI. A Simplified Filter Model 

The dynamics models which were used in the 
preceding section can be drastically simplified by 
exchanging the SC non-linear dynamics model with a 
simple first order Markov model. This approach, which 
 is common practice in target tracking, was applied 
recently to attitude determination7. The simplified filter 

dynamics equation takes the form 
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The dynamics model is then  

 
 ssss F wfxx ++=&   (34.b) 

where 



  

 ] | [ T
1

T
s

T

s

T
s vqx         ωωωω |= (34.c) 

 
f is as before and      

 
 ]  | [ T

1
TT

s
T
s µµµµ        |= 0ww  (34.d) 

The covariance matrix of sw  has to be computed15 and 

tuned. When the quaternion measurements are used to 
update the filter every second there is almost no visible 
difference between the use of the elaborate rotational 
dynamics model and the simplified Markov model. 
However if the updates occur at longer intervals there 
is a remarkable difference between the two cases. Fig. 
6 presents the angular-rate estimation error when the 
elaborate angular dynamics is used and the PSELIKA 
filter, which is used to estimate the rates, is updated 
every 30 sec. The FM computation of the error 
presented in Fig. 6 results in 

secdeg/107975.1)6(FM 3−⋅= . When the elaborate 

model is replaced by the Markov model, the error in 
the resulting estimated rate is unacceptable. This is 
seen in Fig. 7 where the angular-rate estimation errors 
for this case are presented. This is also indicated by the 
large FM of this case where 

secdeg/109136.3)7(FM 2−⋅= . It should be noted that 

in the computation FM(6) and FM(7) we set 
sec200t 0 = . Again, this was done in order to avoid 

the transients. 
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Fig. 6: The Estimated Angular-Rate Error After 
Applying the PSELIKA Filter to the Augmented 

Model with Sparse Measurements. 
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Fig. 7: The Estimated Angular-Rate Error After 
Applying the PSELIKA Filter to the Simplified 

Model with Sparse Measurements. 
 

VII. Quaternion Normalization 

Since quaternions are inherently normal, the 
quaternion which is estimated using the above 
algorithms has to be normal; however, these estimation 
algorithms do not assure normalization; therefore, 
occasionally, the estimated quaternion has to be 
normalized. Several algorithms were suggested for it in 
the past16,17 which were compatible with the KF 
estimator. The accuracy achieved when using those 
algorithms was about the same for all of them. In this 
work we chose to apply the Magnitude Pseudo- 
Measurement (MPM) normalization algorithm17 for the 
ease of its implementation. This algorithm is presented 
next.  

The states which constitute the four elements of the 
quaternion are 7654 x and x ,x ,x  therefore the sum 

2
7

2
6

2
5

2
4 x̂x̂x̂x̂ +++  has to be equal to 1. In order to 

assure it we assume the existence of a “magnitude 
measuring device” that “measures” 1; that is, 

 



  

     1z 1k,norm =+    (35.a) 

On the other hand we assume that the corresponding 
measurement model is 
 

1k,norm1k,71k,61k,51k,4

1k,norm

 ]0 ,0 ,0 ,0,x̂ ,x̂ ,x̂ ,x̂ ,0 ,0 ,0[

z

+++++

+

+
=

vx
  

 (35.b) 
which can be written in the form 
 
 1k,normnorm1k,norm  H ++ += vxz         (35.c)  

 
where, obviously 
 

]0 ,0 ,0 ,0,x̂ ,x̂ ,x̂ ,x̂ ,0 ,0 ,0[H 1k,71k,61k,51k,4norm ++++=    

  (35.d) 

It is possible now to perform an ordinary measurement 
update where the filter is fed with the “measurement” 1, 
and where the measurement matrix is given in Eq. 
(35.d). The value of 1k,normr + , the variance of the 

“measurement” error 1k,norm +v , can be adjusted to yield 

satisfactory results. We note that indeed this algorithm 
forces normality on the estimated quaternion without 
violating the KF rules. 
  

IX. Conclusions 
 

 In this paper we examined algorithms for estimating 
the angular-rate vector of satellites using quaternion 
measurements without differentiation. The notion 
examined in this work is based on the ability to obtain 
quaternion measurements directly from a cluster of star 
trackers. For the sake of comparison we also examined 
the approach of extracting the angular-rate from 
quaternion differentiation. Both approaches utilize a 
Kalman filter. In fact two filters were examined. One 
was the PSEudo-Linear KAlman (PSELIKA) filter and 
the other was a special Kalman filter which was based 
on the use of the solution of the State Dependent 
Algebraic Riccati Equation (SDARE) in order to 
compute the Kalman gain matrix and thus eliminate the 
need to propagate and update the filter covariance 
matrix. The two filters relied on the ability to decompose 
the non-linear rate dependent part of the rotational 
dynamics equation of a rigid body into a product of an 
angular-rate dependent matrix and the angular-rate 
vector itself. This non-unique decomposition enabled the 
treatment of the nonlinear spacecraft dynamics model as 

a linear one and, consequently, the application of the 
PSELIKA filter. It also enabled the application of the 
SDARE filter.  
 When using the quaternion measurements to obtain 
angular-rate without differentiation, the kinematics 
equation of the quaternion has to be incorporated into the 
filter dynamics model. This can be done in two ways. It 
was shown that only one way can be used because only 
this way yields an observable system. 
 Real spacecraft data was used to test the suggested 
algorithms. As expected, when rate determination was 
based on quaternion differentiation, the resulting 
angular-rate was noisy. When either one of the filters 
was used, the noise was suppressed without causing 
delays in the estimated angular-rate components. 
 The replacement of the elaborate rotational dynamics 
by a simple first order Markov model was also 
examined. It was found that while the use of such a 
simple model was sufficient when frequent measurement 
updates were possible, it was totally inadequate when 
only sparse quaternion measurements were available. 
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