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Abstract In most spacecraft (SC) there is a need to know the
SC angular-rate. Precise angular-rate is requioed f
This paper presents algorithms for estimating theattitude determination, and a coarse rate is neéated
angular-rate vector of satellites using quaternionattitude control damping. Classically, angular-rate
measurements. Two approaches are compared, one thatormation is obtained from gyro measurement. €hes
uses differentiated quaternion measurements tal yieldays, there is a tendency to build smaller, liglated
coarse rate measurements which are then fed irdo twcheaper SC, therefore the inclination now is t@aaday
different estimators. In the other approach the rawwith gyros and use other means and methods to
gquaternion measurements themselves are fed directlyetermine the SC angular-rate. The latter is also

into the two estimators. needed even in gyro equipped satellites when
The two estimators rely on the ability to decongos performing high rate maneuvers whose angular-sate i
the non-linear rate dependent part of the rotationa out of range of the SC gyros.

dynamics equation of a rigid body into a producaof There are several ways to obtain the angular-nade i
angular-rate dependent matrix and the angular-ratgyro-less SC. When the attitude is known, one can
vector itself. This decomposition, which is notque,  differentiate the attitude in whatever parameteérs i
enables the treatment of the nonlinear spacecrafjiven and use the kinematics equation that conrtleets
dynamics model as a linear one and, consequehdy, t derivative of the attitude with the satellite arayulate
application of a Pseudo-Linear Kalman Filter in order to compute the latteiSince SC usually utilize
(PSELIKA). It also enables the application of agpke  vector measurements for attitude determination, the
Kalman filter which is based on the use of thetsofu  differentiation of the attitude introduces a coesable
of the State Dependent Algebraic Riccati Equationnoise component in the computed angular-rate vector.
(SDARE) in order to compute the Kalman gain matrix To overcome this noise, the computed rate compsnent
and thus eliminates the need to propagate and @&ipdatan be filtered by a passive low pass filter. This,
the filter covariance matrix. The replacement of th however, introduces a delay in the computed'rate
elaborate rotational dynamics by a simple firsteord When using an active filter, like a Kalman filté¢H),
Markov model is also examined. the delay can be eliminatet
In this paper a special consideration is givethto  Another approach may also be adopted to the
problem of delayed quaternion measurements. Twgroblem of angular-rate computatievhere thevector
solutions to this problem are suggested and tested. = measurements themselves are differentiated. This
Real Rossi X-Ray Timing Explorer (RXTE) satellite  approach was used by Natansofor estimating
data is used to test these algorithms, and resitteese attitude from magnetometer measurements, and by
tests are presented. Challa, Natanson, Deutschmann and Gatal obtain
attitude as well as rate. Similarly, Challa, Kotad
Key words; Quaternion, Spacecraﬁ:, Angu|ar-ra‘[e, NatanSOﬁ used derivatives of the earth magnetic field

ﬁ|tering, non-linear f||ter|ng vector to obtain attitude and rate.
All these methods use the derivative of either the
Introduction attitude parameters or of the measured directions

which normally determine the attitude parameters.
Another approach is that of using the attitude
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parameters, or the measured directions themsedges, with respect to inertial space when resolved in the

measurements in some kind of a KF. In this case the body coordinates. Eq. (1) can be written as
kinematics equation that connects the attitude -para
meters, or the directions, with their derivative® a 2) @= "I+ hyxJ+ (T -h)

included in the dynamics equation used by therfilte i s

thereby, as will be shown in the ensuitite need for ~ Where [(Iw+h)x] is the cross product matrix of the
differentiation is eliminated”?®, vector (Iw+ h) . Define

New sensor packages have been introduced lately

that yield the SC attitude in terms of the attitude

quaterniof. Therefore it is possible to use the ®3) Flo) =17[(10+h)¥]
quaternion supplied by such sensors as measurements and
and, as mentioned before, eliminate the need for (4) u(t):l’l(T—h)
differentiation. In this paper we investigate this

possibility.

As mentioned, in the ensuing we will apply two then Eq. (2) can be written in the form

special KFs which make use of the SC angular
dynamics model; therefore, by way of introduction,
the next section we present the development oSthe
dynamics model, and in Section Ill we present the t As was shown in Ref. 2, there are 8 primary models,
filters. For comparison purposes, in Section |Vtreat and infinite linear combinations of them, which
the approach where the angular-rate is still etedhc express Eq. (1) in the form of Eq. (5).
from derivative but here we pass the resultantynois Eq. (5) describes the SC correct dynamics;
quaternion through the two active rather than thhoa  however, we usually do not know the exact values of
passive filter as was done in Ref. 2. The othed, T ,hand its derivative, therefore we do not know the
approach, where the raw quaternion measuremen®xact relationship betwee® and these elements. We

themselves are fed into the filter, requires thditaah express our lack of knowledge by adding a stochasti
of the quaternion to the state vector which is cosegl  process to the dynamics equation of Eq. (1). We
of the angular-rate vector. This is treated in BecY. assume that this stochastic proces$t), is a zero

In Section VI we consider the case where the filtermean white noise process. The resulting model which
dynamics is drastically simplified by reducing the is used by the estimator is
dynamics equation of the SC to a first order Markov
process. The issue of quaternion normalization is (6)
presented in Section VII, and in Section VIII wdvgo

the problem of measurement delay. The last section

this work is the Conclusion section. If we denote w by x, then Eg. (6) can be written as

() ®= F(w)n+u(t)

w=Fww+u(t) +w' (1)

I1. Filter Dynamics M odel @) % = FOO)X + u(t) +w' (f)

The main dynamics model is that which describes
the propagation of the SC angular velocity, The
angular dynamics of a constant mass SC is givéimein

where obviously

following equatioft0 (8) F) = 17(Ix + h)x]
1) @ +h+wx(lw+h)=T For the time being we assume that we measure the
- - = angular-rate; that isx, therefore the measurement
equation is
where ' =[w,,w,,w,] , | is the SC inertia tensoh, 9 z, =Hx, +v,
is the momentum of the momentum wheels, &nid where
the external torque operating on the SC. The (10) H=1,

componentsw, , w, and w, are the three components

of the sought angulamte vector, w, of the SC body is a zero mean white measurement noise, ang v,
the third dimensional identity matrix.



and the covariance matrix according to:
I11. Angular-rate Estimation
(13.b) P

X . . i X k+1/k :AkPk/kAI +Wlk
As mentioned in the introduction section, we use
two filtering algorithms to estimate the angulatera

These algorithms are described next.

The dynamics equation presented in Eq. (7) is a

nonlinear differential equation due to the tef{x)x . measurement update: -

A standard filter for this case is the Extendedriah

Filter (EKF). One can also apply the Extended  Compute the Kalman Gain as follows:

Interlaced Kalman filtér where three linear KFs are

run in parallel. Other possibilities which are apgble (13.c) K. =P, HIHP.  H +R_]"

to the form of non-linearity presented in Eq. (7@ the

Pseudo-Linear Kalman (PSELIKA) filter and the State

Dependent Algebraic Riccati Equation (SDARE) filter

which were used successfully in Ref. 2. In view of

their performance, the latter two filters are ugethis
work too.

Update the estimate according to:

(13d) Xk+1/k+1 = 5\(k+1/k + K k+1[zk+1 - H§(k+1/k]

and update the covariance matrix using:

I11.1 The Pseudo-Linear Kalman (PSELIKA) Filter . .
Pk+1/k+1 = [I -K k+1H]Pk+1/k[| 3 K k+1H] +K k+1Rk+1K k+1

The PSELIKA filter algorithm disregards the non- (13.e)
linearity and treats the dynamics system as ifaéten
just a time varying system, consequently, the @mgin 111.2 The State Dependent Algebraic Riccati

KF algorithm is applied. First, the continuous Equation (SDARE)
differential equation (7) expressing the SC dynanisc

discretized and then the KF algorithm is applied asthe continuous-discrete-time SDARE filter which
follows. First evaluate:  was used in Ref. 2 was based on the work of Clqutie
D'Souza and Mracék® Pappano and Friedlalid
(11) W', = E{w'(t, )w'(t,)"} and Mracek, Cloutier and D’SouZaThat continuous-
discrete-time filter for the continuous-time dynami
and the discrete-time measurement is as follows (se
Ref. 2).
A As with the PSELIKA filter, choose an approximate
and choose an approximate value fap, the initial  value for the initial estimate of the rate vector.the

(12) R, =E{v,v}

estimate of the rate vector. In the absence of suchabsence of such initial estimate, choose aggin . 0
initial estimate, choosex, = .ONext, determineP, ,
the initial covariance matrix of the estimation cerr - time propagation:
according to the confidence in the choice’gf. The

recurrence algorithm is then as follows. Propagate the state estimate according to:

time propagation: (14) Xean AKX +U,

Let A, be the discrete dynamics matrix obtained -m rement update:

when F(x) of Eq. (8) is discretized, and let be the At the measurement updating time,.t solve the

discrete deterministic input signal, then propagats following algebraic Riccati equation fd?_, :
state estimate according to:

s A(s\(kﬂ/k Pk 1 + R(+1AT (§(k+]/k) - R(+1HT R;<1+1H e{l + WII< + = 0

(13a ) >(k+1/k = Aks\(k/k + uk (15a)



where |, is the fourth dimensional identity matrix.

and compute the gain matrix: From Eqgs. (18) and (20.a) it is easily seen thatugh
(15.b) K. =P,HR:

Finally compute the updated state estimate: (21.a)

(15.c)

k+1 k+1

Xiamern = Ko T Kk+1[zk+1 - HXk+1/k]

V. The Filtered Quater nion-Rate Approach

As mentioned before, it is possible to deriwe, a

estimate of the rate vector can be computed amnsl|
W =2Q'q

which in view of Egs. (20) can be written simply as
(21.b) w =2Q7q

The dynamics equation for the estimator was inttedu

crude estimate ofw using the quaternion first time- IN Se:‘fgontr']' (see Eq. 7); ”:US' intyiew ?]f EIQ-XZUKG g
derivativé however, the resultant estimate is noisy. If (10), the measurement equation which correspon

. ) i ) o that dynamics model is
w, is passed through a passive low-pass filter thgeno y

may be filtered out at the expense of a delkere we (22.a) Ww=H w+vV
investigate the quality of the filtered rates witlea two - where
active filters described before are used to filtoy. (22.b) H =

. w '3

First we show howw, is derived from g, the
differentiated quaternion. As is well known [seg.e.

Ref. 10], the quaternion dynamics equation is

and v, is a zero mean white noise.

The Pseudo-Linear Kalman Filter (PSELIKA) and
the State Dependent Algebraic Riccati Equation

(16) 9=29q (SDARE) filter were used to obtain the angular-rate
where  from quaternion observations using the Quaternion-
0 W -0 Rate approach. The data which was used to test this
—w 0 O W approach was real measurements downloaded from the
a7 Q= ‘ ' Y RXTE satellite, which was launched on Dec. 30, 1995
W -u 0 o We chose a segment of data starting Jan. 4, 1996 at
w0, —w, -w, 0 hours, 30 minutes, and 1.148 sec. The quaterniochwh

Itis also known [see e.g. Ref. 1] that Eq. (16) ba

was used was based on the SC attitude as deterinned
its star trackers. Fig. 1 presentts the nominal angular-

written as  rate and Fig. 2 presents the error betwegn the raw
(18) q=3;Qw angular-rate, andw, the nominal rate. In order to
where  quantify the error, a single figure of merit (FMB i
q, -9, 0, computed. First the average square error of each
_ — T
(19) Q= 9 9 % component is computed as follow§ = -1 [edt i=x,
-9, a4 q, "t
“4 79 ~G y, z. This computation yield®? .’ ande? . Then the

Define the pseudo inverse

FM is computed asFM:,/e_§+e_j+e_§. In order to

exclude the transients we sgt=100 séicwas found

(20.2) Q' =QQ"Q that FM(2) = 7.3998010°% deg/secwhere FM(2) is the
FM of Fig. 2. Fig. 3 presents the estimation emtbien
where T denotes the transpose. Note tha{he PSELIKA filter was applied to . It was found that
— -3 ; ;
(20.b) QQ=1, FM(3) =1.531110 °deg/sec. Finally, Fig. 4 shows

the same when the SDARE filter was used and it was



found that FM(4) = 1.45500103 deg/ sec As indicated

by FM(2), the computed angular-rate, , particularly
its X component, was rather noisy. When either tr
PSELIKA or the SDARE filter were applied @, ,
other than a few spikes, the resultiag was smoother.

In this example there was no real difference betvibe
performance of the two filters (see FM(3) and(BM
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Fig. 4: The Error in the Estimated Angular-Rate,
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As expected, the computation @b using Eq. (21)

produced a noisy estimate due to the differentiatd
the measured quaternion which was corrupted

by



measurement noise, and the application of the 0001000
PSELIKA filter to this w, filtered out most of the noise. 0000100
When the SDARE rather than the PSELIKA filter was (26) Cl0o 0000 10
applied tow , the filtered estimate of the angular-rate

was visually identical. In other words, the effeftthe 0000001
application of the SDARE filter was practically

identical to that of the PSELIKA filter. and v, is the measurement noise at that time.
An inspection of the matrice§&'(y) of Eq. (24.b)
V. The Quaternion Augmentation Approach and C of the last equation reveals that even wieis

constant this pair is deterministically unobsereaflhis
problem can be overcome though using the factBhat
(16) can be written as Eq. (18) which can also hitem

Although we also tested the Quaternion-Rate
approach described in the preceding sectionthis

work we are mainly interested in estimatiog using as
the measured quaternion itself rather than its . )
derivative. However, the quaternion is not a pathe (27) q=[3 Q|0] a

state vector of the system (see Egs. 6, 7). Ondicol
to this problem was examined in the preceding gpcti

Another solution is the augmentation of the quadern therefore Eq. (23) can be transformed into
with the angular-rate state of Eqs. (6, 7). Fos the
can use the quaternion dynamics equation givergin E  (28.a) y =G(y)y +e(t) +g(t)

(16) and obtain the following model which augments
Egs. (6) and (16)

where
(23) Y =G (y)y +e(t) + g() (28.) G(y){f@ 0}
where ;Q 0
_| @
(24.9) y= q We note that the measurement equation (see Egs 25)

unchanged although the dynamics matrix of the ayste
changes fromG'(y )to G(y). Unlike the pairG'(y )
(24.b) G') =[F(Q) 0 } and C, the pairG(y) and C is not necessarily
0 3Q deterministically unobservable. In fact, the resuhich
are presented in Fig. 5 show that the pair is msde
Cu(t) even when @ is time varying. Moreover, in the
} computation ofQ which is needed in Eq. (24.b) we use
our best estimate ob . At least initially, this estimate
- may be way off yielding a wron@ and, consequently,
(24.d) g(t) = w (t)} a wrong G'(y ). On the other hand, in the computation
0 of G(y), given in Eg. (27.b), we use Q rather tHfan
and since Q is based on the compugedhich is fairly
The measurements of the quaternion are taken@etis accurate, we obtain a pretty accura®y). In other

time points; therefore the measurement model is : ;
discrete one. The discrete measurement model tatrds’ not only is the pairg(y), C} observable, the

corresponds to the dynamics model of Eq. (23) is use of G(y) yields a more accurate filter model than
does G'(y ) The FM of Fig. 5 was found to be

(25) q,, = C{Q} +v, FM(5) = 6.1839110 * deg/sec. When comparing the
’ qj, FM of Fig. 5 to those of Figs. 3 and 4, it is reed that
whereq, , is the measurement at tintg, the addition ofj to the state vector yields a better filter.
‘ It is noted that the level of the spikes preserfigs. 3
and 4 was reduced when this filter was used.

(24.0) e(t) = 0
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Fig. 5: The Estimated Angular-Rat@), After Applying
the PSELIKA Filter to the Augmented Model.

While v,, the measurement noise vector, can be
assumed to be statistically independent over tiitse,

Since the measurement noise has a non-white
component, one needs to augment the non-white state
with the existing state vector to form a new augt@eén
state. The resultant model is then as follows

(31) X=FX+f+w
where
Fw) O O o]
F=|iQ 0 O (32.b) (32.8)x=| g
0 0 -N vy |
w' ul
(32.d) w=|0 (32.c)f =|0
u, 0]
Since
(33.a) Qe =0, TV, TV,

then the corresponding discrete measurement equatio

components are correlated with one another; moreove

it cannot be assumed that, has a constantly zero

mean, consequently we model the measurement rdise a |0

(29) Vk = Vl,k + VZ,k
where between the measurement points , k-1, k, thel,
noise componeny, , changes according to

(30) v, ==Nv, +Q

It is further assumed that,, is a zero mean white
noise process whose covariance matrix contains,
general, non-zero off diagonal elements. As ughal,
covariance matrix of the white noise vectpr, which

drives v is selectel to fit the covariance matrix

1k+1?
of v,... That matrix too may have non-zero off

diagonal elements in order to generate the corre
covariance between the components/gf,, .

is
(33-b) Zyy = HXk+1 + Vaokn
where
0 0O0O0O10O0O0O1IO0O00O0
0O 00O0O10O0O0O1IO00
= (33.0)
0 0O0OO0OO0O1O0O0OO0T11IO
0 0O0OO0OOO0O1O0O0O01

V1. A Simplified Filter M odel

The dynamics models which were used in the
preceding section can be drastically simplified by
exchanging the SC non-linear dynamics model with a
simple first order Markov model. This approach, ethi
is common practice in target tracking, was applied
“r]ecently to attitude determinatibrThe simplified filter
dynamics equation takes the form

-T* 0 0
(34.2) F=|1Q 0 0
o 0 0 -N

The dynamics model is then

(34.b) X, =FEx_ +f +w,

where



(34.0)

(34.d)
The covariance matrix ofv, has to be computétand

.
x; =0, la; v,]

f is as before and

wl =[w] |07 [u]]

Fig. 6: The Estimated Angular-Rate Error After
Applying the PSELIKA Filter to the Augmented
Model with Sparse Measurements.
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tuned. When the quaternion measurements are used
update the filter every second there is almostisible

difference between the use of the elaborate rotalio o
dynamics model and the simplified Markov model. .o}

However if the updates occur at longer intervatreh
is a remarkable difference between the two cadgs. F
6 presents the angular-rate estimation error when t __
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elaborate angular dynamics is used and the PSELIK/ @

filter, which is used to estimate the rates, isaipd = O

[=2}

every 30 sec. The FM computation of the error Soost

presented in Fig. 6 results in
FM(6) = 1.7975(10 2 deg/sec. When the elaborate 001

model is replaced by the Markov model, the error in  ows}
the resulting estimated rate is unacceptable. This ol

seen in Fig. 7 where the angular-rate estimatioorgr
for this case are presented. This is also indichyeithe

large FM of this case where
FM(7) = 3.9136[10 deg/sec. It should be noted that

in the computation FM(6) and FM(7) we set
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Fig. 7. The Estimated Angular-Rate Error After
Applying the PSELIKA Filter to the Simplified
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VII. Quaternion Normalization

Since quaternions are inherently normal, the
quaternion which is estimated using the above
algorithms has to be normal; however, these estimat
algorithms do not assure normalization; therefore,
occasionally, the estimated quaternion has to be
normalized. Several algorithms were suggestedtfor i
the pasf’’ which were compatible with the KF
estimator. The accuracy achieved when using those
algorithms was about the same for all of them.His t
work we chose to apply the Magnitude Pseudo-
Measurement (MPM) normalization algorithhfor the
ease of its implementation. This algorithm is pnesé
next.

The states which constitute the four elements ef th
quaternion are x,,X,,X, andx, therefore the sum

X2 +X2+x2+x% has to be equal to 1. In order to

assure it we assume the existence of a “magnitude
measuring device” that “measures” 1; that is,



=1 (35.a) a linear one and, consequently, the applicatiorthef
PSELIKA filter. It also enabled the application tfe
DARE filter.
When using the quaternion measurements to obtain
angular-rate without differentiation, the kinematic
equation of the quaternion has to be incorporattxithe

Z normk+1

On the other hand we assume that the correspondi
measurement model is

z —

normk+1 filter dynamics model. This can be done in two wdys
[0,0,0,X 4011 X1 Xgpooas X7 0,.0,0,0]X+V, was shown that only one way can be used becauge onl
this way yields an observable system.
(35.b) Real spacecraft data was used to test the sudgeste
which can be written in the form algorithms. As expected, when rate determinatios wa

based on quaternion differentiation, the resulting
(35.0) angular-rate was noisy. When either one of therSlt
was used, the noise was suppressed without causing
delays in the estimated angular-rate components.
The replacement of the elaborate rotational dynami
. . . . by a simple first order Markov model was also
Hiorm = [0.0,0, X441, X5 415 X g k1 X 742 10:0,0,0] examined. It was found that while the use of such a
simple model was sufficient when frequent measurgme
(35.d) updates were possible, it was totally inadequatenwh
only sparse quaternion measurements were available.
It is possible now to perform an ordinary measungme
update where the filter is fed with the “measurethén References
and where the measurement matrix is given in Eq.
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