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Abstract drift state process noise to provide a realistic

state error covariance.
Most navigation systems currently operated by NASA « A high-fidelity state dynamics model to reduce
are ground-based, and require extensive support to sensitivity to measurement errors and provide

produce accurate results. Recently developed ragste high-accuracy velocity estimates, permitting
that use Kalman filter and GPS data for orbit accurate state prediction during signal outages
determination greatly reduce dependency on ground or degraded coverage.

support, and have potential to provide significant « |nitialization and enhanced fault detection
economies for NASA spacecraft navigation. These capabilities using instantaneous geometric GPS
systems, however, still rely on manual tuning from solutions.

analysts. A sophisticated neuro-fuzzy componelty fu  Detailed mathematical specifications are defined i
integrated with the flight navigation system canf@en  Reference 1. Algorithms selected to meet the GPS
the self-tuning capability for the Kalman filterchelp navigation performance goals are summarized in
the navigation system recover from estimation srior Reference 2.
real time. The FDAB has implemented these algorithms in a
prototype GPS navigation software called the GPS
Key words: Kalman Filter, Neuro-Fuzzy System, GPS. Enhanced Orbit Determination Experiment (GEODE),
which executes within the resource constraints of
currently available flight processors (e.g., <400
Introduction kilobytes memory and <0.5 million instructions per
second). Processing of raw pseudorange measurement
Autonomous navigation has the potential both tom existing GPS receivers on the EP/EUVE and
increase spacecraft navigation system performande arOPEX/POSEIDON (T/P) spacecraft indicates that
to reduce total mission cost. The Goddard SpaightFl these navigation algorithms can provide accuracyQof
Center (GSFC) Flight Dynamics Analysis Branchmeters (1) in total position and 0.01 meter per second
(FDAB) has spent several years developing highy g) in total velocity with SA at typical levels. Witit
accuracy autonomous navigation systems for spatecrga active, experiments performed in a realistically
using NASA’'s space and ground communicationgimylated flight environment produced converged
systems and enhanced these systems to Suppgfutions with errors of 15 meters maximum and 4
spacecraft using the Global Positioning System (GPS meters rms in total position, as shown in Fig. 1.
GSFC FDAB has developed navigation algorithms tiynprovements to the baseline algorithms to achieve
meet a real-time accuracy goal of better than 2&rse o,time onboard accuracy of better than 2 mdtea
(10) in position and 0.03 meter per secorid)(in  re discussed in Reference 2.
velocity using GPS Standard Positioning System §SPS The core requirement for on-board autonomous
with selective availability (SA) corruption at ty@l  navigation is a method of state estimation thatdtem
levels. These algorithms, which are based on matWincertainties robustly, is capable of identifying
onboard navigation systems developed for spacecr@timation problems, flexible enough to make deaisi
using NASA’'s space and ground communicationgng adjustments to recover from these problems, and
systems, consist of the following core components: compact enough to run on flight software. Current
* An extended Kalman filter (EKF) augmentedmethod of using EKF for state estimation requires
with physically representative models for themanual tuning by support personnel. The re-tuning
gravity, atmospheric drag, and time bias an@rocess is more complex when dealing with
geosynchronous or high-eccentricity orbits.



This paper discusses an approach to produce a hiphese [U] and [D] matrices are time propagated and
accuracy onboard navigation system that can recouweeasurement updated in the Kalman filter process,
from estimation errors in real time. The self-nmi instead of [P] and [Q].
capability is achieved by a neuro-fuzzy component Parameters for [Q] and [R] are uplinked to the
augmented to the Kalman filter. onboard navigation system to start or re-start the

estimation process, or whenever the filter re-tgnim
needed. For GEODE, there are nine parameters for [Q
50 and one parameter for [R]. Generally, parameters
related to small unmodeled noises or to small srior
modeled accelerations that are not very well deffiaee
7 the ones to be updated in the re-tuning process.
. Several navigation fault detection tests are peréal
on the updated state and covariance. The Filter
Convergence Test is the major test. If the filtas not
T converged and if the RSS position sigma, RSS v#loci
20 - sigma, and semimajor axis sigma are all below their
respective  ground commandable  convergence
tolerances, then filter re-tuning is required. Terent
10 tuning process is performed by ground support a@tsly
Updated tuning parameters are uplinked to the awboa
system to reset the filter.
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Figure 1: GEODE Solution versus Truth Position Neural networks and their learning capabilitieseha
Differenceswithout SA Active enjoyed a strong popularity with the developmenthef

perceptrons in the 1960s and especially, after more
i . powerful learning algorithms were discovered in 3.98
Extended Kalman Filter for Navigation A neural network is considered as a computing syste
. L ) that is made up of a number of simple, highly
Orbit  state estimation algonthm for ' FDAB i terconnected processing elements. Neural nesvork
autonomous navigation systems consists of an EKF ﬂhre used in many applications, from robot contml t
uses physically connected noise covariance mo@els g, cia| forecasting. A drawback of neural netkgis
account for force model and measurement errorse Th o+ for some applications they do not always wask

state vector consists of at least the user Spaﬂ:ecr@xpected and for the user a neural network sirigply
position and velocity vectors. For GEODE, addiéibn black box, The user cannot learn from it

components include the .atmo.spher_ic drag Co.efﬁCientFuzzy logic is based on the idea of fuzzy sets,sets
correction, the GPS receiver time bias correctam \ihout clearly defined boundaries that can be used
the. time bias dr!ft correction. The state - Veclop,ge linguistic terms. Fuzzy systems associatd wi
estimation processing is performed at regular mr the process of formulating the mapping from a given
eg., every 30 s_econds, to propagate the_f'lteteswmput to an output using fuzzy logic that providelasis
vector and covariance to the measurement tlme,tepdfﬁom which decisions can be made, or patterns
the state and covariance based on the measuremegiSearned. Fuzzy systems can be used for the same

and ouput telemet_ry data. . _ tasks as neural networks. They are successfulliiegbp
The state covariance matrix, [P], represents #l& f j, fio|45 such as automatic control, data classifm,

uncertainty in the estimated state vector. Inigdlized yqision analysis, expert systems, and computésnvis
or reinitialized using ground upl!nked parameters. Fuzzy systems are not, however, created by a fegrni
For GEODE, the state covariance P and the procegs ihm A major problem is that its parametensst

noise covariance [Q] are [9X9] matrices, while thgys y,neq manually, usually in an error-prone anti
measurement noise covariance R is a scalar. Tiol avRsnsuming process.

the use of square roots and to guarantee nonnggativ Neuro-fuzzy systems are built from the idea of
of compl_Jted matrices, [P] and [Q] are factored Limbat applying neural network algorithms to automatically
upper triangular matrix [U] and diagonal matrix [D] yetermine and tune parameters of fuzzy systemsat Th



combination could avoid drawbacks of both neural Fig. 2 illustrates a high-level architecture ofe th
networks and fuzzy systems, and constitutes dntegrated system.
interpretable model that is capable of learning asidg Outputs from the filter include the state error
problem-specific prior knowledge. covariance matrix [P], measurement residual [M}d an
Various neuro-fuzzy models have been developedppropriate information relating to the filter asatellite
The Adaptive Neuro Fuzzy Inference System (ANFIS3tatus. [P] and [M] are gathered in time serigsitéd
model and its generalization for multiple inputdfais by a reasonable preset time window. When ther fidte
systems are used to prototype the self-tuning compo not convergent and covariances hit preset threshold
for autonomous navigation using Kalman filter. §hiwhich are less generous than those set by ther Filte
preliminary choice is mainly based on the modeConvergence Test, the re-tuning process is needed.
efficiency, software availability, and the fuzzyeesf Functional representations for [P], [M] time ser@®

filter outputs. then determined (e.g., using a least-squares poliaio
Several neuro-fuzzy system models are describ#d wfitting), and the preprocessor forms an input vedto
details in References 3 and 4. the neuro-fuzzy system. The neuro-fuzzy system

analyzes these inputs to produce tuning data taskd
to adjust [Q] and [R].
Neuro-Fuzzy System for a Self-Tuning EKF Input patterns and target parameters are spdbjifica
modeled to train the neuro-fuzzy system for a givser
The self-tuning method discussed in this papeois spacecraft. The training process is performedrgdo
optimize navigation autonomy for GEODE that usethe operational use of the system.
GPS as main tracking system. This method, however,
can be applied without significant modificationsaoy
other system that uses Kalman filter for autonomous Prototype for Phase | Development
navigation.
The real scenario of the self-tuning navigatioatsgn
can be much more complex than as described above.
The main problem, however, is simply to find a
GPS Ephem, mapping between the behavior of the filter outpug (
Measurements Est. state error covariance) and the tuning parametére
g;’é States primary phase of the development of the self-tuning
¢ Kalman Filter for autonomous navigation is therefty
build a simple prototype that can prove the existeof
such a mapping. The target navigation systemHfigr t
prototype is GEODE. For LEO user spacecraft, there
are three parameters that are related to errorthdn
acceleration models for solar gravity, lunar gnavind
solar pressure; or to unmodeled accelerations frolar
[Ql, motion, tidal effects, random venting, etc. These
[R] | parameters need to be updated via the tuning poces
[P], [M], Filter Status Preliminary examination of output data from diffiere
Tuning Parameters cases shows that patterns of velocity variances (or
¢ standard deviations) are adequate in the deteriminat
TUNING SUBSYSTEM of tuning parameters. The tuning subsystem prptoty
(Neuro-Fuzzy + for Phase | is simply a three inputs/three outpetsro-
Preprocessor) fuzzy system augmented by a preprocessor thatrgathe
filter outputs (i.e. state error covariance) indiseries,
determines if the filter re-tuning is needed, arsgsu
least-squares process to fit them to second degree
polynomials. The preprocessor also builds a vettatr
functionally represents the behavior of the covaréa
Figure 2: High-level Architecture of a and that is input to the ne_uro-fqzzy system. Pz_ﬂalme
Sdlf-tuning K alman Filter are tuned using the hybrid option that is a mixtafe
least-squares and backpropagation techniques. An

A 4

NAVIGATION

(EKF)




asymmetric and closed sigmoidal function is used fan  experimental receiver  flown on the

membership function. TOPEX/POSEIDON (T/P) spacecraft on November 17,
Fig. 3 shows a high-level diagram of the Phase 1993, were used to test the Phase | prototype.
prototype. Fig. 4 shows the convergence of the in-track vgloc

standard deviation from the T/P testing. Similarves
are seen in other components as well as in the
corresponding position standard deviations.  This
behavior reflects a filter status where correctirtgn

| parameters are provided.
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JP JP JP To train the neuro-fuzzy system, standard dewatio

I I I patterns and corresponding target tuning paraméers

Tuning Parameters fifty cases are used. Fig. 5 shows 3 patterns that
correspond to different errors in one of three rigni
l l l parameters, Qi.

Results from preliminary testing of this Phase |
prototype show that errors in tuning parameters are
identified and the system can be well recovereanfro
these errors. The average testing error is 0.0624
parameters ranging from 0.02 to 0.8. Fig. 6 shthes
average difference between the in-track velocity
standard deviations obtained from the correct Q@ an
from that determined by the prototype.

These test results are encouraging for this pneding
work. It is still premature, however, to have aodo
conclusion about the quality and practicality ofsth

: ethod of self-tuning when applying to the complex
Data from the GEODE processing of real GF)ggerational scenario of a real autonomous navigatio

pseudorange measurement with SA on, obtained fro stem

Figure 3: High-level Diagram
of the Phase | Tuning Subsystem Prototype

Test Results
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Figure5: Patternsof In-track Velocity Standard
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Figure 6: Average Errorsin Phasel Prototype
Testing (for In-track Velocity Standard Deviation)

Future Directions

Phase Il of the development of the self-tuningrikah
Filter for autonomous navigation is to refine thedfs
tuning method to accommodate to a much more
complex operational scenario and to accordingly
complete the system prototype.

Phase Il will involve the extension of the selfiing
filter to cover geosynchronous spacecraft, and -high
eccentricity orbits. For these cases, more paemet
need to be updated in the re-tuning process and the
tuning frequency is projected to be much higher.
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