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Abstract 
 
 This paper describes an advanced method for future 
electric constellations positioning design. The main 
problem is to minimize the duration of such low-thrust 
constellations deployment. For each satellite, the orbit 
raising corresponds to many orbital revolutions and its 
optimization leads to a so-called “rapidly rotating” 
control problem, numerically bad conditioned. An 
averaging tool has been developped to compute optimal 
thrust law achieving the final rendezvous under 
technological and operational constraints such as power 
limitation and attitude specification. Considering the 
global constellation positioning, the specific problems 
of target plane acquisition and satellites phasing can be 
solved combining the previous low-thrust optimization 
tool with drift periods without thrust. We propose 
furthermore innovative strategies to accelerate the 
deployment, in return for consumption and operational 
overcost. Finally, the results of different trades-off in 
terms of injection orbit, pointing modes and positioning 
strategies are presented in the cases of big LEO 
constellations. 
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Introduction 
 
 Electric propulsion will be used in the very near future 
for LEO telecommunication constellations such as 
Skybridge and Teledesic. The success of this new 
propulsion compared to classical chemical one comes 
from its low fuel consumption due to its high specific 
impulse. It thus allows to increase the payload or the 
number of satellites launched simultaneously. However, 
the thrust being low, the constellation deployment 
duration can be rather long. A general trade-off1 must 
hence be realized for each project to decide about 
electric propulsion interest. 
 Apart from such commercial considerations, this new 
propulsion leads to several technical problems rarely 
addressed and yet of prime interest, like orbit restitution 
and trajectory optimization. Contrary to impulsional 

trajectories, continuous low-thrust ones have to be 
controlled at each time to get the final rendezvous, 
minimizing a certain criterion (first of all the duration 
but also the fuel consumption for a fixed-time transfer) 
under several constraints. We have thus to solve an 
optimal control problem, so-called rapidly rotating 
because of the “rapid” angular revolutions compared to 
the “slow” orbit change (see Fig. 1). Such a problem is 
hard to solve by classical shooting methods, especially 
for full-orbital rendezvous (in both eccentricity, 
inclination and phase). 
 Averaging techniques2, whose principle consists in 
eliminating the rapid oscillations, appear to be well-
adapted to solve this kind of problems. An “averaged 
problem”2 is introduced, better conditioned than the 
initial one and whose optimal control law can be used to 
command the satellite with high accuracy. These 
techniques have been first applied to geostationnary 
transfers3-4. In the case of constellations positioning, the 
problem is to perform multiple-plane acquisition and 
multiple-satellites phasing in the same plane for single 
launch. We will see that for certain strategies, such a 
rendezvous leads to multiple-satellite control problem. 
 

 
 

Figure 1: Low-thrust trajectory profile 
 
 

Low-Thrust Orbit Raising Optimization 
 
 For homogeneous constellations, the different 
satellites have to reach the same operational orbit in 
terms of semi-major axis, eccentricity and inclination, 



whatever the injection orbit and the dispersions 
depending on the launcher. The final right ascension 
and phase are let free for the moment. The injection 
orbit can be either at a low-Earth altitude (“indirect” 
injection) or just below the final orbit (“direct” 
injection), and in the first case it can be either circular or 
elliptical. 
 Let us denote u the thrust vector, umax the maximal 
thrust modulus, γ  the acceleration due to environmental 
perturbations (assumed reduced to Earth zonal effect), x 
the five-state vector (a, ex = e cos ω, ey = e sin ω, i, Ω), 
α = v + ω the angular phase, m the satellite mass, ge the 
gravitational acceleration at sea-level and Isp the 
specific impulse of the thruster. Considering the 
minimum-time criterion, each satellite orbit raising can 
be modeled by the following optimal control problem: 
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where f, g0 and g1 are coming from the Gauss’s 
equations, and the constraint ϕ(x(t1)) = 0 characterizes 
the final operational orbit (fixed values except for Ω, 

that is: 5)())(( 1
11 ≠∀−= ixtxtx iiiϕ ). 

 In order to apply Chaplais’s averaging method2, the 
equations must be written in terms of angle instead of 
time. Considering the same transformation as in 4, the 
problem (1) falls under the following rapidly rotating 
form at the first order in ε (a small parameter related to 
the low thrust modulus umax): 
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 The averaging method2-4 consists in approximating 
this problem by the following averaged problem: 
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with the classical averaging notation2 for any function F 
ω-periodic in the “rapid” movement: 
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Constraints Accounting 
 
 The satellite design may induce technological and 
operational constraints such as power limitation and 
attitude specification. These constraints have to be 
expressed in a rather simple way in order to be taken 
into account in the previous low-thrust optimal control 
problem. 
 
Power constraint 
 
 Whatever the electric thruster (ionic as UK 10 or RIT 
10 ones, or plasmic as SPT 100 one), it requires a 
significant power budget which can be incompatible 
with the power available on the platform. Therefore, 
thrust can not be delivered continuously but within a 
certain duty-cycle ratio, depending on Sun elevation 
(directly through to the shadowing cycles or indirectly 
through the battery status). This constraint can be 
expressed more precisely as follows: thrust duration on 
several revolutions ∆tON must represent less than the 
duty-cycle ratio DC of these revolutions duration ∆t, 
that is: 
 

tDCtON ∆×≤∆                           (5) 
 
 Shadow effect has been included in the averaging 
optimization tool4-5 but not yet the battery modeling. It 
is thus impossible for the moment to get the thrust law 
with optimal coasting arcs fulfilling the constraint (5). 
Two sub-optimal solutions can be considered: 
 



1. impose arcs without thrust symetrically placed on 
odd/even orbits so that the ON/OFF cycles have the 
slightest effect on eccentricity (see Fig. 2), 

2. keep continuous thrust with reduced maximal 
modulus (u’max = DC × umax), and simulate the real 
trajectory by introducing in the previous trajectory 
coasting arcs fulfilling the duty-cycle constraint 
(with umax instead of u’max). 

 

 
 

Figure 2: ON/OFF duty-cycle constraint 
 
 The first solution consists in replacing the thrust 
constraint of problem (1) by the following: 
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Attitude constraint 
 
 AOCS specifications may impose specific pointing 
modes during the transfer (such as inertial, or with low 
variations in pitch and yaw around the speed direction). 
In this case, the thrust direction is no longer free as 
previously but constrained. Indeed, the thrust orientation 
results most of time from the satellite attitude control, 
especially for single thruster with fixed nozzle. The best 
way to handle this constraint would be to replace the 
thrust by the specified law in the initial problem and to 
optimize the new control parameters. We propose two 
alternative methods in the case of a low-variation 
attitude constraint: 
 
1. add cone constraint4 (see Fig. 3) on thrust direction 

in the optimal control problem in order to limit the 
variations in pitch and yaw, 

2. modify the orbit raising target in order to get low-
variation thrust profile without cone constraint 
during the transfer, and perform the residual 
corrections to get the effective target with dedicated 
pointing modes at the end of the transfer. 

 
 The first method consists in introducing the following 
constraint in problem (1), where C(α) is the cone of 

angle α in the speed direction (as depicted in Fig. 3 in 
the tangential/normal orbital frame): 
 

)(αCu ∈                             (7) 
 

 
 

Figure 3: Cone constraint  
 
 

Constellation Positioning Strategies 
 
 The global constellation consists of several planes 
including several satellites each. The deployment 
scenario depends on the constellation: plane-by-plane 
launches (so-called “direct” launches) for little LEO 
constellations and multiple-plane launches (so-called 
“indirect” launches) for big LEO ones. In the second 
case, several clusters of satellites are injected at a low-
Earth altitude, in order to take advantage of the relative 
plane drift between the injection altitude and the target 
one to fill in different planes. To separate these clusters 
in plane, two strategies can be considered (see Fig. 4): 
 
1. the drift strategy, transferring each cluster 

successively after a drift phase adjusted to perform 
the target plane acquisition (absolute positioning), 

2. the parallel strategy6, transferring the clusters 
simultaneously in opposite directions to accelerate 
the relative plane drift (relative positioning). 

 

 
 

Figure 4: Positioning strategies 
 



 In return for its efficiency in terms of deployment 
duration, the second strategy leads to fuel and 
operational overcost (anti-tangential maneuvers) and 
requires an extended flight domain6 (altitudes below and 
above the injection and operational ones). It requires 
furthermore multiple-satellite rendezvous optimization, 
whose resolution is rather difficult (except for circular 
transfers in nominal case leading to simple tangential 
and anti-tangential thrust laws6). 
 Whatever the injection scenario or the positioning 
strategy, right ascension is assumed to be corrected with 
minimum consumption overcost: 
 
• using natural plane drift for indirect injection 

(during the drift phase for the drift strategy and the 
orbit raising phase for the parallel strategy), 

• adjusting the initial right ascension (accounting for 
possible launcher dispersions) for direct injection. 

 
In fact, we will see below that out-of-plane maneuvers 
will also be required during the orbit raising phase for 
right ascension correction due to the phasing. 
 

 
Low-thrust Phasing Strategies 

 
 Let us consider the cluster satellites phasing during the 
orbit raising phase of the drift strategy. A rendezvous in 
both phase and plane has to be performed in order to 
phase different satellites in the same plane, because of 
the coupling between phase and right ascension. Mainly 
two phasing strategies can be considered (see Fig. 5): 
 
1. strategy 1, introducing an additional drift phase for 

phasing and correcting the induced right ascension 
deviation during the orbit raising phase, within an 
adjustment loop on the drift phase duration, 

2. strategy 2, realizing both phase and right ascension 
rendezvous during the orbit raising phase. 

 

 
 

Figure 5: Phasing strategies 
 

The curves (1) correspond to the so-called “reference” 
orbit raising trajectory, without phase nor right 
ascension rendezvous (solution of problem (1)). The 
associated final orbit is used to defined the target one: 
 
• the final reference time t1

ref is taken as the target 
time t1

target, 
• the initial right ascension Ω0 is chosen so that the 

final reference one Ω1
ref corresponds to the target 

one Ω1
target, 

• the target phase α1
target is adjusted so that the 

difference with the final reference one α1
ref, 

denoted ∆α, ranges from 0 to 360 °. 
 
The curves (2) correspond to the modified trajectory, 
reaching the rendezvous in both phase and plane (after a 
drift phase for strategy 1 and directly for strategy 2). 
 
Strategy 1 
 
 Denoting ∆tdrift the drift phase duration and 
considering the previous notations, the first strategy 
leads to the following optimal control problem: 
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 Finally, the drift phase duration ∆tdrift is determined by 
the following phase rendezvous equation: 
 

0)()( 11111 =−−− ∗∗ ααα &
targettarget ttt           (11) 

 
where t1

*, the optimal final time of problem (8), is 
function of ∆tdrift. 
 
Strategy 2 
 
 In this case the following optimal control problem 
gives directly the phasing solution: 
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where the constraint ρ(α(t1),t1) = 0 characterizes the 
phase rendezvous (see (11)): 
 

1111111 )()()),(( ααααρ &
targettarget ttttt −−−=       (14) 

 
 This strategy is more optimal than the first one in 
terms of rendezvous duration and consumption, since it 
induces less right ascension correction during the 
transfer. But it appears to be rather difficult to apply in 
the case of near-circular orbits. Indeed, the resolution of 
problem (13) leads in this case to numerical 
convergence problems, which can be explained 
physically by the fact that circular minimum-time 
trajectories provide less phase maneuvering margin than 
elliptical ones. 
 

Numerical results 
 
 We present below the results of different trades-off in 
the cases of big LEO constellations such as Skybridge 
and Teledesic ones, as an application of the previous 
optimization methods. We have considered here a 
unique study case which can be applied to both 
constellations, corresponding to the following 
assumptions: 
 
• shift of 45 ° between two adjacent planes, 
• SPT 100 thruster (F = 83 mN, Isp = 1450 s), 
• m0 = 1100 kg, 
• circular operational orbit with frozen perigee (h1 = 

1400 km, e1 = 7.86 × 10-4, ω1 = 90 °, i1 = 55 °), 
• DC = 80 %. 
 
 Concerning the launcher dispersions, only inclination 
dispersion of 0.12 ° has been taken into account in order 
to see the effect of plane correction during the transfer 
(the effect of eccentricity correction being observed 
even in the nominal case because of frozen orbit 
acquisition). 
 The duty-cycle constraint has been treated in a rather 
simple way, that is considering a reduced thrust 
modulus (F’ = 66.4 mN) to get a first dimensioning idea 
of duration/consumption budgets and attitude law. 
Within an operational context, the real trajectory 
including coasting arcs should be simulated as described 
above (second solution for power constraint 
accounting). It should be noticed that the duty-cycle 
ratio, which has been fixed here to its mean value, could 
have been taken variable during the transfer (as a 
function of  Sun elevation). 

 
 The first trade-off deals with the injection orbit. Two 
injection cases have been considered both at a low-Earth 
altitude: a circular one and an elliptical one (as 
described in Fig. 6). 
 

 
 

Figure 6: Injection cases description 
 



 In each case, we present the results of the rendezvous 
problem (8) (corresponding to the orbit raising phase of 
the drift positioning strategy with the first phasing 
strategy), within the following asumptions: 
 
• no attitude constraint, 
• ∆α = 360 ° (worst phasing case). 
 
We adopt moreover the following notations: 
 
• ∆t = t1-t0 (orbit raising duration), 
• ∆m = m1-m0 (orbit raising consumption), 
• ( )01ln mmIspgV e−=∆ , 

• (ψ,ξ): attitude law in pitch (in-plane direction) and 
yaw (out-of-plane direction) (see Fig. 7 for the 
definition of pitch and yaw angles in the 
tangential/normal orbital frame), 

• (ψ∗,ξ∗): maximal deviations in pitch and yaw. 
 

 
 

Figure 7: Pitch and yaw definition 
 
 

Table 1: Injection trade-off 

Injection 
case 

∆t 
(days) 

∆tdrift 
(h) 

∆m 
(kg) 

∆V 
(m/s) 

(ψ∗,ξ∗) 
(°,°) 

Ariane 5 
(circular) 

49 13 19.5 253 (8,65) 

Soyouz 
(elliptical) 

108 147 41 540 (180,80) 

 
 
 The figures 8 and 10 give the temporal evolution of 
the minimum-time trajectory in terms of orbital 
parameters (absolute evolution except for right 
ascension and phase which are plotted relatively to the 
target). The figures 9 and 11 give the angular evolution 
of the minimum-time thrust law in pitch and yaw (with 
a zoom on the first and the last revolutions). 

 
 

Figure 8: Circular optimal trajectory 
 

 
 

Figure 9: Circular optimal thrust law 
 
 



 
 

Figure 10: Elliptical optimal trajectory 
 

 
 

Figure 11: Elliptical optimal thrust law 
 

 
 We see that the elliptical injection leads to a so-called 
supersynchronous trajectory, characterized by an 
apogee altitude higher than the final altitude during the 
transfer (see Fig. 10). The associated thrust law includes 
two phases (see Fig. 11): 
 
1. an acceleration phase, propelling the satellite in the 

speed direction (apogee altitude increase), 
2. a deceleration phase, propelling the satellite in the 

opposite speed direction (apogee altitude decrease), 
 
the maximal out-of-plane maneuvers being performed at 
maximal apogee altitude. Such a strategy allows to 
accelerate eccentricity and plane corrections (as for 
geostationary transfers3-4). The transfer remains 
however costly in both duration and consumption (about 
twice as much as the circular injection one, see Table 1). 
 As a result, elliptical injection appears to be 
incompatible with big LEO constellations requirements 
in terms of duration/consumption budgets and pointing 
mode complexity. 
 
 The second trade-off concerns the attitude constraint 
accounting. Only the circular injection case will be 
handled here, since the elliptical one would lead to even 
higher duration considering additional constraint. Let us 
assume a maximal deviation of  30 ° allowed in pitch 
and yaw during the transfer. The table 2 gives the 
results obtained applying either the cone constraint or 
the method which consists in modifying the target and 
performing the final correction with dedicated pointing 
mode, as described previously. 

 
Table 2: Attitude constraint trade-off 

Method ∆t 
(days) 

∆tdrift 
(h) 

∆m 
(kg) 

∆V 
(m/s) 

Cone constraint 48 16 19 247 
Final correction 53 18 22 285 

 
 The second case includes a final correction of 0.3 ° in 
right ascension with perpendicular-to-plane maneuvers 
(requiring about 6 days and 3 kg). This table shows that 
cone constraint is more efficient than final correction. 
However, it leads to complex attitude law which may be 
incompatible with certain AOCS specifications 
(requiring for instance pure sinusoïdal laws). 
 
 The table 3 compares finally the drift and the parallel 
positioning strategies for two planes filling, in the case 
of circular injection without attitude constraint. 
 

 



Table 3: Positioning strategy trade-off 

Strategy total 
duration 
(days) 

drift phase 
duration 
(days) 

total 
consumption 

(kg) 

total 
∆V 

(m/s) 
Drift 110 61 19 253 

Parallel 90 0 36 475 
 
 The parallel strategy allows about 20 % duration gain 
in return for about 80 % consumption overcost. It is thus 
attractive (especially for multiple-plane filling), 
considering that duration is more critical than 
consumption for electric propulsion. However, the 
satellite design must take into account additional 
constraints, such as satellite rotation of 180 ° during the 
transfer and extended flight domain. 
 
 

Conclusion 
 

 In this paper, the complex problem of electric 
constellations positioning with full-orbital rendezvous 
has been investigated from both theoretical and 
operational viewpoints. Different strategies accounting 
for electric propulsion characteristics have been 
presented and applied to big LEO constellations such as 
Skybridge and Teledesic. The low-thrust optimization 
method which had been developped initially for 
geostationary transfers appears to be rather flexible 
since it has been generalized to treat the specific 
constellations problems, such as combined rendezvous 
in phase and plane, and power/attitude constraints. 
However, the optimal control form should be adapted in 
this case to model more precisely the global positioning 
problem with constraints: multiple-satellite state instead 
of single-satellite one to treat the parallel strategy, 
mixed power/consumption criterion instead of duration 
one to combine the duty-cycle and the mission drift 
phases, and thrust law adaptation to pointing mode 
requirements. 
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