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Abstract  

 
  Constellations of satellites raises an increasing interest 
shown by the numerous prospects concerning mainly the 
communication but also related to positioning and earth 
observation... Of course, one of the main objectives in 
designing a constellation is, given an expected service, 
to find a strategy reducing the cost as much as possible.  
  One of important phase in building a constellation is 
the station acquisition phase which is fuel consuming so 
that it is an interesting goal to define optimal or nearly 
optimal strategies for that. The purpose of this paper is 
to develop such strategy for LEO (Low Earth Orbit) 
constellations, by using some beneficial effects of the 
Earth oblateness (and thus the irregularity of the 
gravitation) on the orbital parameters.  
The optimization is performed  in two steps. A first one 
consists in satellite affectation, i.e. after the launching of 
the satellites, bring each of them on specific orbits 
constituting together the desired constellation. A first 
optimization is performed by solving a combinatorial 
optimization problem,  working  on a simplified model 
and linear oriented procedure. Then, since the satellite 
orbit affectation is fixed, an optimal orbit transfer is 
performed on each satellite to provide, for each of them, 
the optimal sequence of maneuvers, taking into account 
the operational constraints and working on a more 
realistic model. 
Finally, the above approach is illustrated through 
numerical experiments. 
 

Key words :   satellite constellation, station 
acquisition, orbital transfer, linear and nonlinear 
programming methods.  

 

Introduction 
 

 The station acquisition consists in positioning 
different satellites on several orbits, in order to form a 
given constellation and, therefore, to enable each 
satellite to carry out its mission. The studied 
constellation geometry is  defined thanks to Walker 
parameters1.  
  The build up of a constellation can be split in two 
important steps : first, the affectation of the different 
satellites and then, the transfer of each satellite from its 
initial position to the final one.  
 The proposed build up strategy consists on carrying out 
the transfer of each satellite in two stages, using the 
effect of the Earth oblateness. Each satellite will be 
transferred to two intermediary drift orbits before 
reaching the target one.   

Such strategy supposes that we are treating the case of 
low-orbits and that the available drift time is sufficient 
to obtain an effective parameter’s correction. The 
relative duration of each stage, and thereby the thrust 
dates, has to be optimized.  
Both the affectation and the maneuver’s dates are 
determined in order to minimize the global consumption 
of the constellation. In order to express the criterion,  the 
dynamical model of the satellite has been simplified and 
the affectation problem which is combinatorial in nature 
has been solved through some linear programming 
procedure4. Out-of-plane maneuvers can be scheduled. 
Once the affectation of the satellites has been solved, the 
next step consists in performing an optimal orbit transfer 
for each satellite, from its after launch initial orbit to the 
final one determined in the affectation phase. So, one 
has to solve, for each satellite, an optimal control 
problem which will be undertaken in an successive 
approximation approach, by performing successive 
refinements on the model, the constraints and the cost. 



In this multistage multilevel procedure, the “optimal’’ 
solution provided by one level is used to initialize the 
new iteration which will provide an enhancement of the 
solution. 

So, the global problem of  station acquisition is treated 
step by step, by successive approximation and 
increasing complexity. 
  The paper will mainly focus on the second step (i.e. 
optimal orbit transfer) of the procedure. 
 

The Dynamical Model 
 

  This paper deals with homogeneous constellation : 
satellites composing it have the same altitude and 
inclination but with different anomalies and various 
orbital planes. Orbits are assumed to be quasi-circular. 
For a given time, satellite’s position is characterized 
with four parameters : the orbit semimajor axis (a), the 
right ascension of the ascending node (Ω), the anomaly 
(α) and the inclination (i). These parameters are affected 
by different perturbations. Indeed, several forces act on 
the satellite. Let us express the effects of a perturbation γ 
on these parameters. Let us note γn, γt, γw the 
components of this perturbation along the tangent, out-
of-plane and normal directions (i.e. the direction of the 
velocity, direction of the angular momentum vector of 
the orbit and the normal direction that completes the 
trihedron). Afterwards, we will not consider the normal 
acceleration (γn=0). The gauss equations2 for a near-
circular orbits are given by : 
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n represents the orbit mean motion (n=(µ/a3)1/2 with µ 
the Earth gravity constant). For quasi-circular orbits, the 
velocity V is given by : 

V= a . n      (2) 
We will consider two perturbations : Earth oblateness 
 and thrust delivered by the propellant. 
J2 Effects                                              

  As this problem deals with LEO satellites, the inclusion  
of the effect of the first-order harmonic is important. We 
will assume that only the anomaly and the RAAN will 

be affected. Their variation in an interval of time ∆t is 
given by : 
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where ae represents the equatorial radius of the Earth. 
Thereafter, we introduce A and B defined by : 
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Thrust Effects 
  The thrust will be considered instantaneous. From the 
set of equations (1), we can express the evolution of the 
orbital parameters resulting from velocity increments 
(Vt,Vw) : 
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  The effects of the out-of-plane thrust on the anomaly 
will be neglected, so that this parameter is only affected 
by the variation of the semimajor axis (via the variation 
of the orbit mean motion). 
From the above equations, we can express the evolution 
of the different parameters. 
 
The Orbit Acquisition Strategy 

  The positioning of each satellite on its final position 
will be performed in three steps of maneuvers. The first 
one brings the satellite on an orbit so that the differential 
drift between the target and the satellite is mainly used 
to reach the nominal and final orbital plane (it is first 
assumed that the inclination is nominal). This phase is 
intended to correct first the RAAN and out-of-plane 
maneuvers can be added when the differential drift is not 
sufficient. 
The second maneuver is then produced to define an 
orbit so that, during the remaining time for station 
acquisition, the final anomaly is achieved, always using 



a differential drift. The third and final maneuver is given 
to zero this differential drift, i.e. bringing the satellite on 
this final position. If used, the out-of-plane maneuver 
will be constrained to be applied at the same time than 
the tangential one. Thus, in this strategy one can see two 
main phases : the first is intended for RAAN acquisition 
and the second for anomaly one. 
  Let us now express the evolution of the orbital 
parameters with the proposed strategy. Equations (3), 
(5) and (9) give the variation of the RAAN and 
equations (4) and (6) the evolution of the anomaly. The 
final values of these two parameters are:  
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Where : 

Ω0 and α0 represent the initial position, a0 is the initial 
semimajor axis, a1 (resp. a2) the semimajor axis of the 
first (resp. the second) phase. ∆t1 (resp. ∆t2) is the 
duration of the first (resp. the second) phase. Vwk is the 
kth out-of-plane thrust and  αk is the kth anomaly where 
the thrust is applied.  The efficiency of this thrust on the 
correction of the RAAN depends on this anomaly. 
Afterwards, αk will be taken equal to π/2 when the out-
of-plane thrust aims to correct only the RAAN. 
Each satellite has to reach a given position that can be 
characterized by its anomaly (αc), its RAAN (Ωc) and its  
semimajor axis (ac). Therefore, the orbit acquisition 
consists in the minimization of the error between the real 
final position and the target one. This represents the 
constraints of our problem. The figure (1) visualizes the 
proposed strategy. 
 
 
 
 
 

 
 

Affectation 
 

  First of all, when positioning a constellation, one deals 
with the affectation of the different satellites. 

The best assignment of the different satellites is the one  
that minimizes the total build up cost. Once the target 
constellation is well defined and for a given relative 
duration of the two stages, this problem can be 
formulated as a linear optimization problem : 
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where Xj,k is equal to 1 when the jth satellite has to reach 
the kth position, and 0 if not. Cj,k represents the cost of  
the transfer of the jth satellite to the kth position. It is 
given by : 
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s represents the index of the maneuver. We assume that 
the tangential and out-of-plane thrusts are applied at the 
same time and that only the anomaly and the RAAN are 
corrected. 
  The solution of this problem is computed by the 
Hungarian method developed by H.W. Khun3. For that, 
the elementary cost Cj,k has to be computed. A linear 
formulation has been proposed in a previous work4. 
However, as the dynamics of our system are nonlinear, 
such assumption can lead to wrong estimation of the 
optimal cost. That is why a nonlinear formulation of the 
model has been developed (equations (10)).  
  Now, let us present the resolution of an orbit 
acquisition. 
Calculation of the Transfer Cost (Initial Guess) 

  As seen previously, the differential drift between the 
target and the satellite is used to correct the two   
parameters. The target position and the set of equations 
 (10) give the constraints to respect. In order to compute 
the cost, we have to find the two intermediary semimajor 
axis and the three out-of-plane thrusts that satisfy the 
constraints. In a first step, we will first not consider the 
out-of-plane thrusts (Vw=0) . The constraints become a 
set of two nonlinear equations depending on two 
variables.   A Newtonian method5,6 has been used to find 
a solution of this problem. However, such method 
assumes that we have a good guess of the solution.  This 
initial guess is found as follows : 
1) the target position is generally given at the end of 

the station acquisition. But, it can be useful to have 
it at any moment of the station acquisition. 
Thanks to the equation (3), we can compute the 
target position at any moment. 
For instance,  the initial target position is given by: 
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Figure 1 : station acquisition strategy 
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where Ac and Bc are given by the equations (5) and 
(6)  (where the inclination is taken equal to the 
target one (ic)). αc and Ωc characterize the final 
target position. 

2) we assume that the first stage is sufficient to correct 
the RAAN. This mean that we reach the nominal 
position at the end of the first stage (i.e. a2= ac).  
The initial error on the RAAN is corrected thanks to 
the differential natural drift between the target and 
the satellite.  
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Where, namely, δΩtarget and δΩreal represents the 
natural drift of the target and real RAAN, during the 
total build up duration. The right part of the 
equations (15) represents the initial error between 
the target and the satellite. 
From the equations (15) and (3), we can determine 
the first semimajor axis and so, we can compute the 
tangential increments of velocity needed to realize 
this transfer. 

3) However, the nominal anomaly is generally not 
reached at the end of the first stage. That is why the 
second stage is necessary (a2 ≠ ac). We can calculate 
the real final anomaly reached at the end of the first 
stage. As for the case of the RAAN, the difference 
between the target anomaly and the real one, at the 
end of the first stage, has to be corrected by the 
differential natural drift in anomaly.  
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Where, namely, δαtarget and δαreal represents the 
natural drift of the target and real anomaly, during 
the second stage. The right part of the equations 
(16) represents the error between the target and the 
satellite at the end of the first stage. From the 
equations (16) and (4), we determine  the value of 
the second semimajor axis.  

4) As the semimajor axis of the second stage changes, 
the differential drift in the first stage can be 
insufficient to correct the RAAN. The three out-of-

plane thrusts can be applied in order to correct the 
final error in the RAAN.  

 
  This initial guess gives a good estimation of the cost of  
the transfer of each satellite from its initial position to a 
given one. As this initial solution is faster than the 
Newtonian one, it will be used in the global optimization 
that determine the optimal assignment. 
 

Drift Times and Target Constellation 
 

  Our strategy divides the build up in two stages. We 
have proposed a method to optimize the affectation for a 
given relative drift duration. But, the relative duration of 
the two stages remains unknown (no constraints impose 
it). Thus, we have to determine the best distribution of 
the drift time. 
  Since the variation of Ω is the slowest and the most 
expensive, the duration of the first stage will be the 
longest. The relative duration of the two stages has to be 
optimized in order to minimize the cost. However, since 
the total duration of the station acquisition is bounded, it 
is enough to optimize only the first one.  
  For each value of  the drift times, we can optimize the 
affectation of the different satellites as seen previously. 
Sometimes, only the global geometry of the 
constellation is given. In that case, we can also optimize 
one target position. The others are determined  
so that the final geometry is respected. 
  The drift time and, possibly, one target position are 
optimized using the Nelder & Mead simplex8. 
Compared to the optimization of the affectation, this 
optimization is in an upper level. Indeed, for each 
intermediary drift time and target constellation, the 
optimal affectation is determined and its cost will be the 
one used as a criterion of the Nelder method. 
 

Optimization of Satellite’s Transfer 
 

  Previously, we presented the global optimization that 
gives us the relative duration of the two stages, the target 
positions, and the affectation of the different satellites.                                               
Now, we have to transfer each satellite from its initial 
position to the nominal final one. The initial guess used 
before (when optimizing the affectation) is not optimal. 
Indeed, the out-of-plane thrusts have been computed to 
correct the RAAN without optimizing them. In this 
section we will propose a method of refinement of the 
obtained solution. 
The orbital transfer can be formulated as a minimization 
of a nonlinear criterion (the cost) with nonlinear equality 
constraints (the set of equations (10)). Two formulations 
of the constraints are possible : in the first one, one 



needs to know the number of revolutions done by the 
angles. Indeed, the drift presented in (10) does not give 
the parameter’s variation ranging between 0 and 2 π. We 
can initialize the number of revolutions of the variation 
with the one given by the initial solution. In this case, 
the constraints are :  
 

2
0
target

0
realrealtarget

1
0
target

0
realrealtarget

k2

k2

⋅π+α−α=δα−δα=α∆

⋅π+Ω−Ω=Ωδ−Ωδ=∆Ω
   (17) 

 
where the natural drift is computed during the two stages 
(as in (10)). k1 and k2 are the number of revolutions 
given by the initial solution. 
The second formulation of the constraints is more 
simplified. The set of equations (10) gives the 
constraints : the final real parameters have to be equals 
to the target ones. The difference between them will be  
expressed between  0 and 2 π.  
  The variables of optimization are the two semimajor 
axis (a1,a2) and the three out-of-plane thrusts.   
Since an initial solution is available, we use the 
Generalized reduced Gradient5,7: The out-of-plane 
thrusts vary so that the cost is minimized. Then, we 
compute the two semimajor axis that realize the new 
constraints (when applying these out-of-plane thrusts). 
As the variables of the optimization have to be greater 
or equal to zero, We have to pay attention to the sign of 
the out-of-plane thrusts. Here, the relative duration of 
the two steps is constant and equal to the value given by 
the global optimization.  
  Once the optimization of the orbit acquisition of each 
satellite is completed, we can verify the validity of the 
found affectation. 
 

Refinement of the Solution 
 

  We have already presented a basic solution of the 
problem of the station acquisition. For each satellite 
composing the constellation, the proposed method gives 
the optimal orbital acquisition. Only the RAAN, the 
anomaly and the semimajor axis have been corrected. In 
addition, the same drift times have been considered for 
all the satellites. However, the found solution could be 
sub optimal. Let us now try to improve it. 
Relaxation on the Thrust Dates 

Previously, the thrust dates were optimized so that the 
total cost of the constellation station acquisition is 
minimized. The previous optimization of the  relative  
duration of the two stages is equivalent to optimize the 
date of the intermediary thrust. It was the same for all 
the satellites. Now, let us optimize the thrust dates for 

each satellite. The first one will be always applied at the 
beginning. We can optimize either the date of the 
intermediary thrust only, or those of the two last ones.  
First, we will optimize the second thrust date. The 
problem we have to solve is a constrained optimization: 
The constellation operator defines the interval I to which 
belongs the second thrust date (and thus the relative 
duration of the two stages). We used the Nelder 
simplex8. As this method is a unconstrained optimization 
method, the constraints on the time will appear in the 
criterion: 
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where optimal_cost indicates the cost for orbital 
transfer. This cost is the result of the optimization of the 
transfer for a fixed time (using the GRG method). 
Thus,  each satellite will have its own intermediary 
thrust date that minimizes its consumption. 
  In what precedes, the last thrust was scheduled at the 
end of the build up. As for the intermediary thrust date, 
this thrust date can be relaxed so that the solution of the 
optimal cost is improved. We use the same method as 
before, where we add a constraint on the final thrust 
date. So the criterion of optimization becomes : 
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The constellation operator will define the intervals I1 
and I2. The last thrust has to be scheduled at the latest at 
the end of the total built up duration. 
Hohmann’s Transfer 

  In what precedes, we have presented a solution of the 
optimal orbit acquisition of a satellite where we assume 
that we deal with circular orbits. The used optimization 
can lead to important semimajor axis differential gaps,  
so that the eccentricity is affected too much.  Indeed, 
one needs, at least, two tangential thrusts for transferring 
a satellite between two circular orbits. Thus, the station 
acquisition is achieved in six steps of thrust (instead of 
three). We have to introduce the evolution of the RAAN 
and the anomaly during the Hohmann’s transfer. This 
changes the constraints (17) and the criterion (12) since 
we have three additional thrusts.  
  As previously, this problem has been solved using the 
GRG method. The thrust dates could be also optimized. 



In fact, The previous methods remains valid, only the 
cost and the constraints change, being more involved.  
Correction of the Inclination 

  We have not corrected the inclination yet. The satellite 
is transferred to a final orbit that can have a different 
inclination than the target one. Such a constellation 
could not be able to carry out correctly its mission. 
Thus, we have to introduce this new constraint in our 
problem. However, the effect of the Earth oblateness 
depends also on the inclination. Thus, depending on 
inclination’s value, the drift of the orbital parameters 
can be more or less important and so, the cost can be 
sub optimal. In fact, we have not only to correct the 
inclination but also to find the solution that costs the 
least. To solve directly such a problem will be too 
complicated. Thus, we used the following strategy : the 
inclination is corrected either at the beginning of the 
station acquisition, or at the end or at the intermediary 
thrust date. For each pattern, the cost will be optimized 
using the methods presented above. Then, the three 
costs will be compared and the least one will be chosen 
as a solution of the problem. Let us now express how the 
global problem is affected. 
Previously, we have optimized the orbital transfer of  a 
satellite in two stages, by transferring it to intermediary 
orbits with the same inclination. Here, the constraints 
remains the same with different inclination : each 
intermediary orbit has its own inclination. Depending  
on when it is corrected, the inclination is equal to the 
initial one or to the target one.   The formulation of the 
criterion remains the same (12). However, from (8) and 
(9), we notice that the efficiency of the out-of-plane 
thrust depends on where it is applied. Before, we assume 
that α was equal to π/2. Thus, for correcting both of the 
RAAN and the inclination, the set of equation (8) and 
(9) gives the out-of-plane thrust and the place where it  
will be applied : 
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More Refinement 

We presented an optimization for the problem of station 
acquisition using a simplified model of the satellites 
dynamics. However, we can obtain a more accurate 
solution by successive iterations, using an accurate tool 
of simulation. Thus, the proposed model is a rather good 

one and could be improved in order to achieve the 
station acquisition with the imposed precision. 
  Since we deal with low Earth orbits, we have 
introduced the effect of the atmospheric drag for 
different values of solar activity. The effect of the 
atmospheric drag on the semimajor axis has been 
discretized so that we achieve the station acquisition in 
two stages with several intermediary semimajor axis. 
Thus, the constraints will be similar to (10) but with 
several under stages. Successive iterations can be added 
to improve the precision of the station acquisition. 
  In addition, normal thrusts can be introduced to correct 
the eccentricity. In fact, the Hohmann’s transfer assumes 
transfer between circular orbits. We used it for quasi-
circular orbits, which can lead to errors.  Sometimes, the 
imposed precision in eccentricity can not be realized. 
Thus, normal thrusts has been 
 optimized using the Nelder simplex.  
 

Results and Numerical Comparison 
 

In this section, we will applied the proposed methods          
to the following example: the station acquisition of a 6-
satellites constellation on 3 orbital planes and with no 
phase gaps between planes (Walker 6/3/0). All the 
satellites have an inclination of 53° and an altitude of 
1000 km. The build up duration will be taken equal to 
360 days. Initially, the satellites are on a circular orbit, 
with a semimajor axis of 6900 km and at an inclination 
of 53°. The initial anomaly and RAAN are zero. 
However, launchers generally inject the satellites with 
some errors. This will be taken into account by 
introducing stochastic errors in the initial positions 
(table 1). 

    Table 1: initial positions of the satellites 
N. 
sat. 

Semimajor  
axis 

Ω0 α0 i0 

1 6900.22 km 359.9° 359.96° 52.99° 
2 6899.74 km     0.07°     0.04° 52.98° 
3 6900.11 km     0.15° 359.93° 52.96° 
4 6899.17 km     0.17°     0.13° 52.97° 
5 6899.92km 359.98°     0.07° 52.96° 
6 6900.16 km     0.04° 359.98° 52.96° 

 
First of all, the global optimization gives us the 
affectation of the satellites and the drift duration. We 
optimized one target position (Ωc0 ,αc0 ), the others will 
be deduced from it. We found : 
  ∆t1  = 343.799 days 
  Ωc0 =   96.0° 
  αc0  = 117.67° 



 Global cost =1566.33 m/s 
Thus, the other target RAAN will be either 216.08° or 
336.08° (orbital planes spaced with 120°). The other 
target anomalies can only be worth to 297.67°. The best 
affectation of each satellite is given in the table (2). 

Table 2: target positions of the satellites 
N. sat. Ωc αc 

1 216.08° 117.67° 
2 216.08° 297.67° 
3 96.08° 117.67° 
4 96.08° 297.67° 
5 336.08° 297.67° 
6 336.08° 117.67° 

 
The cost used to determine this assignment is computed  
from the initial guess showed on the following figure. 
 
 
 
 
 
 
 
 
 
From the figure 2, we notice that the satellites are 
clustered into three groups in the first stage. This is due 
to the fact that this stage is mainly used to correct the 
RAAN. Indeed, the target constellation is composed of 
three orbital planes, at the rate of two satellites per orbit. 
In the second stage, the semimajor axis are close to the 
target one. Thus, out-of-plane thrusts we have added to 
achieve the RAAN are rather small. The final RAAN 
and anomaly have been achieved with a precision of 10-3 
degrees. This allow us to have an idea about the optimal 
affectation and about the relative duration of the two 
stages. Now, we will realize the orbit acquisition of each 
satellite.  We will treat the case of only one satellite (for 
instance the first one). 
The orbit transfer is first determined  by the global 
optimization and then, optimized. It is given in the table 
below. 

           

Table 3: solution for the orbit transfer 
 Initial guess Optimized 

solution 
a1 6951.40 km 6953.94km 
a2 7373.50 km 7311.57km 

Vw1 4.23 m/s -3.96 m/s 
Vw2 8.42 m/s 0.00 m/s 

Vw3 1.36 m/s -3 .43 m/s 
V 261.24 m/s 258.27 m/s 

  
We notice that the differential semimajor axis gaps are  
more important than those found before. For the first 
semimajor axis, its value has increased, so the 
differential drift of the target and the satellite has 
decreased. On the contrary, the second semimajor axis 
has decreased and thus the differential drift has 
increased.  This is due to the fact that we have 
introduced a more accurate model. Indeed, we correct 
both of the anomaly and RAAN during the two stages 
(see equations (17)). Therefore, we need a less 
important variation of the RAAN in the first stage and a 
more important one in the second one. As a result, the 
out-of-plane thrusts decrease and so does the cost. These 
above results are given for the relative duration of the 
two stages found by the global optimization. This time 
can be relaxed. The interval of optimization will be 
taken centered around the previous second thrust date, 
with a variation of ±5 days.  The optimization of these 
times gives : 

t1  = 338.799 days 
V   = 256.91 m/s. 

We notice that the found date is the beginning of the 
imposed interval. This could be explained by the fact 
that the function is monotonous on this interval.  
The last thrust date can be also relaxed. We impose that 
it is scheduled at more 5 days before the end of the build 
up. The dates of the two last maneuvers are given by: 

t1  = 338.798 days 
t2  = 355.00 days 
V= 256.08 m/s 

Thus, the satellite reaches its nominal orbit 5 days 
before the end of the station acquisition. This means that 
the found solution is a local optimum. We can probably 
improve the cost if the imposed intervals were larger.  
We will now use the Hohmann transfer for the orbit 
acquisition. The found cost would be less important than 
that found by the previous method. This is due to the 
fact that the efficiency of  a tangential thrust depends on 
the semimajor axis where it is applied (see equation (7)). 
Indeed, we found a cost about 251.27 m/s.  

In addition, such a transfer permits to keep the 
eccentricity close to zero and thus, to have a more 
operational solution.  

If the inclination is also corrected, we should have a 
more important cost. Indeed, the out-of-plane thrusts 
have to correct both of the RAAN and the inclination. In 
this example, the inclination is corrected by a thrust at 
the beginning of the second stage (previously, this thrust 
was found equal to zero). The error in inclination (about 
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-0.004°), is corrected by a thrust of an amplitude of  
0.55 m/s. Thus the orbit acquisition cost increases and is 
equal to 258.34 m/s.  

The atmospheric perturbation can also be added. 
Without taking into account this perturbation in the 
considered model and for a weak solar activity level, the 
nominal final position is achieved  with an error of  
about 1° for the anomaly, 0.1° for the RAAN and 2 m 
for the semimajor axis. In this solution, out-of-plane 
thrusts have not been used. However, when introducing 
the effect of the atmospheric drag in our model, a more 
accurate solution is found and thus the precision is 
improved (about 10-7 degrees).  

These results show well the efficiency of the 
successive refinements in solving the problem. 
 

Conclusion 
 

  We have proposed an optimal (or nearly optimal) 
strategy for the station acquisition of a homogeneous 
constellation of LEO satellites. A build up of the 
constellation is achieved in two phases. First, the 
affectation of the satellites is optimized. Then, the 
optimal orbit transfer of each satellite is performed.    
The proposed  strategy split the station acquisition into 
two stages, enabling to profit the effects of the Earth 
oblateness on the orbital parameters. Once the optimal 
affectation is fixed, we have performed an optimal orbit 
transfer of each satellite. It has been performed by 
successive refinements on the model, the cost and the 
constraints.  
  We finally gave some numerical results of our 
multistage multilevel strategy. An enhancement of the 
solution found is possible by using a simulation tool that 
works on a more accurate model.  

Afterwards, it will be interesting to take into account 
the real duration of burns, and thus, to try to perform a 
solution of a low-thrust transfer problem, which will 
works on the ”optimal“ solution provided by the 
proposed methods.    
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