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Abstract the knowledge of an initial feasible solution oreth
primal variables. However they suffer from an irmse

An approach to solve optimal control problemgas in the problem dimension which, in the nonlinear
use Pontryagin’s maximum principle. This principlecontext can cause severe numerical problems.
gives optimality necessary conditions, but it nedus
resolution of a two-point boundary value problem Pontryagin’s Maximum Principle
(TPBVP). This type of differential problems is very
difficult to solve because being very sensitivethe For instance the Pontryagin’s maximum principle,
bound conditions. Usually, the solution is found bywhich can be cast in the indirect methods category
shooting methods which make use Newtonian typeeeds the solution of a TPBVP, which is known igga
techniques, so that some problems may occur when therious difficulties, for instance, in the case whbe
condition number of Jacobian matrix is poor causingontrol variables present some discontinuities.
divergence if the starting point is not close ket
solution. A way to avoid these problems can beute  Let us consider the following control problem :
of direct global optimisation methods (the ones for
which only the cost function values are required) t ty
solve TPBVP, and this is the approach proposetiia t Min Ig(X,U,t)dt + qp(x(tf),tf) )
paper. After some theoretical issues and the ptatsemn u

; ; to
of numerical algorithm, some examples are developed

to show the efficiency of the approach. X = f(Xut) X)) = X (2)
Key words : two-point boundary value problems, The necessary optimality conditions are giverowel
optimal low-thrust interplanetary trajectories. after the introduction of the Hamiltonian functis).
Introduction H(XU.AL) = g(xut) - Af(xut) @)
One can in general terms split the optimisatiod a O_H:_ { o X=f° (4)
optimal control methods into two broad categoridise: 04
direct methods > ® and the indirect ones. The direct OH
methods can be presented as the ones working on the W:A (5)

primal variables and, iteratively adjusting the ttoh

variables from an admissible initial guess in aerapt ) . )

to continuously reduce a performance index\{vhe_re_the_ optimal contré) must be the solution of the
Convergence is not generally a big problem but, offinimisation problem (6),

course the convergence is not guaranteed to thmlglo X X X

minimum and only a local minimum is achieved. In U =Min H(X ,U,1,t). (6)
indirect methods involving additional dual or (cais) v

variables are, at least theoretically, intendedirtd the

global optimum and avoid some drawbacks linked with



The state variabl¥ and the costate variableare in R optimisation variables as the unknown initial cdioais.

the control U is in R™. X and A" are the solutions of If all the initial state conditions are fixed arfdhe state
the differential system made up of (4) and (5). Th¥is in R then the number of optimisation variablesiis
problem (6) is for an unconstrained control problédm and they are noted’; (i=0, ..., n). Generally, anything
the control is constrained) must be taken in its is known about these variables, so the optimisation
definition setU. The initial state conditions are given inspaceD is taken rectangular and very large. For
(2), and in addition, some final dual state areb& instance, we can choose :

settled in order to define solutions for the TPBWR, D=D;xD,x...x D, (11)
(5). These last conditions are called transveysalit
conditions and act on the costate variables. Dapgnd where D, (=0, ..., n) are real intervals, which is
on the optimisation problem, they are written as : obviously a compact set. Now we must define an
objective function, a common step in the shooting
X(ty) =Xy, ty fixed (7)  methods, which needs the definition of shooting
3 functions on which Newtonian techniques are applied
H 29 -0 and X(t;)=X;, t; free (8) Off course, these shooting functions are built frima
ot t, transversality conditions, so that their minimum
correspond to the fulfilment of these conditionsr F
Alty) = _99) , t; fixed (9) instance, in the case qf first final states fixed and the
X t g last ones fregy(+ g = n), let us define :
HJ, +0_¢‘ =0 ; At - 99 , t; free.  (10) F:R" - R"
©oooty, 9 X|, -~
' ' % (t) = X
. . . ps Xo(ts) = %o
The TPBVP is formed by the differential systen), (4 1 .
(5), the initial state conditions (2) and the trarsality /1(2) :
conditions (7),..., (10). There are no initial conals > F= /Tn—l(tf) + op (12)
for the costate variables, and the principle of our P axn_1tf
approach is based on searching for good ones @t tod “61 N 3
respect the optimality necessary conditions, and A A (ts) + 9
specially the transversality conditions at the [firae. t

Resolution of a TPBVP - ~ _ _
where X; (t) and A, (t) (i=0, ..., n) are obtained by

There exist several methods to solve TPBVP, we caumerical integration of (4), (5) frod, andA,.
quote three useful types :

= shooting methods, The aim of shooting methods is to find the roofof
» integral equation methods, Obviously the following objective shooting functi@h
= finite differences methods. met the previous conditions :
For lot of problems these methods work very \aeld G:R" . R
give the optimal solution. But some problems occur _ _
when discontinuities appear on the control variglue )I‘f
if the functionf in (2) is non smooth. The method we Ag
propose can be classified in the shooting methods s Ge=FTE" (14)
category, because it is an initial-value methobhis :
new approach is shown to have some efficiency to /‘2—1
solve TPBVP even if properties of continuity okth )Iﬂ

control variables are not verified (in this case o
also use continuation methods to approximate th
solution). The goal of our method is to view theBMP
as an optimisation problem in order to find thereor
initial costate conditions which permit us to oht#ne
desired final conditions (7), ..., (10). We definee th

Now the optimisation problem can be formulated, it is
a minimisation problem where the variabld%,; . ,
do not appear explicitly in the objective function.



Min G (15) verified, and it is very difficult to prove thatehset of
i”leDin solutions of equation (19) is not emptyheorem II
prove existence and uniqueness of a solution. This

Solving this the TPBVP is equivalent to find thetheorem is a modification of Keller's theorénfor

minimum of G for whichG = 0. The existence of this particular boundary conditions like the ones gedhera

minimum is proved showing that the TPBVP has gncountgredftrl]n optlmgl cgntrgg p:zek?lems.x The
solution. If this solution exists then the speciﬁceXpr_eS‘SI.ono ese are given _y( ) Wheis ap xn
atrix with rankp, B is aq xnwith rankg, p + q = n,

minimum exists too. Some sufficient conditions havén_ h '
been derived for the existence of the solution of th& iS in R andp in R'.
above problem. They are summarised below. Consider
the general system subjected to the general linear two- (@ AY(@) =a, (b)BY(b)=p (23)
point boundary conditions,
With no loss in generality, the matriA can be

Y=n(Y), a<t<b, (16) expressedl,, Ay with I, is the p-order identity matrix

andA; is ap x q matrix. Equalities like (23) are derived

AY(@)+BY(b)=a, (47) if the functiongin (2) is linear or quadratic with respect
Yt)OR",aOR", (A B)OR™" xR™" to the stateX.
n: R™ _ R" '

Theorem 11 : Letn(t,Y) satisfy on R : &t <b, |Y| <o,

Can be associated to (16), (17) an initial valuzbfam (&) /7(tY) continuous

(18) In the following way, (b) gi continuous i, j=12,...,n
y.
V:/](t,V), V(a) =S (18) 6,7]
¥(s) = [AS+ B.v(s, b)] -a=0 (19) () HG_Y‘ <k(t)

wherev = v(s, t)is the solution of the problem (18).

1 _al ™A
Clearly, ifs is the root of equation (19), we expect : (d) Q7 exists Q= B{ lq J

. b
Y(t) =v(s ,t). (20) (e Ik(t)dt5|n(1+%j' 0<6<],

Definition | : Let the functiory(t, Y) be continuous on “A
the infinite strip R : as't <'b, with |Y| <o, the function m:“Q_l_B“ ) [ | J
0 q -
then the problem (16), (23) has an unique solution

n is said K-Lipschtizian in Y, uniformly in t, if :
I7t.Y)-n(t 2)<K]Y-Z|. (21) whatevera andg.

Theorem | : Let 7(t, Y) be continuous on the infinite So we show that under some properties,othe
strip R : as't < b, with |Y] <o, and satisfy there a TPBVP has a least a solution, which is obtainethat
uniform Lipschitz condition in Y. Then the boundaryninimum of the functiorG for whichG = 0. Formally,
value problem (16), (17) has as many solutionshaset We can express the TPBVP [(2)(5)(7)...(10)] through
are distinct roots s = @ of equation (19) . These the function; in the following way :

solutions are :

¢ =nd.1)
Y(t) =v(s%),b), 22) « f
¢=[ } n=|0H | (24)
the solutions of the initial value problem (18) wnééhe 0X
variable s equals . ), (@),...,@0)

The proof ottheorem lis given in Kellet. In practical  Now that all is well define. we can explain the
examples all the required proprieties are not r&Igs yegplution of problem (15). The greatest difficulty



comes from the expression of the objective functiorsolve the problem (15) with the evaluations givgrthe
Indeed, the functio®s is not analytic, and it can not befirst level. The algorithm can be written :

expressed explicitly in terms of the variabl’é.sl, .

1. chose randomly i a starting poinﬂoizly o

That is why, we use in the resolution principleect 2. apply the local optimisation method : nonlinear or
optimisation methods. These methods needs only multireflection simplex, in which evaluations Gf
evaluations of the objective function. The converge andG, are used

rate is off course slower than the convergence oate 3. if a local minimum ofGis obtained then store it
methods using first or second derivatives. Buedir 4. If the starting point number does not equal a
methods do not need continuity properties of the number fixed by the user then return to 1. else end
objective function. So these methods can solvetgrea

class of problems than the others. There existg afl  All the local minima must be analysed, if andyoiil
direct methods : genetic algorithins clustering one of them has @ value then the problem (15) is
method§ multistart methods... We have chosen to ussolved, else the algorithm must be restarted with a
a multistart method. Its principle is to apply adb greater number of starting points. If tteeorem Ilis
method with a lot of starting points taken unifoynth  verified, or if only the existence of a solutionpsoved
the optimisation space. If the number of startiogpis by theorem | then a sufficiently large number of
sufficiently large then we can consider that thestbestarting points exists.

local minimum found is global. We have used twoFor each example of the next part, the number of
different local methods : nonlinear simplex starting points used and the value of the minimum
multireflection simplek The first (resp. second) is very obtained will be presented.

efficient when the dimension of the optimisatiorasp

is small (resp. large). The second method is an Numerical examples

extension of the first, so their principlare equivalent.

But this method is the second level of the globalln this part three examples will be solved. Tinst fis
resolution of (15). Indeed, the functioB can be taken from an article of Herman and Confyathe
considered as a succession of two different funsti® second is a modification of the first, and the ffina
and G,. G; solves the initial value problem deducedexample is a problem of minimum consumption for a
from (24), and G, compute the cost associated tdow-thrust Earth-Mars transfer. We have choseneghes
function given byG;. So we can write : three examples in an increasing order of complexty

show the efficiency of our algorithm.

G, ) =G, (G (AL
(Aim1...n) = G2 (Gl ) The first example is an orbit transfer problenwinich

G : R" - R 25) the rocket engine provides a constant acceleraton

G, : R" 5 F(RZH, RZ”) the spacecraft. Motion is confined in a single plafhe

G, : F(R™R™M R spacecratft is described with 6) the polar coordinates,
2 - ) -

the origin is located at the centre of mass of the
attracting body. The only control variable is timeust
angle § is measured relative to the local horizontal.
Finally, the mass of the spacecraft is constant And

whereF(R™", R?") is the space of functions fronfRo
R?". The functionG, is not complicated because it just

takes the value of.the function g.'V@a by at the tima represents the thrust divided by the mass. The stat
and produces easily the evaluatiorGof So to solve the . T .
variables areX = {r, 6, v, v}  and the evolution system

initial value problem defined from (24), we use iven by -
numerical integration method : a Runge-Kutta method® 9 y-
(RKM). The order of the RKM depends directly oe th

precision of integration required. Usually, the ribu ro= Ve
order is used. Finally, for each evaluation of the g = VY
objective function, a numerical integration is dose , r
the computing time of the global optimisation may b .o _ V& u . . (26)
quite high. Vi = T r—2+AS|n(,B)
) v,
To summarise, the method we propose is made up of Vi = ‘th+ A.cos(B)

two levels : the first consists in a numerical graion
and computing the associated cost, the seconditete|



We normalise length (LU) and time units (TU) with
which the gravitational constany/ is unity. The
acceleration magnitudd, the initial timet,, and the
final time t; are chosen to b®.01, 0.0, and 50.0
respectively. For this problem there is no integeam
in the cost (1), and the expression of the funcaas (it
represents the specific energy at the final time) :

} .

Finally, the initial conditions constraints fdmet state
correspond to a circular orbit at a radius of 14, L
resulting inX, = {1.1, 0.0, 0.0, 1/1.1}". For this system
the costate variables afe= {A,, Ag A, Ad', and the
expression of the Hamiltonian is :

1

27
rits) @7)

A1) :—{g[vf(tf)wf(tf)]—

2
Vi

T 2

H=Av, + gL, { 1 +Asin(,8)}
r r

-

The costate equations given by (5) become :

2
Vi 2
v, {_2__3} A

r r

(28)
vV, Y

+A cos(ﬁ)}

(VAVA

r2

V,
_t2+/]
r

A =g

(29)

The final costate conditions are given by :

T
1

Altg)=9————.0,-v, (t;), - : 30

(tr) { 2, Ve (tr) Vt(tf)} (30)

We conclude immediately that for this problem thi
equalities (23) are not verified because the fancgis
not linear or quadratic with respect to the s¥t&o we
can not use ththeorem Il But the variable is assumed
to be great thai.0, becausel.0 is the attracting body
radius. The magnitude of the spacecraft velocity |
assumed to be less than the velocity obtained wher
equals1.0 plus the velocity due to the thrust. So the

thrust angle is assumed to belin772 ; -772 [. The
expression of this angle is :

Ve

-/

Vi

tan(f) = (31)

Under this hypothesis the function associatedh wie
costate variables is continuous on the interval of
evolution. Then the global functionverifies properties
of continuity, so we can try to find a solution ke
uniqueness of it is not proved. The objective fiorcG
is

1)2
A +=| +(A, +Vv. )2
oty =1 77) Tt

+(Ay, +vp)?

(32)
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W LUy

«1 1 2 a 4

i
LY

Figure 1 : Optimal trajectory
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this optimal control problem even if the optimal

There are only three optimisation variables bsedbe trajectory presents many revolutions.
final costate conditions imply directly thdy equalsO
foralltin[ ty; t;]. The optimisation space is given by
(33) and the number of starting point&&

D =|-10° ;10%[x|-10° ;163 |x|-10% 210®].  (39) o

The nonlinear simplex have foud3 times the same N -~
minimum and its value is2.07.10'. The optimal 2 :
trajectory is represented in Figure 1 and the agtim i
thrust angle in Figure 2. Table 1 gives initial il A
state and costate conditions. Ll e

Table 1 : Initial and final conditions

o= 0.0 t=50.0 s AL N B
r 1.1 4.316 ® LU
g 0.0 20.086 Figure 3 : Optimal trajectory
Vy 0.0 0.156
Vi 0.953 0.498 Table 2 : Initial and final conditions
A -0.436 -5.36.10 t,=0.0 t = 500.0
Ao 0.0 0.0 r 11 4.0
Aur -2.32.10° -0.156 % 0.0 202.347
A -0.523 -0.498 Vi 0.0 0.141
\A 0.953 0.470
The next example is a modification of the prengdi A -8.1.10° -9.77.10
one. We solve this example to show the efficienty |o Ag 0.0 0.0
the algorithm even if the optimal trajectory ispiral Aur -1.0.10° -7.16.10°
with many revolutions. So the position anglevill take A -1.0.10" -5.05.10

very high values. The new values of the constaahd
t; are0.001and500.0respectively. The problem is thatRemark 1 : for this example the boundary conditions
the spacecraft must reach a circle with a fixedusath  can be written like conditions (23). Unfortunatelthe
a finite time. All the differential equations arftktinitial matrix Q (theorem 1) associated to them is singular. So
conditions are not modified and the final condifonthe unigueness of a solution is not proved.
become :
The last example presented is a low-thrust Bslidhs
transfer with minimum consumption criterion. This
(34) example is given in Coverstone-Caroll and Willidms
This problem is a two-body problem (spacecraft R)Su
] ] The spacecraft has a nuclear propulsion system avith
With the same number of starting as before, thesnstant power source 450 kW The spacecraft engine
optimisation space has to be reduced because g a constant specific impulsef 4860 s The initial
problem is very sensitive. The expression of thgass is10000 kg The spacecraft departed on Earth on
optimisation space is chosen : November 19, 1994 with Earth’s position and orbital
velocity. A rendezvous with Mars occut84 days later
(35) on May 22, 1995. The state variables are the positi
in R®, the velocityv in R® and the mass in R. The
A local minimum has been found and its value is control variables ar& in R®, a unit vector defining the
7.7.10'. Figure 3 represents the optimal trajectory anthrust direction and a variable representing the engine
Table 2 the initial and final conditions. This exalen state,dequalsl if the engine is orf) else.
shows that our approach is able to find the sahutd

X(ts) ={4.0, freg free, free}
A(t; ) ={ free ,00,0.00.0}

D =[-10;10]x[- 1.0;10]x[- 1.0;10].



|, =1 J(t):{ci, 0t Oftest |.

The state differential equations are :

r = \%
v o= —LS.HI.J.U.
i P—
M = Ts
C

in the ecliptic plane, the engine state is showRigure
(36) 5 and finally, the mass variation is presented igufe

6.

@37)

Y (10% km)

The constanT is the thrust magnitude computed with
the power source and the specific impul|ses the sun
gravitational parameter. The problem can be fortedla

as .

Min

-m(t;).
subjectto (36),(37) ( f )

The costate differential system is obtained :

A= a3 o

_ Irll, I,

i, = -2

A= L ruye
m

and the expression of the optimal control :

Ay .
——01if p>0
{Ilﬂvllz j

’4V
— 1 else -
("/]vuz j

T, T
p=—An A,

o)

The optimal control is piecewise continuous, ths
makes the problem very difficult to solve. The rnem
of optimisation variables ig, and the expression of the

optimisation space is :

D =102 10?[ x[-10° ;10°[ x[- 10;10].

With a number of starting points 600, the value of the
minimum found forG is 2.37.10", so we can conclude

(38)

-100

-z00

-a0g

300

100

-300

-200 -100 100 200

i
¥ (*10% km)

ann

Figure 4 : Optimal trajectory in the ecliptic plane
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Table 3 presents the state and costate initidlfesal permits to try to find the global optimum and to
conditions. The units arB® kmfor the position and0®  consider a large optimisation space what does @etl n

km/dayfor velocity, the mass is expressedkin the a priori knowledge of the region of convergente
the optimum. Theoretical issues about sufficient
Table 3 : Initial and final conditions conditions have been also presented but it is very
11.19.1994 05.22.1995 | difficult to verify them in practical cases, besau
ry 81.62 -244.14 functions in the differential models do not resptwet
ry 123.28 -27.53 desired properties of continuity and boundedne$& T
r, 1.52.10° 5.43 three examples developed show the efficiency of the
Vy -2.19 0.31 approach on different categories of problems. Iddee
v, 1.41 -1.90 with a sufficiently large number of starting pointsr
v, 14110 47510 each example the global optimum has been found.
m 10000.0 7184.05
g 218 50.09 Interplanetary low-thrust transfer problems foan
rx : : :
very interesting class of optimal control problems.
Ay 76.35 21.68 Indeed. the exampl S . .
, ple presented in this paper inglesi
Az -1.35 .07 transfer between two planets with a fixed transfee.
A -2008.75 3716.4 More complex trajectories can be analysed : with th
Ay 4046.58 -1438.58 use of planets gravity, free initial and final tisnerhich
A 361.22 -351.96 needs a very precise analyse of the planets epleemer
Am 0.55 1.0 Future numerical experiments of this approach lagll

done on this type of complex trajectories.
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