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Abstract 
 

  An approach to solve optimal control problems is to 
use Pontryagin’s maximum principle. This principle 
gives optimality necessary conditions, but it needs the 
resolution of a two-point boundary value problem 
(TPBVP). This type of differential problems is very 
difficult to solve because being very sensitive to the 
bound conditions. Usually, the solution is found by 
shooting methods which make use Newtonian type 
techniques, so that some problems may occur when the 
condition number of Jacobian matrix is poor causing 
divergence if  the starting point is not close to the 
solution. A way to avoid these problems can be the use 
of direct global optimisation methods (the ones for 
which only the cost function values are required) to 
solve TPBVP, and this is the approach proposed in this 
paper. After some theoretical issues and the presentation 
of numerical algorithm, some examples are developed 
to show the efficiency of the approach.  
 
  Key words : two-point boundary value problems, 
optimal low-thrust interplanetary trajectories. 
  

Introduction 
 
  One can in general terms split the optimisation and 
optimal control methods into two broad categories : the 
direct methods1, 2, 3 and the indirect ones. The direct 
methods can be presented as the ones working on the 
primal variables and, iteratively adjusting the control 
variables from an admissible initial guess in an attempt 
to continuously reduce a performance index. 
Convergence is not generally a big problem but, off 
course the convergence is not guaranteed to the global 
minimum and only a local minimum is achieved. In 
indirect methods involving additional dual or (costate) 
variables are, at least theoretically, intended to find the 
global optimum and avoid some drawbacks linked with 

the knowledge of an initial feasible solution on the 
primal variables. However they suffer from an increase 
in the problem dimension which, in the nonlinear 
context can cause severe numerical problems. 
 

Pontryagin’s Maximum Principle 
 
  For instance the Pontryagin’s maximum principle, 
which can be cast in  the indirect methods category, 
needs the solution of a TPBVP, which is known to raise 
serious difficulties, for instance, in the case when the 
control variables present some discontinuities. 
 
  Let us consider the following control problem :    
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  The necessary optimality conditions are given below 
after the introduction of the Hamiltonian function (3). 
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where the optimal control U* must be the solution of the 
minimisation problem (6),  
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  The state variable X and the costate variable λ are in Rn 
the control  U is in Rm. X*  and λ* are the solutions of  
the differential system made up of (4) and (5). The 
problem (6) is for an unconstrained control problem, if 
the control is constrained U must be taken in its 
definition set U.  The initial state conditions are given in 
(2), and in addition, some final dual state are to be 
settled in order to define solutions for the TPBVP (4),  
(5). These last conditions are called transversality 
conditions and act on the costate variables. Depending 
on the optimisation problem, they are written as : 
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  The TPBVP is formed by the differential system (4), 
(5), the initial state conditions (2) and the transversality 
conditions (7),…, (10). There are no initial conditions 
for the costate variables, and the principle of our 
approach is based on searching for good ones in order to 
respect the optimality necessary conditions, and 
specially the transversality conditions at the final time. 
 

Resolution of a TPBVP 
 
  There exist several methods to solve TPBVP, we can 
quote three useful types : 
� shooting methods, 
� integral equation methods, 
� finite differences methods. 
 
  For lot of problems these methods work very well and 
give the optimal solution. But some problems occur 
when discontinuities appear on the control variables or 
if the function f in (2) is non smooth. The method we 
propose can be classified in the shooting methods 
category, because it is an initial-value method4. This  
new approach is shown to have some efficiency to  
solve TPBVP even if  properties of continuity of the 
control variables are not verified (in this case we can 
also use continuation methods to approximate the 
solution). The goal of our method is to view the TPBVP 
as an optimisation problem in order to find the correct 
initial costate conditions which permit us to obtain the 
desired final conditions (7), …, (10). We define the 

optimisation variables as the unknown initial conditions. 
If all the initial state conditions are fixed and if the state 
X is in Rn then the number of optimisation variables is n 
and they are noted λ0

i (i=0, …, n). Generally, anything 
is known about these variables, so the optimisation 
space D is taken rectangular and very large.  For 
instance, we can choose : 

nDDDD ×××= K21                (11) 
 

where Di  (i=0, …, n) are real intervals, which is 
obviously a compact set. Now we must define an 
objective function, a common step in the shooting 
methods, which needs the definition of shooting 
functions on which Newtonian techniques are applied. 
Off course, these shooting functions are built from the 
transversality conditions, so that their minimum 
correspond to the fulfilment of these conditions. For 
instance, in the case of  p first final states fixed and the 
q last ones free (p + q = n), let us define : 
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where )(~ txi  and )(
~

tiλ  (i=0, …, n) are obtained by 

numerical integration of (4), (5) from X0 and λ0. 
 
  The aim of shooting methods is to find the root of F. 
Obviously the following objective shooting function G 
met the previous conditions :  
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  Now the optimisation problem can be formulated, it is 
a minimisation problem where the variables λ0

i=1, …, n  
do not appear explicitly in the objective function. 
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  Solving this the TPBVP is equivalent to find the 
minimum of G for which G = 0. The existence of this 
minimum is proved showing that the TPBVP has a 
solution. If this solution exists then the specific 
minimum exists too. Some sufficient conditions have 
been derived for the existence of the solution of the 
above problem. They are summarised below. Consider 
the general system subjected to the general linear two-
point boundary conditions, 
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Can be associated to (16), (17) an initial value problem 
(18) in the following way, 
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where v = v(s, t) is the solution of the problem (18). 
Clearly, if s* is the root of equation (19), we expect : 
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Definition I : Let the function η(t, Y) be continuous on 
the infinite strip R : a ≤ t ≤ b, with |Y| < ∞, the function 
η is said K-Lipschtizian in Y, uniformly in t, if : 
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Theorem I : Let  η(t, Y) be continuous on the infinite 
strip R : a ≤ t ≤ b, with |Y| < ∞, and satisfy there a 
uniform Lipschitz condition in Y. Then the boundary 
value problem (16), (17) has as many solutions as there 
are distinct roots s = s(µ) of equation (19) . These 
solutions are : 
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the solutions of the initial value problem (18) where the 
variable s equals  s(µ). 
 
  The proof of theorem I is given in Keller4. In practical 
examples all the required proprieties are not necessary 

verified, and it is very difficult to prove that the set of 
solutions of equation (19) is not empty. Theorem II 
prove existence and uniqueness of a solution. This 
theorem is a modification of Keller’s theorem4 for 
particular boundary conditions like the ones generally 
encountered in optimal control problems. The 
expression of these are given by (23) where A is a p × n 
matrix with rank p, B is a q  × n with rank q, p + q = n, 
α is in Rp and β in Rq. 
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With no loss in generality, the matrix A can be 
expressed (Ip, A1) with Ip is the p-order identity matrix 
and A1 is a p × q matrix. Equalities like (23) are derived 
if the function φ in (2) is linear or quadratic with respect 
to the state X. 
 
Theorem II : Let η(t,Y) satisfy on R : a ≤ t ≤ b, |Y| < ∞, 
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then the problem (16), (23) has an unique solution 
whatever α and β. 
 
  So we show that under some properties of η the 
TPBVP has a least a solution, which is obtained at the 
minimum of the function G for which G = 0.  Formally, 
we can express the TPBVP [(2)(5)(7)…(10)] through 
the function η in the following way : 
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  Now that all is well define, we can explain the 
resolution of problem (15). The greatest difficulty 



comes from the expression of the objective function. 
Indeed, the function G is not analytic, and it can not be 
expressed  explicitly in terms of the variables λ0

i=1, …, n. 
  
  That is why, we use in the resolution principle direct 
optimisation methods. These methods needs only 
evaluations of the objective function. The convergence 
rate is off course slower than the convergence rate of 
methods using first or second derivatives.  But direct 
methods do not need continuity properties of the 
objective function. So these methods can solve greater 
class of problems than the others. There exists a lot of 
direct methods : genetic algorithms5, clustering 
methods6, multistart methods… We have chosen to use 
a multistart method. Its principle is to apply a local 
method with a lot of starting points taken uniformly in 
the optimisation space. If the number of starting point is 
sufficiently large then we can consider that the best 
local minimum found is global. We have used two 
different local methods : nonlinear simplex7, 
multireflection simplex7. The first (resp. second) is very 
efficient when the dimension of the optimisation space 
is small (resp. large). The second method is an 
extension of the first, so their principle7 are equivalent. 
But this method is the second level of the global 
resolution of (15). Indeed, the function G can be 
considered as a succession of two different functions G1 
and G2. G1 solves the initial value problem deduced 
from (24), and G2 compute the cost associated to 
function given by G1. So we can write : 
 

 

RRRFG

RRFRG

RRG

GGG

nn

nnn

n

nini

→
→
→

= ==

),(:

),(:

:

))(()(

22
2

22
1

0
,,112

0
,,1 KK λλ

  (25) 

 
where F(R2n, R2n) is the space of functions from R2n to 

R2n. The function G2 is not complicated because it just 
takes the value of the function given G1 by at the time tf 
and produces easily the evaluation of G.  So to solve the 
initial value problem defined from (24), we use 
numerical integration method : a Runge-Kutta method4 
(RKM). The order of the RKM depends  directly on the 
precision of integration required. Usually, the fourth-
order is used. Finally, for each evaluation of the 
objective function, a numerical integration is done, so 
the computing time of the global optimisation may be 
quite high.  
 
  To summarise, the method we propose is made up of 
two levels : the first consists in a numerical integration 
and computing the associated cost, the second level is to 

solve the problem (15) with the evaluations given by the 
first level.  The algorithm can be written : 
 
1. chose randomly in D a starting point λ0

i=1, …, n 
2. apply the local optimisation method : nonlinear or 

multireflection simplex, in which evaluations of G1 
and G2 are used  

3. if a local minimum of G is  obtained  then store it  
4. If the starting point number does not equal a 

number fixed by the user then return to 1. else end. 
 
  All the local minima must be analysed, if and only if 
one of them has a 0 value then the problem (15) is 
solved, else the algorithm must be restarted with a 
greater number of starting points. If the theorem II is 
verified, or if only the existence of a solution is proved 
by theorem I, then a sufficiently large number of 
starting points exists.  
 For each example of the next part, the number of 
starting points used and the value of the minimum 
obtained will be presented. 
 

Numerical examples 
 
  In this part three examples will be solved. The first is 
taken from an article of Herman and Conway8, the 
second is a modification of the first, and the final 
example is a problem of minimum consumption for a 
low-thrust Earth-Mars transfer. We have chosen these 
three examples in an increasing order of complexity to 
show the efficiency of our algorithm.  
 
  The first example is an orbit transfer problem in which 
the rocket  engine provides a constant acceleration to 
the spacecraft. Motion is confined in a single plane. The 
spacecraft is described with (r, θ)  the polar coordinates, 
the origin is located at the centre of mass of the 
attracting body. The only control variable is the thrust 
angle β is measured relative to the local horizontal. 
Finally, the mass of the spacecraft is constant and A 
represents the thrust divided by the mass. The state 
variables are X = {r, θ, vr, vt}

T and the evolution system 
is given by :    
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  We normalise length (LU) and time units (TU) with 
which the gravitational constant µ is unity. The 
acceleration magnitude A, the initial time t0, and the 
final time tf are chosen to be 0.01, 0.0, and 50.0 
respectively. For this problem there is no integral term  
in the cost (1), and the expression of the function φ is (it 
represents the specific energy at the final time) : 
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  Finally, the initial conditions constraints for the state 
correspond to a circular orbit at a radius of 1.1 LU, 
resulting in X0 = {1.1, 0.0, 0.0, 1/√1.1}T. For this system 
the costate variables are λ = {λr, λθ, λvr, λvt}

T, and the 
expression of the Hamiltonian is : 
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The costate equations given by (5) become :  
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  The final costate conditions are given by : 
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  We conclude immediately that for this problem the 
equalities (23) are not verified because the function φ is 
not linear or quadratic with respect to the state X. So we 
can not use the theorem II. But the variable r is assumed 
to be great than 1.0, because 1.0 is the attracting body 
radius.  The magnitude of the spacecraft velocity is 
assumed to be less than the velocity obtained when r 
equals 1.0 plus the velocity due to the thrust. So the 
states function f is continuous and bounded when the 

thrust angle is assumed to be in ] -π/2 ; -π/2 [. The 
expression of this angle is : 
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  Under this hypothesis the function associated with the 
costate variables is continuous on the interval of 
evolution. Then the global function η verifies properties 
of continuity, so we can try to find a solution but the 
uniqueness of it is not proved. The objective function G 
is : 
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Figure 1 : Optimal trajectory  
 

 

Figure 2 : Optimal thrust angle 



 
  There are only three optimisation variables because the 
final costate conditions imply directly that λθ equals 0 
for all t in [ t0 ; tf ] . The optimisation space is given by 
(33) and the number of starting points is 50. 
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  The nonlinear simplex have found 33 times the same 
minimum and its value is 2.07.10-16. The optimal 
trajectory is represented in Figure 1 and the optimal 
thrust angle in Figure 2. Table 1 gives initial and final 
state and costate conditions. 
 

Table 1 : Initial and final conditions 
 t0 = 0.0 tf = 50.0 
r 1.1 4.316 
θ 0.0 20.086 
vr 0.0 0.156 
vt 0.953 0.498 
λr -0.436 -5.36.10-2 

λθ 0.0 0.0 
λvr -2.32.10-3 -0.156 
λvt -0.523 -0.498 

 
  The next example is a modification of the preceding 
one. We solve this example to show the efficiency of 
the algorithm even if  the optimal trajectory is a spiral 
with many revolutions. So the position angle θ will take 
very high values. The new values of the constant A and 
tf are 0.001 and 500.0 respectively. The problem is that 
the spacecraft must reach a circle with a fixed radius in 
a finite time. All the differential equations and the initial 
conditions are not modified and the final conditions 
become :  
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  With the same number of starting as before, the 
optimisation space has to be reduced because the 
problem is very sensitive. The expression of the 
optimisation space is chosen : 
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  A local minimum has been found and its value is : 
7.7.10-7. Figure 3 represents the optimal trajectory and 
Table 2 the initial and final conditions. This example 
shows that our approach is able to find the solution of 

this optimal control problem even if  the optimal 
trajectory presents many revolutions. 
 

Figure 3 : Optimal trajectory 
 

Table 2 : Initial and final conditions 
 t0 = 0.0 tf = 500.0 
r 1.1 4.0 
θ 0.0 202.347 
vr 0.0 0.141 
vt 0.953 0.470 
λr -8.1.10-4 -9.77.10-5 

λθ 0.0 0.0 
λvr -1.0.10-4 -7.16.10-4 
λvt -1.0.10-4 -5.05.10-4 

 
Remark 1 : for this example the boundary conditions 
can be written like conditions (23). Unfortunately,  the 
matrix Q (theorem II) associated to them is singular. So 
the uniqueness of a solution is not proved. 
 
  The last example presented is a low-thrust Earth-Mars 
transfer with minimum consumption criterion. This 
example is given in Coverstone-Caroll and Williams3. 
This problem is a two-body problem (spacecraft - Sun). 
The spacecraft has a nuclear propulsion system with a 
constant power source of 450 kW. The spacecraft engine 
has a constant specific impulse c of 4860 s. The initial 
mass is 10000 kg. The spacecraft departed on Earth on 
November 19, 1994 with Earth’s position and orbital 
velocity. A rendezvous with Mars occurs 184 days later 
on May 22, 1995. The state variables are the position r 
in R3, the velocity v in R3 and the mass m in R. The 
control variables are U in R3, a unit vector defining the 
thrust direction and δ  a variable representing the engine 
state, δ equals 1 if the engine is on, 0 else.  
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  The state differential equations are : 
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  The constant T is the thrust magnitude computed with 
the power source and the specific impulse. µ is the sun 
gravitational parameter. The problem can be formulated 
as : 
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  The costate differential system is obtained : 
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and the expression of the optimal control : 
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  The optimal control is piecewise continuous, that 
makes the problem very difficult to solve.  The number 
of optimisation variables is 7, and the expression of the 
optimisation space is : 
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With a number of starting points of 500, the value of the 
minimum found for G is 2.37.10-13, so we can conclude 
that the corresponding point is indeed the solution of 
problem (38). Figure 4 represents the optimal trajectory 

in the ecliptic plane, the engine state is shown in Figure 
5 and finally, the mass variation is presented in Figure 
6.  
 

Figure 4 : Optimal trajectory in the ecliptic plane 
 

Figure 5 : engine state 
 

Figure 6 : mass variation 



  Table 3 presents the state and costate initial and final 
conditions. The units are 106 km for the position and 106 
km/day for velocity, the mass is expressed in kg. 
 

Table 3 : Initial and final conditions 
 11.19.1994 05.22.1995 

rx 81.62 -244.14 
ry 123.28 -27.53 
rz 1.52.10-3 5.43 
vx -2.19 0.31 
vy 1.41 -1.90 
vz 1.41.10-5 -4.75.10-2 
m 10000.0 7184.05 
λrx 2.18 -50.09 
λry 76.35 21.68 
λrz -1.35 5.07 
λvx -2008.75 3716.4 
λvy 4046.58 -1438.58 
λvz 361.22 -351.96 
λm 0.55 1.0 

 
  The optimal scenario is composed by three periods : 
the first is a burning period (the engine is on), during the 
second the engine is off, and the last is a burning period. 
The duration of  the total burning period is not 
predominant then we can conclude that the transfer time 
is greater than the minimum transfer time. We find 
exactly the same results than Coverstone-Caroll and 
Williams3 (VARITOP results3). To find these results the 
value of the thrust efficiency variable (it permits to 
compute the thrust magnitude) is taken to 0.761014. For 
this example the results have been found with the 
nonlinear simplex, but the multireflection simplex can 
be used too. Finally, to prove the existence and the 
uniqueness of a solution, we can apply the theorem II on 
each part where the control is continuous defining 
formally a set of TPBVP. 
 
Remark 2 : notice that the optimal point is not in the set 
(41). In fact only the starting points must be in, and the 
search is extended outside the initial research domain. 
 

Conclusions 
 
  An optimisation approach for computing solutions of a 
large range of TPBVPs has been developed. This 
technique consists in considering the initial costate 
variables as the optimisation variables in an 
optimisation problem defined from the transversality 
conditions. To solve it, direct local optimisation 
methods are used (only cost function evaluations are 
required) so solutions can be found even if the control 
variables present discontinuities. A multistart technique 

permits to try to find the global optimum and to 
consider a large optimisation space what does not need 
the a priori knowledge of the region of convergence of 
the optimum. Theoretical issues about sufficient 
conditions have been also presented but it is very 
difficult  to verify them in practical cases, because 
functions in the differential models do not respect the 
desired properties of continuity and boundedness. The 
three examples developed show the efficiency of the 
approach on different categories of problems. Indeed, 
with a sufficiently large number of starting points, for 
each example the global optimum has been found.  
 
   Interplanetary low-thrust transfer problems form a 
very interesting class of optimal control problems. 
Indeed, the example presented in this paper is a single 
transfer between two planets with a fixed transfer time. 
More complex trajectories can be analysed : with the 
use of planets gravity, free initial and final times which 
needs a very precise analyse of the planets ephemeris… 
Future numerical experiments  of this approach will be 
done on  this type of complex trajectories. 
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