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Abstract Subscripts

Problems related to orbital transfers are of
considerable important& Considering non-coplanar
orbits, it is particularly important to minimizeehuel
expenditure necessary for a specific plane chasigee
this kind of maneuver is the main fuel consumere Th
method developed and presented here allows theehoi
of the orbital regions where the impulses can heieqg.
So, the contribution of this paper is to develop,
implement and test a new set of equations to sihige
problem of the minimum fuel bi-impulsive maneuver
where it is possible to include constraints
considerations, such as impulses positions resingt

NFP@~™X-Hm>

initial orbit

final orbit

transfer orbit

normal component
radial component

= transversal component
= first impulse

= second impulse

Introduction

e.g., maneuvers been performed only in visibleomegi

from a given groundstation.

The solution of the spacecraft bi-impulsive transfe
between two elliptical and non-coplanar given arbit
problem, with minimum fuel consumption under a

Key words: Orbital maneuvers, fuel optimization, Keplerian dynamics was found. A numerical algorithm
Keplerian field.

e = eccentricity

H = angular momentum

i = inclination

r = magnitude of the position vector

r = position vector

S = unit vector normal to the orbital plane

t = unit vector normal to the transfer plane

\% = velocity

X, Y,z =reference system unit vectors

¢ = true anomaly

A = angle between the transfer and the final
orbits

U = gravitational constant (398600.64 ¥seé
for Earth)

o) = transfer angle

«w = perigee argument

Q = longitude of the ascending node

( = angle between the transfer and the initi

Nomenclature

orbits

was developed for fast practical use to obtain the
minimum velocity increment needed to perform this
kind of maneuver. It was supposed that the unique
forces considered by the system dynamics are the
spacecraft propulsion forces (instantaneous) ard th
Earth's gravitational attraction (assumed as a tpoin
mass).

The problem is to obtain a Keplerian transfer orbit
between the given initial and final non-coplanabits:.
This maneuver should be performed in a such waty tha
the addition of the two magnitudes of the impulses
applied be a minimum.

Problem Formulation

As the initial and the final orbits are given, figebital
elements of each one are known. They are the semi-
major axis, eccentricity, inclination, perigee argnt
and longitude of the ascending node. The first tagtk
obtain the two unit normal vectors of each orbihisT
can be done by arbitrarily choosing two valuestfer
true anomaly (called points 1 and 2) and obtairthrey

al|mit vectorsS, andS; from the following equations:
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(D) With the two vectorsr; and r,, it is possible to
‘QB X rgg‘ calculate the transfer orbit inclination, longitud&the
ascending node and the angle that represents the
To define the transfer orbital plane it is necegdar addition of the perigee argument and the true ahoma
specify the start and the end transfer positiortarsc The following equations are used:
This could be done by assuming the start and tlde en

true anomalies. It is important to note that these  cos{; )=t[z, cosQ;)=M [x (5)
anomalies refer to their respective orbital plased, so,

they are angles on different orbital planes. Thedees ‘M

can be varied on each complete orbit {® 360) by cos@, +@ )= (zx j )
chosen steps to obtain the couple of true anomtias T ‘ ‘[]]M| |z X t|

minimize the fuel consumption establishing the w@ibi
places to apply the impulses. It could be chosenan
more subintervals on the regiohtd 360 of each orbit,
to represent the possible Vvisibility maneuver
constraints.

In other words, first the problem of minimum fuel
transfer between two fixed points (one at the ahidind
the other on the final orbit) will be formulated dan
solved and then these two points will be circulabgd
the orbits involved to obtain the minimum consurmpti
transfer.

With the initial and final position vectors defingtlis
possible to obtain the transfer angle between the§
vectors:

The other transfer orbit elements could only be
Qetermlned when the fuel minimization problem is

olved.

As the model used here consider bi-impulsive
transfers, the velocity variation must be split timo
parts: one refers to the first impulse applied be t
initial orbit and the other one refers to the seton
impulse applied on the transfer orbit to achieweefthal
o

The radial, transversal and normal velocity
mponents at the initial orbits projected on tamdfer
plane are:

uo
cos(o):‘rrl‘[d?‘ @) VrlT:H_leLSIn((pl)

= Hiel[1+ cos(®, ﬂ Ocos( ) 7
1

The unit vector normal to the transfer plane can beVelT
calculated by:
Viar =61+ cosfp, | Csing )
nxr H,
t= —‘r T ‘ (3)
The velocity components after the first impulsetios

L e L transfer orbit are:
It is important to note that if in this step thectarsr;

and r, are collinear, there is a singularity. For this

reason, vectors very close to this condition aré no \/ :Lersin((p )

satisfactory for the method developed here. This i m

restriction imposes constraints to the method, ithabt u

able to solve special geometry problems (Hohmann VA —[1+eTcos((pT1 )] (8)
transfer, bi-elliptical, etc.). But, it should bake into

account that this class of problems presents imatedi
solutions and doesn't need to be solved by theosexp
method.

The next step is to calculate the angle between theSo, the first impulse can be determined as a fancti
initial and the transfer orbits and the angle betwthe of three unknown: transfer orbit angular momentum,
transfer and the final orbits: eccentricity and the true anomaly of the first itsgu

The equation is:

cos)=S,@, cosp)=S;It 4)

Vir, =0
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2 : 2 =
+(Vgr1 — Va1 [£0sQ))* + (Vg Bin©)) Ql HZ a7)
The same approach can be developed to the second
impulse. So, this impulse can also be determined as [1+e2 [cos(p, i
function of the same three unknown variables. Tima! f 2= H?2 (18)
equation is: 2
2 2 Now the velocity variation is a function only ofeth
AV2 = (Vr2 _VrTz) + true anomaly of the first impulse. Several methoals
2 . 2 (10)  pe employed to find the minimum value of the fuowti
+ (ng [cos() —Vgrz) + (ng E'Bln(/])) of a single variable. In this work, it was usediadtion

minimization routind that found the value of the true
The problem now can be reduced to the minimizatioAnomaly of the first impulse which makes the veioci
of the total impulse: variation a minimum. With this value, it is possiltb
calculate the others transfer orbit elements, sash
semi-major axis, eccentricity and perigee argumsaot.
AV(HT’eT’(pTl):‘A\/l‘+‘A\/2‘ (11) the transfer orbit and the two impulses magnitude,
direction and location are determined.
subject to two constraints, that express the faat the
two vectorsr; andr, have the same values, independent
if they are calculate on the transfer orbit or loa initial Results
and final ones. These constraints can be written as
A transfer between two elliptical non-coplanar tsbi
1 u U with a slight variation in all orbital elements is
. —F[1+e1cos@l)] —F[l*'eT cos@r1)] (12)  presented, as an example of the method descritiesd. T
1 1 T initial orbit was: semi-major axis = 12030.0 km;
eccentricity = 0.02000; inclination = 0.00873 réyigee
1 u M argument = 3.17649 rd; longitude of the ascendoden
E_H_g[“ez cos@,)] _H_%[HGT cos@ri+9)l  _75.00000 rd. The final orbit was: semi-major axis
11994.7 km; eccentricity = 0.01600; inclination =
(13) 0.00602 rd; perigee argument = 3.05171 rd; longitofd
the ascending node = 0.15568 rd. The minimum fuel

These cons_traints eqL_Jations are manipula_te_d to 8nsumption transfer orbit was found to be: senjema
transformed into equations for the eccentricity and .c - 12038 1 km- eccentricity = 0.01945; inclioat=

angular momentum as a function of the true anorogly 0.00865 rd: perigee argument = 3.16620 rd: longitof

the first impulse. The equations are: the ascending node = 0.01215 rd; true anomaly @f th
first impulse = 4,03754 rd; true anomaly of thecset

Q-1 impulse = 5,91049 rd. The first impulse velocity

€ (Pr) = cos@,, )~ Qcos¢,, +0 ) (14) " variation was 0.00226 km/sec and the second one was
! T 0.01997 km/sec. The total velocity variation was
- 0.02223 km/sec.
H22 l+e l]l:os((pl If one consider restrictions on the application inses
Q=—73 (15) points there could be an increase on the fuel
H; |1+e, [Gos(p, consumption. The same orbital transfer of the jnevi
example with this kind of constraint has a différen
cos@-, ) result. Considering that the true anomaly of thst fi
1-————1tt impulse at the initial orbit can vary only betwe@and
cos(@;, +0) 1.5 rd, and the true anomaly of the second impatse
H: (¢r) = cos@., ) (16)  the final orbit between 2.0 and 3,2 rd, the redfaltghe
Q1 bt LA E Q2 velocity variation were: first impulse velocity vation

cos(@;, +0) was 0.01414 km/sec and the second one was 0.00874



km/sec. The total velocity variation was 0.02288
km/sec. It represents a slight increase in the fuéBchulz, W., Transferéncias Bi-Impulsivas entre @i
expenditure, that can be larger in different sitret. Elipticas ndo Coplanares com Consumo Minimo de
Combustivel, M.S. Thesis Space Mechanics and
Control Division, National Institute of Space Raska
Conclusions (INPE), Séo José dos Campos, SP, Brazil, Mar. 1997.

An analytical formulation was derived and
implemented, based on a method derived by Prado and
Broucké to coplanar orbits, to solve the problem of bi-
impulsive orbital transfers between elliptical non-
coplanar orbits in a Keplerian dynamics problemhwit
minimum fuel consumption. The results to numerous
tests here performed are in agreement with theltsesu
obtained by a method derived from the work of
Altmar®, implemented and tested by P&uao INPE.
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