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Abstract 

Satellite orbit determination is often interrupted during 
manoeuvres and their effects are solely taken into 
account by increasing the standard deviation of the 
estimated orbital parameters. If the manoeuvre lasts a 
long time, this increase can be important.  A more 
accurate estimation of the orbital parameters can be 
provided by using measurements collected during 
manoeuvre, if the dynamic model of the satellite 
includes the manoeuvre. In order to do so, two filtering 
approaches have been tested. The first one is based on a 
classical Kalman filter with change on the dynamic 
when the manoeuvre is detected. The second one is 
based on Generalised Pseudo Bayesian Algorithm which 
is a multi-model filtering. This algorithm aims at 
automatically detecting occurrences of dynamic changes 
The performances of these algorithms have been 
compared for a north-south geostationnary manoeuvre 
with electrical thrusters. The simulations have shown the 
abilities of the multi model filter algorithm to detect the 
beginning and the end of manoeuvre and also to perform 
orbit determination during the manoeuvre. 
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Introduction 

Applications requiring quasi-real time orbit 
determination with good accuracy make it necessary to 
take into account manoeuvres. Satellite orbit 
determination is often interrupted during manoeuvres 
and their effects are solely taken into account by 
increasing the standard deviation of the estimated orbital 
parameters. If the manoeuvre lasts a long time, this 
increase can be important. A more accurate estimation 
of the orbital parameters can be provided by using 
measurements collected during manoeuvre, if the 
dynamics model of the satellite includes the manoeuvre. 
In order to do so, two filtering approaches are tested. 
The first one is based on a classical Kalman filter with 
change on the dynamic when the manoeuvre is detected. 

The second one is based on Generalised Pseudo 
Bayesian Algorithm which is a multi-model filtering. 
We tested the abilities of these algorithms during a 
geostationary North-South manoeuvre with electrical 
thrusters.  

Acronyms 

mi : ith model ; 
M = {m1, ..., mn} : set of the models; 
mk : model at time tk; 
tk : discrete time of the simulation; 
Xk : state at time tk; 
yk : measurement at time tk; 
Yk : the set of measurement up to time tk; 
Vk and Wk : gaussian noises; 
Sk= {m1, ..., mk} : sequence of models from t1 to tk; 
Π =[p(mi/mj), i,j=1 to n] : transition matrix; 
p(mi/mj) : probability to jump from models mj to mi. 

Multi-model techniques 

Markovian approaches 

The basic principle of multi-model techniques1 is to 
manage several Kalman filters, each based on different 
dynamic and observation models. Each filter estimates 
the state of its model with measurements. The true state 
of the system is a weighted sum of the filtered states. 
The weightings are computed as the a posteriori 
probabilities of the different models. 

In this study, we only consider the discrete time 
approach. Among the various multi-model techniques2, 
Markovian methods present the advantages of dealing 
easily with jumps between model modelled as Markov 
process. 

The set of models, M={m1, m2, ..., mn}, is considered 
as the set of the states of a discrete Markov chain. The 
jumps between models are modelled by a discrete 
Markovian process, characterised by: 

- the matrix Π of probabilities of transition between 
models (Π=[p(mi/mj), i,j=1 to n]); 

- the initial distribution of the different models. 



Each state model is described as : 

Xk = F(mk,mk-1).Xk-1 + G(mk,mk-1).Vk-1 (1) 
yk = C(mk) + D(mk).Wk, (2) 

where Xk is the state at time tk, 
 yk is the measurement at time tk, 
 Vk and Wk are gaussian noises 
 F,G,C,D are matrix. 
The aim of a multi-model algorithm is to estimate the 

hybrid state [Xk, mk] at time tk. This hybrid state is 
defined by the probability density of Xk, p(Xk/Yk) and 
the probability of each model p(mk/Yk), where Yk is the 
set {y1, ..., yk}. 

It exists an optimal solution to this problem. 

Optimal solution 

We are seeking for the best estimates, in the sense of 
the maximum a posteriori probability, of p(mk/Yk) and 
p(Xk/Yk) 

We considered the sequence Sk= {m1, ..., mk}, which is 
a sequence of models since the time t1 up to the time tk. 
The solution of equations (1) and (2) is defined by: 

p(Xk/Yk) = 

  Sk

∑ p(Xk/Yk,Sk).p(Sk/Yk) (3) 

p(mk/Yk) = 

  Sk−1

∑ p(Sk/Yk), with Sk={Sk-1,mk} (4). 

p(Xk/Yk,Sk) is given by a Kalman filter with the fixed 
sequence of models Sk. 

p(Sk/Yk) is determined recursively, using nk Kalman 
filters : 

  
p(Sk / Yk) =

p(yk /Sk,Yk−1).p(mk /mk− 1).p(Sk− 1 / Yk−1)
p(yk /Yk− 1)

 (5) 

where p(yk/Sk,Yk-1) is provided by the Kalman filter 
under the hypothesis Sk. 

Sub-optimal approaches 

In fact, this optimal solution needs nk Kalman filters in 
parallel. In order to reduce the number of Kalman filters, 
different sub-optimal methods exist : pruning methods 
and merging methods. 

The pruning methods keep a reduced number of 
sequences at each time. These sequences can be chosen 
for their high probability of occurrence (Detection and 
Estimation Algorithm3-4) or generated using a random 

process with known probability density function 
(Random Sampling Algorithm5). 

The merging methods consist in forgetting the past 
beyond some horizon by merging several sequences into 
one. Contrary to the pruning techniques, there is no loss 
of information, but a compression of the information. 
We keep only limited sequences. The merging may be 
done after the estimation by the Kalman filters 
(Generalised Pseudo Bayes Algorithm : GPBA1-6-7-8-9-10) 
or before (Interacting Multiple Models11). The GPBA 
can be defined with different length of the merging 
sequences. The nth-order GPBA is defined with merging 
sequences of  length n-1. Comparison of these 
algorithms12 leads us to choose the 2nd-order GPBA. 

2nd order Generalised Pseudo-Bayes Algorithm 

The algorithm can be split into three steps : 
- the extension step; 
- the filter step; 
- the merging step. 
Figure 1 shows these three steps, in case of system 

with two models (M={m1, m2} 
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Figure 1 : scheme of 2nd-order GPBA 

In this case, the algorithm uses 4 filters in parallel. 

Extension step 

The aim of extension step is to take into account the 
jump between models. After this step, the sequences are 
two models long : the previous model and the new 
model. 

For the discrete part of the state mk, this step uses the 
transition matrix Π: 

p(mk-1,mk/Yk-1) = p(mk/mk-1).p(mk-1/Yk-1) (6) 

For the continuous part of the state Xk, the extension 
reflects possible changes in the dynamic model that are 
translated as modifications of the probability density 
function p(Xk-1/Yk-1,mk-1), characterised by its mean and 



covariance matrix (we make the hypothesis that the state 
Xk follows a gaussian law). We obtain a new probability 
density function p(Xk-1/Yk-1,mk-1,mk). 

Filter step : 

During the filter step, we use, for each state provided 
by the extension step, a classical Kalman filter in order 
to predict the new state at the following time tk and 
update its values according to the new measurements, 
both for continuous and discrete part of the state: 

p(Xk/Yk-1,mk-1,mk) = 

 

  Xk

∫ p(Xk/Xk-1,mk).p(Xk-1/Zk-1,mk-1,mk)dXk (7) 

p(Xk/Yk,mk-1,mk) = 

      p(yk/Xk).p(Xk/Yk-1,mk-1,mk)        (8) 

 

  Xk

∫ p(yk/Xk).p(Xk/Yk-1,mk-1,mk).dXk 

p(mk-1,mk/Yk) = 

         p(yk/Yk-1,mk-1,mk).p(mk-1,mk/Yk-1)        (9) 
 

  mk

∑
m k−1

∑ p(yk/Yk-1,mk-1,mk).p(mk-1,mk/Yk-1) 

Merging step : 

Next, we merge all the states provided by sequences 
which end with the same model. 

So, we have for the state : 

p(mk/Yk)=

  m k−1

∑ p(mk-1,mk/Yk) (10) 

p(Xk/Yk,mk)=

  m k−1

∑ p(Xk/Yk,mk-1,mk).p(mk-1/Yk,mk) (11) 

where p(mk-1/Yk,mk) is given by : 

p(mk-1/Yk,mk) = p(mk-1,mk/Yk)/p(mk/Yk) (12) 

This step provides also the true estimate of the 
continuous part of the state, which is a weighted sum of 
the state for each model : 

p(Xk/Yk) = 

  m k∈M
∑ p(Xk/Yk,mk).p(mk/Yk) (13) 

Orbit determination during north-south manoeuvre 
of a geostationary 

Description of the simulation 

We have studied the orbit determination of a 
geostationary satellite during a north-south manoeuvre 
with a ION thruster. The manoeuvre parameters are the 
following : 

Duration = 2 hours 
Thrust = 20 mN (± 10 %) 
∆V = 0,13 m/s on the cross-track axis (± 10 %) 
The orbit determination is made by 4 ground stations 

with pseudo-range measurements. We simulate 
synchronisation error for the station clocks and for the 
geostationary clock. Moreover, we include the 
atmospheric degradation on the signal : ionospheric and 
tropospheric delay, multi-path. The global error is 
between 1 to 3 m, depending on the elevation angle. The 
cadence of measurement is 15 minutes. 

For orbit determination, the manoeuvre acceleration is 
estimated using these initial values : 

radial acceleration = 0 m/s (σ = 10-6 m/s) 
along-track acceleration = 0 m/s (σ =10-6 m/s) 
cross-track acceleration = 0 m/s (σ = 2 10-5 m/s) 
We want to compare the performances of classical 

filtering with sub-optimal Markov approach to perform 
orbit determination during manoeuvre, without 
knowledge of its date. We first perform a simulation 
with exact knowledge of the time of manoeuvre, which 
will be the reference. 

Orbit determination with exact time of manoeuvre 

The first simulation results are obtained using the 
Kalman filter when we know exactly the instant of 
beginning and end of the manoeuvre. 

Figure 2 shows the error and standard deviation of the 
estimation of the position for radial axis, along-track 
axis and cross-track axis. The manoeuvre is represented 
as a step signal. We see that the main error occurs on the 
cross-track axis. After the manoeuvre, we find again the 
same level of standard deviation after 3 hours. 

We can see a bias on the along-track error. This bias is 
due to synchronisation biases on the station clocks, 
which are not observable by the filter. 
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Figure 2 : error of localisation - first simulation 

Detection of manoeuvre with Kalman filter 

The second simulation consists in estimating the time 
of the manoeuvre. In order to detect the beginning of the 
manoeuvre, we use detector based on residuals. It is 
possible to survey directly each residual, or a 
combination of residual parameters (for example  
γT.Γ-1.γ, where γ is the residual vector and Γ the 
covariance matrix of the residual). In order to limit the 
sensitivity to false alarm, it is also possible to consider 
sliding window as in tests proposed by Bar-Shalom13 : 

Gn = α.Gn-1 + γT.Γ-1.γ > λ (14) 

where α is a forgetting factor and λ is computed 
according to a false alarm probability. The mean value 
of the detector Gn is p/(1-α), where p is the number of 
measurements. So, p/(1-α) can be considered as the 
window width. We call G(1) the detector with a window 
width of 1 (α=0), G(2) the detector with a window width 
of 2 (α=0.5) ... The detector follows a 1/(1-α).χ2 law 
with p degrees of freedoms. 

Figure 3 shows the detection of the manoeuvre for the 
G(1) detector and with a threshold corresponding to 
99%. The slope of the curve at the detection time is used 
to estimate the instant of manoeuvre. 

An optimistic estimation could be an error of 15 
minutes for the start of the manoeuvre. 
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Figure 3 : detection of the beginning of manoeuvre 

Now, we must determine the end of the manoeuvre. 
Figure 4 shows the results for the G(1) detector. We can 
consider we have a fairly good estimate of the end of 
manoeuvre. 
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Figure 4 : detection of the end of manoeuvre 

We can compare the obtained localisation accuracy 
with the one obtained through the first simulation. 

Figure 5 shows the radial, along-track and cross track 
errors and standard deviation. After the manoeuvre, 
there is a bias on the estimation of radial and cross-track 
errors due to a bad estimation of the manoeuvre 
accelerations. Moreover, the ratio between cross-track 
error and its standard deviation shows a divergence of 
the filter. 
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Figure 5 : localisation error with detection of 
manoeuvre 

Simulations with a multi-model filter 

Finally, we use the 2nd-order Generalised Pseudo-
Bayesian Algorithm to perform orbit determination 
during the manoeuvre. We begin the simulation with the 
same estimate and covariance matrix as in the previous 
simulations. We have two models : 

1) model without manoeuvre (m1) 
2) model with a manoeuvre (m2). 
We consider the same initial estimate and standard 

deviation as in the Kalman filter simulations for the 
manoeuvre accelerations. These values are used at each 
time in the extension step of the algorithm when we 
consider the jump between model m1 and model m2.. 

The initial probability of the models are : 
p(m1) = 0.99 
p(m2) =0.01 

The transition matrix is : 
  

0,99 0,01
0,01 0,99
 
 
 

 
 
  

These values mean that we give an advantage to the 
phase with constant model. 

Figure 6 presents the probability of the manoeuvre. 
The detection of the manoeuvre appears clearly in the 
figure. The filter estimates the time of manoeuvre with 
an error greater than in simulation 2 (about one hour). 

 

0 2 4 6 8 10 12
0

0.25

0.5

0.75

1
Manoeuvre Probability

Time (h)  

Figure 6 : probability of the manoeuvre 

But this bad estimation doesn't degrade the 
performance of localisation of the satellite (see Figure 
7). We find the same level of accuracy after 4 hours. 
This good behaviour is due to the fact that the multi-
model filter uses the manoeuvre model, after the end of 
manoeuvre, in order to improve the localisation 
according to the measurements. 

If we compare with Figure 2, we see only slight 
differences. In fact, as at each time all possible jump 
between models are considered, the increase of the error 
between two measurements is slightly greater than in the 
first simulation. This is particularly obvious on the 
cross-track error at the end of the simulation. 
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Figure 7 : localisation errors with multi-model filter 



Conclusions 

The multi-model filter shows good capability to 
perform orbit determination during manoeuvre. The 
tuning of the parameters is easy, and the performances 
are similar as those obtained by a Kalman filter with a 
perfect knowledge of the time of manoeuvre. 

Nevertheless, a multi-model filter can not replace a 
Kalman filter for the nominal phase of the orbit 
determination. Indeed, as the two models are taken into 
account all the time, it is impossible to perform good 
prediction of the orbit. This technique could be used 
when a manoeuvre occurs and provide a good estimation 
after the manoeuvre for a Kalman filter. 
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