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The second one is based on Generalised Pseudo
Abstract Bayesian Algorithm which is a multi-model filtering

, , L , ) We tested the abilities of these algorithms during
Satellite orbit determination is often interruptieting  geostationary North-South manoeuvre with electrical
manoeuvres and their effects are solely taken in{fsters.

account by increasing the standard deviation of the
estimated orbital parameters. If the manoeuvres last Acronyms

long time, this increase can be important. A more

accurate estimation of the orbital parameters can b m': ith model ;

provided by using measurements collected duringM ={m?, ..., nf} : set of the models;
manoeuvre, if the dynamic model of the satellite my: model at timeg

includes the manoeuvre. In order to do so, twerfitig t. : discrete time of the simulation;

approaches have been tested. The first one is lmsad X, : state at timet

classical Kalman filter with change on the dynamic y, : measurement at timg t

when the manoeuvre is detected. The second one ¥ : the set of measurement up to tige t
based on Generalised Pseudo Bayesian Algorithmhwhic V and W : gaussian noises;

is a multi-model filtering. This algorithm aims at S={mg, ..., m}: sequence of models fromtb t;
automatically detecting occurrences of dynamic gean M =[p(m/m), i,j=1 to n] : transition matrix;

The performances of these algorithms have beerp(m/m') : probability to jump from models’rto .
compared for a north-south geostationnary manoeuvre

with electrical thrusters. The simulations havevahthe Multi-model techniques

abilities of the multi model filter algorithm to bt the
beginning and the end of manoeuvre and also toperf

orbit determination during the manoeuvre. Markovian approaches

The basic principle of multi-model techniglés to
'’ manage several Kalman filters, each based on élifter
dynamic and observation models. Each filter estsat
the state of its model with measurements. The dtate
of the system is a weighted sum of the filteredesta
Applications  requiring  quasi-real time orbit 1Ne weightings are computed as the a posteriori
determination with good accuracy make it necesgary Probabilities of the different models. _ _
take into account manoeuvres. Satellite orbit N this study, we only consider the discrete time
determination is often interrupted during manoesvredPProach. Among the various muiti-model technigues
and their effects are solely taken into account bilarkovian methods present the advantages of dealing
increasing the standard deviation of the estimatbdal  €asily with jumps between model modelled as Markov
parameters. If the manoeuvre lasts a long times thprOCEss. _ _
increase can be important. A more accurate estmati 1he set of models, M={f mz’_ o N}, is considered
of the orbital parameters can be provided by usir® the set of the states of a discrete Markov cﬁ'et_la
measurements collected during manoeuvre, if tH#MPS between models are modelled by a discrete
dynamics model of the satellite includes the mameeu Markovian process, characterised by:
In Order to do so, two f||ter|ng approaches areems - the matrixl_ll Of probabilities Of transition betWeen
The first one is based on a classical Kalman fikgh ~ models (1=[p(m/n), i,j=1 to n]);
change on the dynamic when the manoeuvre is detecte - the initial distribution of the different models.
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Introduction



Each state model is described as : process with known probability density function
(Random Sampling Algoritht
Xy = F(MoMe1) Xk + G(MaMka)- Vi (1) The merging methods consist in forgetting the past
Yk = C(my) + D(my). W, (2)  beyond some horizon by merging several sequent@s in
one. Contrary to the pruning techniques, thereitors
! ) of information, but a compression of the informatio
Yk is the measurement at time t We keep only limited sequences. The merging may be
Vi and W, are gaussian noises done after the estimation by the Kalman filters
F.G,C,D are matrix. o _ (Generalised Pseudo Bayes Algorithm : GEBA®9
The aim of a multi-model algorithm is to estimate t o pefore (Interacting Multiple Modéf§. The GPBA
hybrid state [X, m] at time . This hybrid state is can pe defined with different length of the merging
defined by the probability density ofkXp(Xd/Y«) and  sequences. The nth-order GPBA is defined with mergi
the probability of each model pififi), where X is the  gequences of length n-1. Comparison of these

set{y, .. W _ _ algorithms? leads us to choose the 2nd-order GPBA.
It exists an optimal solution to this problem.

where X is the state at timeg,t

i _ 2nd order Generalised Pseudo-Bayes Algorithm
Optimal solution

) , ) The algorithm can be split into three steps :
We are seeking for the best estimates, in the sense _ ihe extension step;

the maximum a posteriori probability, of pfvi) and  _ e filter step;
PXi/Y) - the merging step.

We considered the sequenge §m, ..., m}, whichis  Figure 1 shows these three steps, in case of system
a sequence of models since the timept to the timewt  \yith two models (M={rd, P}
The solution of equations (1) and (2) is defined by _ ) _
tvi Extension t«i  Filter t«  Merging t«

POGIY) = D POXIYiS)-P(SIYY) (3) XialYiea, M, m° - Xid Yo, m’

S Xial Y ier,m* XY, mt
~—— Xk»l/Yk-I. ml. m2 Xk/Yk,ml, m2

PMIY) = D p(SIY, with S=(Skiamd (4). AN

S-1 Xical Yiea, %, m* 2 1
Xk»l/Yk-I. m2 k-2/ T k-1 Xk/Yk,m ,m

XY ,S) is given by a Kalman filter with the fixed o u
sgcguénckesg)f mogdels<.S ’ w: . Xk/Yk,W °
0O———0

p(SJY) is determined recursively, using Kalman _
filters : Figurel: scheme of 2nd-order GPBA

Xk/Yk, m2

D /Se, Y r)-pmy /M ) p(Se 1/ Vi) 5) In this case, the algorithm uses 4 filters in datal
PV /YD

P&/ Yi) =
Extension step

where p(y/S.,Yk.1) is provided by the Kalman filter

) The aim of extension step is to take into accohat t
under the hypothesis.S

jump between models. After this step, the sequear®s
two models long : the previous model and the new
model.

In fact, this optimal solution need Kalman filters in ~ FOF the discrete part of the statg, ihis step uses the

parallel. In order to reduce the number of Kalmitiers, ~ transition matrixi:

different sub-optimal methods exist : pruning meho
and merging mFeJthods. P g P(Me1, MY 1) = p(MdMic.2).p(Mea/Y -2) (6)

The pruning mﬁth.OdS _||_<;.‘8p a reduced numI::rhOfFor the continuous part of the statg e extension
sequences at eac t|_rr_1e. ese sequences can NPects possible changes in the dynamic model dhat
for _thelr_ high pro_bab_ﬂlty of occurrence (_Detect|and translated as modifications of the probability dgns
Estimation Algorithri®) or generated using a randomrunction p(%.1/Yi1Me1), characterised by its mean and

Sub-optimal approaches



covariance matrix (we make the hypothesis thastate  Orbit determination during north-south manoeuvre
Xy follows a gaussian law). We obtain a new probgbili of a geostationary

density function p(X1/Y k.1,Mk.1,my).

Filter step : Description of the simulation

During the filter step, we use, for each state ped ~ We have studied the orbit determination of a

by the extension step, a classical Kalman filteoider ~geostationary satellite during a north-south mamaeu
to predict the new state at the following timeand with a ION thruster. The manoeuvre parameterslae t

update its values according to the new measuremerf@lowing :

both for continuous and discrete part of the state: Duration = 2 hours
Thrust = 20 mN (= 10 %)
POXKY k1, My1,My) = AV = 0,13 m/s on the cross-track axis (+ 10 %)
DX/ Xe1,M)-P K/ Ziers M, mdXe (7) The orbit determination is made by 4 ground station

with pseudo-range measurements. We simulate

Xk synchronisation error for the station clocks andtfe
geostationary clock. Moreover, we include the
_ atmospheric degradation on the signal : ionosplaerit
p(xk/Yk’m"l(’r?;z )_ %Y ) tropospheric delay, multi-path. The global error is
B i DI Vet M T (8) between 1 to 3 m, depending on the elevation afidjie.
.[ PV Xi) - POKKY ko1, M1, M) . A X cadence of measurement is 15 minutes.
Xy For orbit determination, the manoeuvre acceleraton
estimated using these initial values :
radial acceleration = 0 m/s € 10° m/s)
p(M.y,mdY,) = along-track acceleration = 0 ms £10° m/s)
PO/Y ke, M1, M) P (M1, M/ Y k1) (9) cross-track acceleration = 0 m¢s£ 2 10° m/s)
We want to compare the performances of classical
%k“ n%-:l POY e, M2, M) P(Mer, MY k) filtering with sub-optimal Markov approach to perfo

orbit determination during manoeuvre, without
knowledge of its date. We first perform a simulatio
Merging step : with exact knowledge of the time of manoeuvre, Wwhic
will be the reference.
Next, we merge all the states provided by sequences
which end with the same model. Orbit determination with exact time of manoeuvre

So, we have for the state : ] ) ) ) .
The first simulation results are obtained using the

p(MdY )= z P(MeL,MmdY)) (10) Kalman filter when we know exactly the instant of
beginning and end of the manoeuvre.
Figure 2 shows the error and standard deviatichef
estimation of the position for radial axis, alomgek

POXY M)= Z POXY kM, M)-P(Mea/Yimy) (11)  axis and cross-track axis. The manoeuvre is reptege

My

Myt as a step signal. We see that the main error oocutise
cross-track axis. After the manoeuvre, we find aghée
where p(m4/Y.my) is given by : same level of standard deviation after 3 hours.
We can see a bias on the along-track error. This ibi
P(Me1/Y kM) = P(Me1, MY 1)/p(MdY k) (12)  due to synchronisation biases on the station clocks

. . . which are not observable by the filter.
This step provides also the true estimate of the

continuous part of the state, which is a weightad sf
the state for each model :

POWYD = D POKY M. p(mdYy) (13)
m  OM



Radial error and standard deviation Manoeuvre Detection
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. Time (hour) . ) Now, we must determine the end of the manoeuvre.
Figure2: error of localisation - first smulation Figure 4 shows the results for the G(1) detectce.0Ah
consider we have a fairly good estimate of the ehd

Detection of manoeuvre with Kalman filter manoeuvre.

Manoeuvre Detection

The second simulation consists in estimating theti ‘

of the manoeuvre. In order to detect the beginoirthe
manoeuvre, we use detector based on residuals. Itl
possible to survey directly each residual, or
combination of residual parameters (for example =~ Fecmmm e mm e -
y'.Ily, wherey is the residual vector and the |
covariance matrix of the residual). In order toifithe
sensitivity to false alarm, it is also possiblectmsider
sliding window as in tests proposed by Bar-Shafam

Gr = .Gy + YTy > A (14) —/\_J//\

where a is a forgetting factor and is computed Time (hour)
according to a false alarm probability. The mealuea
of the detector Gis p/(1¢a), where p is the number of Figure 4 : detection of the end of manoeuvre
measurements. So, p/@- can be considered as the ) o
window width. We call G(1) the detector with a wavad We can compare the obtained localisation accuracy

width of 1 (020), G(Z) the detector with a window width with the one obtained through the first simulation.
of 2 (@=0.5) ... The detector follows a 1/0:x law Figure 5 shows the radial, along-track and craasktr
with p deg.ree;of freedoms ' errors and standard deviation. After the manoeuvre,

Figure 3 shows the detection of the manoeuvretfer tthere is a bias on the estimation of radial ands:toack

G(1) detector and with a threshold corresponding fo/rors due to a bad estimation of the manoeuvre

99%. The slope of the curve at the detection tanesed accelerations. Moreover, the ratio between crassktr
to estimate the instant of manoeuvre error and its standard deviation shows a divergerice

An optimistic estimation could be an error of 15N€ filter.
minutes for the start of the manoeuvre.

st




Radial error and standard deviation Manoeuvre Probability
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0 3 Time?hour) 9 2 But this bad estimation doesn't degrade the
performance of localisation of the satellite (ségufe
Figure5: localisation error with detection of 7). We find the same level of accuracy after 4 hour
manoeuvre This good behaviour is due to the fact that thetimul

model filter uses the manoeuvre model, after treb afn
manoeuvre, in order to improve the localisation
according to the measurements.

If we compare with Figure 2, we see only slight
ifferences. In fact, as at each time all possjbhap
between models are considered, the increase @frthe
between two measurements is slightly greater thahe
first simulation. This is particularly obvious oret
cross-track error at the end of the simulation.

Simulations with a multi-mode filter

Finally, we use the 2nd-order Generalised Pseud8
Bayesian Algorithm to perform orbit determination
during the manoeuvre. We begin the simulation with
same estimate and covariance matrix as in the qusvi
simulations. We have two models :

1) model without manoeuvre fn

2) model with a manoeuvre fn

We consider the same initial estimate and standa

Radial error and standard deviation

4
deviation as in the Kalman filter simulations fdret 2b | M A
manoeuvre accelerations. These values are usetthat € £ OW
time in the extension step of the algorithm when w % ‘ ‘ ‘ |
consider the jump between modéel amd model rh. o 3 e S 9 12
The initial probability of the models are : Along-track errorlgrfd(s?;r%ard deviation
p(nt) = 0.99 1;‘ ‘ ‘
p(nr) =0.01 £ o AT
The transition matrix isEO’99 O’Oa __7W
0,01 0,9 145 3 9 I
These values mean that we give an advantage to Crosstrack erranme (ouN) @ reviation
phase with constant model. sor ‘ ‘ 1
Figure 6 presents the probability of the ManoeuVr(_. 2o\ N T
The detection of the manoeuvre appears clearlyén tV_zoi —
figure. The filter estimates the time of manoeuwith ~40 ‘ ‘ .
an error greater than in simulation 2 (about ongho 0 3 Time ?hour) o 12

Figure7: localisation errorswith multi-model filter



Conclusions ® Moose R.L.

An adaptative state estimation solution to the
The multi-model filter shows good capability tomaneuvering target problem

perform orbit determination during manoeuvre. The |EEE Transactions on Automatic Control
tuning of the parameters is easy, and the perfaresan 359-362, June 1975
are similar as those obtained by a Kalman filtethvei 1 Moose R.L.; Vanlandigham; McMabe

perfect knowledge of the time of manoeuvre. Modeling and estimation for tracking maneuvering
Nevertheless, a multi-model filter can not replace targets

Kalman filter for the nominal phase of the orbit |EEE Transactions on Aerospace and Electronic
determination. Indeed, as the two models are taken Systems, May 1979
account all the time, it is impossible to perforimod 11Blom H.A.P.
prediction of the orbit. This technique could beedis An efficient filter for abruptly changing systems
when a manoeuvre occurs and provide a good estimati Proceedings of 23rd Conference on Decision and
after the manoeuvre for a Kalman filter. Control, Las Vegas, NV, December 1984

2 Barret I.

Syntheése d'algorithmes de poursuite multi-radars
d'avions civils manoeuvrants

PHD ENSAE -Automatic specialisation, 1990

13 Bar-Shalom Y.; Birmiwal K.

Variable dimension filter for maneuvering target
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