
ANALYSIS OF ACCURACY AT BALLISTIC RE-ENTRY 
IN THE EARTH ATMOSPHERE 

  
Yu. G. Sikharulidze*,  P. Moraes Jr.**,  A. N. Korchagin* 

 
               *Keldysh Institute of Applied Mathematics RAS, Russia ,   E-mail: sikh@iae.cta.br 
               **CTA/ Instituto de Aeronáutica e Espaço , Brasil,  E-mail:  moraes@iae.cta.br 
 
 
 
                            Abstract 

 
The problem of delivery experimental and observation 
results from orbit to the Earth arises very often in the 
process of space research. The simplest and cheapest 
solution of the problem is the use of a small ballistic re-
entry vehicle. Such kind of vehicle has no control 
system for motion into the atmosphere. So, this produces 
significant dispersion of landing point that complicates 
search of the vehicle and very often a safe landing. The 
paper includes an analysis of the accuracy problem for 
ballistic re-entry in the Earth disturbed atmosphere and 
choice of optimal re-entry conditions. Besides the 
common initial re-entry conditions and  ballistic 
coefficient of the vehicle it considers the influence of the 
re-entry point latitude, initial orbit altitude and 
inclination and season also. Practical recommendations 
how to reduce the dispersion of ballistic reentry 
trajectory in the atmosphere and total heat flux are given 
on the basis of mathematical simulation. 
Keywords: Ballistic Re-entry, Disturbed Atmosphere, 
Dispersion of Landing  Point, Heating, Aerodynamics, 
Drag 
 
 

Computational model of the Earth disturbed 
   atmosphere  

 
Computational Model of the Earth Disturbed 

Atmosphere - CMEDA was developed at the Keldysh 
Institute of Applied Mathematics (KIAM, Moscow) in 
1968-1998 1-2 .  

The CMEDA is intended for 
 
• development of vehicle guidance algorithms, 
• estimation of expected accuracy of manoeuvre, 
• determination of aerodynamic loads, etc. 

 
The CMEDA is a global  model for altitudes from 0 

km up  to  100  km  and  includes  all  12 months of the 

year. It contains  season-latitude, diurnal and random 
components of density variations and a wind field also. 
It allows to generate unlimited number of  disturbed 
atmosphere samples for simulation of various flight 
conditions. 

A variation of density δρ is represented as normalized 
deviation of disturbed density ρ from standard one ρst: 
 
           δρ = (ρ − ρst) / ρst .                                         (1) 
 

The total variation includes season-latitude, diurnal 
and random components 
 
δρ = δρsl (H,ϕ , N) + δρd (H,ϕ , t) + δρr (H, λ, ϕ, N,ξ) 
                                                                                 (2) 
 
where  H is an altitude, ϕ  is a latitude,  λ is a longitude, 
N is a month number, t is a local time, ξ   is a random 
vector. 

The  Reference  Atmosphere  CIRA  19863 with 
necessary updating is used for season-latitude variation 
of atmosphere density. 

The model of amplitude and phase for diurnal 
component is constructed on the basis of the Reference 
Atmosphere CIRA 19724  and is identical for all months 
of a year. 

Season-latitude and diurnal variations are systematic 
and describe a mean or expected state of atmosphere as 
function of altitude, latitude, month and local time. The 
random component determines a difference between 
“actual” state of atmosphere and systematic components. 
Limited experimental data and irregular allocation of 
measurement points complicate  creation of an exact 
model of disturbed atmosphere. Thus, some reasonable 
hypothesis that does not contradict with observed 
processes in atmosphere is necessary to use. For 
example, the so called Model 4D (USA) uses Markov 
process for description of random density variations. 
The canonical-series expansion model was used for the 
re-entry simulation of the vehicle “Buran”. 



The method of normalizing functions was developed 
for the CMEDA. It is based on the analysis of 
experimental measurement data. Three normalizing 
functions f1(H,ξ), f2(ϕ,ξ) and f3(λ,ξ) allow to 
simulate the harmonic density variations as function of 
altitude, latitude and longitude. Developed model of 
limit variations (3σρ) is used for this purpose also.   

The model of wind contains zonal (along the parallel) 
and meridional components of a wind velocity. The 
zonal component U consists of three terms, season-
latitude, diurnal and random: 
 
                       U = Usl + Ud + Ur .                             (3) 
 

The meridional component has a random nature:  
  
                       V = Vr .                                              (4) 
 

The Reference Atmosphere CIRA 19863  was used to 
build the season-latitude wind field model. The model of 
the diurnal and the random components of a wind is 
constructed utilizing geostrophic approximation.   

CMEDA  was used for investigation of landing point 
dispersion  at ballistic re-entry  in the Earth  atmosphere. 
 
 
      Investigation of landing point dispersion  
 

At ballistic re-entry in disturbed atmosphere a 
dispersion of landing point depends on 
 
• initial parameters of motion (re-entry angle θen  and 

velocity  Ven , inclination of initial orbit  i , latitude 
ϕ0  and longitude  λ0  of re-entry point), 

• ballistic coefficient of re-entry vehicle σD = CDS/m , 
• season (month). 
 

Here  CD is a drag coefficient, S  is a middle area, m is 
the vehicle mass. 

Most important are initial parameters of motion and 
ballistic coefficient of re-entry vehicle. Consideration of 
season atmospheric variation is a new factor that allows 
to have a more accurate estimation of landing point 
dispersion. 

For comparative analysis we fix a set of initial re-entry 
conditions (the basic point). Then we shall consider 
step-by-step a variation of each parameter to estimate its 
influence on landing accuracy and parameters of motion. 
We accept following conditions as the basic point: 
 
• re-entry angle   θen0 = -3o , velocity Ven0 = 7722 m/s,          
• ballistic coefficient  σD0= 10-3  m2/kg ,   

• month - January. 
 

A longitude of re-entry point influence on landing 
accuracy is unessential, so we not consider its variation. 
The altitude of conditional boundary of atmosphere is  
Hat=100 km. The altitude of terminal point is Ht=10 km. 
The drag parachute system starts to operate 
approximately at this altitude. So, we consider a 
dispersion of landing point at altitude of 10 km. The 
basic values of re-entry angle and velocity correspond to 
de-boost by impulse of  ∆V = 235 m/s  at initial circular 
orbit  with altitude of  Hcir = 300 km. The basic value of 
ballistic coefficient is approximately the same as for re-
entry vehicles  “Vostok”, Mercury, “Soyuz” and Apollo. 
Variations of density and wind in January are extreme, 
so a dispersion of landing point is maximal also. For 
each set of initial conditions it is enough to calculate 
100 re-entry trajectories in disturbed atmosphere. As a 
result we can determine a relative mean square 
dispersion of landing point    ~σ x =  σx / σx0 ,  a relative 

maximal load factor  ~nmax= nmax/nmax0  and a relative 

descent time 
~t  = t/to. Index  “0” corresponds to the 

basic point. Representation of results in dimensionless  
form allows to reduce the  influence on conclusions of 
terminal point choice at altitude of 10 km. It is also 
convenient for comparative analysis. A cross range 
dispersion  σZ  is  5 ... 8 times less than  σX and we can 
neglect  it. 

Fig. 1 illustrates the results of re-entry angle variation 
for initial equatorial orbit (i = 0, ϕ0  = 0). A landing 
point is in equatorial zone. When the value of re-entry 
angle decreases from  | θen | = 3o to 2o  the relative 

descent time  
~t    increases  1.25 times. The relative 

downrange dispersion ~σ x   increases  1.7  times almost. 

The relative maximal load factor decreases to  ~nmax   = 

0.85. When  the value of  re-entry angle increases to  5o  
the descent time decreases to  0.7 approximately and 
downrange dispersion decreases  to  0.5  approximately. 
The maximal load factor increases  ∼ 1.4 times. Re-entry   
velocity   variation   in   the   range    ± 300  m/s   
( ±4% Ven0 )  produces variation of   ~σ x    within   ±0.3  

and  variation   of   ~nmax   within   ± 0.08.  Clearly  that 

variation  of  re-entry  velocity  produces  only  a  small 
change   of   re- entry   trajectory.   When   the  ballistic 
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           Figure. 1: Variation of re-entry angle  
                              (equatorial orbit  i = 0  ) 
 
coefficient  increases 10 times (i.e. σD  =10-2 m2/kg ) the 
descent time increases ∼ 1.4 times and downrange 
dispersion increases approximately 1.9 times (see Fig.2). 
If the ballistic coefficient decreases 10  times  (i.e. σD = 

10-4  m2/kg) the descent time decreases  to 
~t = 0.9  and 

downrange dispersion decreases to  ~σ x   = 0.4. The 

maximal load factor ~nmax   does not depend on ballistic  

coefficient almost (it changes within  ±0.1 only). 
The season variation of atmosphere produces a small 

effect on downrange dispersion ~σ x   at ballistic re-entry 

in the equatorial zone (see Fig. 3). The minimal  
dispersion  ( in  October  and  April ) differs from the 
maximal one (in January and July) by 0.1 only. 
Periodicity in 6 months is typical for re-entry in 
equatorial zone. It reflects the fact of quasi-symmetry of 
atmosphere in the northern hemisphere and  southern  
one  with  shift on 6 months. The season variation does 

not influence on descent time 
~t   and maximal load 

factor  ~nmax   almost. 

The initial orbit with inclination i = 40o  and  latitude  
of  re-entry  point   ϕ0  = 40o     corresponds  to landing  
at  mean latitudes of the northern  hemisphere While   
re-entry   angle   θen  variation   the  downrange 
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         Figure 2: Variation of ballistic coefficient 
                              (equatorial orbit  i =  0 ) 
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             Figure 3: Season variation of dispersion 



dispersion  ~σ x  , the maximal load factor  ~nmax    and 

descent time  
~t   change  as in equatorial zone 

approximately. Dimension values differ significantly. 
When re-entry velocity decreases by 300 m/s the 
downrange dispersion  ~σ x   decreases to 0.7. When re-

entry velocity increases by 300 m/s the downrange 
dispersion  ~σ x   increases to 1.35. The maximal load 

factor  ~nmax   and descent time   
~t   change  within   

±0.1   (Fig. 4).  If ballistic coefficient changes in wide 
range the  downrange dispersion  ~σ x   and descent time 
~t have approximately the same change as in equatorial 
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           Figure 4: Variation of re-entry  velocity 
                            ( inclination  i = 40o, ϕϕϕϕ0 = 40o) 
 
zone, but dimension values differ significantly. 
Influence of season is more than for landing in  
equatorial zone  (Fig. 3). The minimal dispersion is in 
summer: ~σ x  = 0.7 due to minimal season-latitude 

density variation at altitudes  of  30...70 km. 
We considered landing in polar zone also to have the 

complete investigation (polar orbit i = 90o, latitude of re-
entry point  ϕ0  = 80o).   For  re-entry angle variation  
the downrange dispersion  ~σ x  , maximal load factor  
~nmax   and descent time  

~t   change as in equatorial 

zone and mean latitude almost. Dimension values have a 

big difference. The downrange dispersion  ~σ x   is more 

sensitive to re-entry velocity variation than at mean 
latitude (Fig. 5).  
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             Fig. 5: Variation of re-entry  velocity 
                         ( inclination  i = 90o, ϕϕϕϕ0 = 80o) 
 
Variation of ballistic coefficient  σD  influences on  ~σ x ,    
~nmax   and  

~t   as at equatorial zone and mean latitude 

almost. Effect of season is more significant  (Fig. 3). 
    Fig. 6 illustrates influence of re-entry point latitude ϕ0  
on downrange dispersion ~σ x  and maximal load factor 
~nmax .  Now the basic point is equatorial orbit    (i = 0,  

ϕ0 = 0 ). One can see that downrange dispersion and 
load factor increase as parabola approximately when 
latitude increases. 
 
 
    Choice of rational orbit and re-entry conditions  
 
   We use obtained results of landing point dispersion 
analysis and optimal re-entry manoeuvre consideration 
for preliminary design of SARA5 mission scheme. 
SARA (SAtélite de Reentrada Atmosférica) is a 
Brazilian project of a small reusable ballistic re-entry 
vehicle. The vehicle is intended for delivery to the Earth 
of scientific results. Requirements to reusable  re- 
entry vehicle do not agree with requirements to ballistic        
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      Figure 6: Variation of re-entry point latitude 
 
 
descent trajectory and restricted dispersion of landing 
point. So, the solution should be a compromise. 

Preliminary let us determine the optimal radius of 
initial circular orbit that provides the  required re-entry 

angle θen
∗  by minimal value of de-boost impulse  ∆V . A 

small de-boost impulse  ∆V is directed against to  orbital 
velocity Vcir (this direction is optimal6). In assumption 
of impulse velocity correction we can determine the 

minimal value of  de-boost impulse ∆ ~
V =  ∆V/V cir  for 

given re-entry angle  θen
∗   and fixed radius of circular 

orbit  ~rat  = rcir /rat 
6: 

 

        ∆ ~ (~ )

(~ sec )
V

r

r
at

at en

= −
−

−∗1
2 1

12θ
.                    (5) 

                             
   From   the    necessary   condition   of   optimality 

d∆ ~
V /d ~rat  = 0  we can determine the radius of the 

circular orbit 
 

          ~ropt   = (~rat )opt = 1 - sinθen
∗                             (6) 

 
that satisfies also the sufficient condition of optimality  

                      
d V

dr r
at

opt

2

2 0
∆ ~

~ ~ > .                              (7) 

 
The minimal value of de-boost impulse at optimal 

orbit is 
                                           

           ∆ ~
cosV sinmin

en en= − −
∗ ∗

1
2 2

θ θ
 .                (8) 

 
Fig. 7 shows an altitude of optimal circular orbit Hopt 

and minimal required de-boost impulse  ∆Vmin  for  the 

given value of re-entry angle θen
∗ . Obtained 

recommendations we can use in practice only for small 

re-entry angles  θen
∗ ≤ 30. Really, for the given angle  

in the range θen
∗ = 10...30  the altitude of optimal 

circular orbit is 200 km ... 438 km. A payload capability 
of launch vehicle decreases very sharply with increase of 
orbit altitude above 200 ... 250 km. Thus the economy 
of de-boost impulse (and propellant consumption  mpr 
accordingly) can not compensate payload loss due to 
increase of orbit altitude.   
 
∆∆∆∆Hopt ,  ∆∆∆∆Vmin  
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             Fig. 7:  Altitude of optimal circular orbit 
                             and minimal required impulse 



The optimal orbit satisfies the ballistic aspect of re-
entry task only and is of theoretical interest more than 
practical one. So, it is necessary to consider the rational 
orbit that takes into account payload capability of the 
launch vehicle also. Therefore the rational orbit 
represents a compromise between decrease of payload 
and decrease of required propellant consumption with 
increase of orbit altitude. 

As an example we consider the Brazilian launch 
vehicle VLS7 and re-entry vehicle SARA8 type (initial 
mass m0 = 150 kg). All calculation results are 
represented  as variations  with  respect  to  basic  point  
(circular orbit with altitude of   Hcir = 300  km, de-boost    

impulse  ∆V = 235 m/s, re-entry angle θen
∗  = -30). For 

such value of re-entry angle the optimal orbit has an 
altitude of  Hopt = 438 km  and the minimal required   
de-boost   impulse  is ∆Vmin = 203 m/s. Clearly that 
rational orbit should be below  Hopt . With equation  (5)  
we can calculate a value of required de-boost impulse 

∆V  for given re-entry angleθen
∗  =-30  as function of  

orbit altitude Hcir (Fig. 8). Then the equation for 
characteristic velocity allows us to estimate a propellant 
consumption  for realization of required impulse ∆V  
(velocity of  jet efflux  W  = 2000 ... 3000 m/s). 
   

 ∆∆∆∆Vmin ,  ∆∆∆∆mpl , 
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              Fig. 8.  Determination of rational orbit 

For VLS  derivative of payload mass with respect to 
altitude of orbit  is 
 

                 
∂
∂

m

H

kg

km
pl

cir

= −0 28. .                              (9) 

 
Now we can estimate how the payload increases if the 

orbit altitude decreases with respect to basic point     Hcir 
= 300 km.  For the orbit  Hcir = 250 km  the payload 
increases by ∆mpl = 10 kg  (~7%  of  SARA   basic  
mass    m0 = 150 kg).   For   the  orbit    Hcir  = 200 km  
the payload increases by ∆mpl = 20...24 kg  (see Fig.8). 
So, we should choice the altitude of rational orbit in the 
range 200...300 km according to required life time of 
satellite.   

Now let us estimate heat flux and its dependence on 
the ballistic coefficient and re-entry conditions. For the  
model task in assumptions of descent with constant 
flight path angle θ = constant in exponential atmosphere 
we can determine a heat flux 9. The maximal  heat flux 
per second in critical point is  
 

           ( )q k V
sin

ecr max lam en
en

D

= −3

3

λ θ
σ               (10) 

 
and the total amount of heat received by vehicle during 
descent into the atmosphere  is 
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                                                                               (11) 
 

Here  klam  is a coefficient of laminar boundary layer, λ  
is a logarithmic gradient of density,  e = 2.718..., Cfr  is  
an  equivalent  coefficient  of surface  friction, SΣ  is a 
total area of vehicle surface,  ρ0 is the model density at 
the Earth surface. 

The value of (qcr)max decreases when ballistic 
coefficient σD increases and re-entry angle  
θendecreases. The total amount of heat Q received by 
vehicle during descent into the atmosphere decreases 
when the ballistic coefficient   σD  increases and re-entry 
angle θen increases also. Therefore it is necessary to 
provide as bigger as possible ballistic coefficient  σD.  It 
means that aerodynamic shape of re-entry vehicle should 
be  “bad” with a big radius of the nose part curve.  



As mentioned above, when SARA type vehicle de-
boosts at circular orbit  Hcir = 300 km by impulse  ∆V = 

235 m/s it has re-entry  angle θen
∗   = -30 and re-entry 

velocity  Ven = 7722 m/s. We can consider as a basic 
point the descent into atmosphere by sharp side forward 
(ballistic coefficient is  σD = 0.00213 m2/kg , relative 
downrange dispersion  ~σ x  = 1 ,  relative maximal load 

factor ~nmax  = 1).  All results are obtained by statistic 

simulation of re-entry trajectories in disturbed 
atmosphere (model CMEDA). 

When re-entry vehicle moves by wide side forward 
(ballistic coefficient is σD = 0.0064 m2/kg) the 
downrange dispersion is ~σ x  = 1.35  and maximal load 

factor is ~nmax = 0.9. Now heating conditions should be 

better due to 3 times bigger value of ballistic coefficient.  
     If it is necessary to provide the same downrange 
dispersion as in basic point we should increase the value 

of re-entry angle to θen
∗   = 40  (de-boost impulse     ∆V 

= 360 m/s, re-entry velocity  Ven = 7600 m/s). In the 
case downrange dispersion is ~σ x = 0.9, the maximal 

load factor ~nmax  = 1.1 but another heating condition. 

Such comparison with the basic point is more correct 
because downrange dispersion is the same 
approximately. 
 
 

Aerodynamic heating due to high velocity 
 

At ballistic re-entry high heat flux rates and high 
surface temperatures will be a severe requirement for 
development of the thermal protection system.  

With the aim to reduce the heat flux rate and 
consequently the surface temperature a parametric study 
has been done considering variation of re-entry angle θen 
and drag coefficient CD. For the re-entry angle θen  two 
values were assumed: a) - 3° with re-entry velocity Ven 
= 7722 m/s, and b) - 4° with re-entry velocity Ven = 
7600 m/s. The drag coefficient was estimated for 
different vehicle shapes as shown below. 
 Calculating now the heating rates and maximal 
temperatures during re-entry in the Earth atmosphere, 
the results shown in the following table are obtained10. 
 The calculation model assumes a non-ablative re-
radiating surface (ceramic material). The results 
presented in the above table are maximal values which 
correspond to stagnation conditions. 
 
 

Case Drag  

Coeff. 

Re-entry 

angle 

Heat flux 

[kW/m2] 

Temperature 

[K] 

 X1 0.40 -3º 2550 2640 

 Y1 1.20 -3º 700 1880 

 Y2   -4º 810 1990 

Fig. 9.  Heat flux as function of flight time 
 
 With increasing drag coefficient, configuration Y, the 
heat flux and consequently the maximal temperature 
decays substantially due to firstly reduction of the 
velocity at high altitudes and of major importance the 
much higher nose radius. Increasing the re-entry angle 
for the configuration Y the heat flux and the temperature 
increases slightly due to a higher re-entry velocity for θen 
= - 4°. 
 With these results a first attempt should be made 
considering that lower heat flux and lower temperature 

Configuration X 
CD   =  0.40 

SREF =  0.796 m2 
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levels will make possible the use of conventional 
materials for the thermal protection systems.  
 Landing point dispersion analysis required calculation 
of approximately 5,000 trajectories in disturbed 
atmosphere (model CMEDA). 
 
 

Conclusions 
 

Investigation of landing point dispersion for descent in 
disturbed atmosphere (model CMEDA) allows to make 
conclusions as following. 

1. Re-entry angle   θen  and latitude  ϕ0   of re-entry 
point are the most important initial parameters those 
determine downrange dispersion  σx  and maximal load 
factor nmax.  

2. When the ballistic coefficient  σD  increases 10 
times the downrange dispersion increases 2 times 
approximately. When the ballistic coefficient σD  
decreases 10 times the downrange dispersion decreases 
two times approximately. The maximal load factor  nmax  
does not depend on the ballistic coefficient practically. 

3. By choice of month (if it is possible) we can 
decrease the downrange dispersion σx on 10%  for 
landing in equatorial zone, on ~30% for landing in mean 
latitude and on 50% for landing in polar zone. 

4. Increasing three times the drag coefficient and 
keeping the re-entry angle equal to -3º  minimal heat 
flux and temperature at the stagnation point are reached. 

Obtained recommendations allow to choice (in 
admissible situations) the optimal re-entry conditions 
and reduce the downrange dispersion σx or/and maximal 
load  nmax.  
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