
LARGE SPACE STRUCTURE VIBRATION CONTROL DURING ATTITUDE 
MANEUVER 

 
Luiz Carlos Gadelha DeSouza,  Silmara Alexandra DaSilva 

National Institute for Space Research – INPE 
Space Mechanics & Control Division - DMC 

C.P. 515 – São José dos Campos – SP – 12227-010 - Brazil 
Gadelha@dem.inpe.br,Silmara@dem.inpe.br 

 
Abstract 

 
The paper presents the results of an active structural 
vibration control of a flexible satellite performed by a 
proof-mass actuator (PMA) during an attitude rotation  
maneuver . The satellite  investigated is composed of a 
rigid rub plus a cantilevered flexible beam with the 
PMA located at the beam free end. As the satellite 
manouvers from rest to a pre-defined position, the rigid 
body motion can excite the flexible part of the satellite. 
The PMA tasks is to damp-out any residual vibration 
caused by this manouver efficiently. The rigid/flexible 
satellite is modeled, using a relatively simple structural 
dynamics approach. Having found the vibration modes 
of the structure, expressions for kinetic and potential 
energy are derived. Lagrange´s equation is then applied 
to obtain the  satellite equations of motion. The PMA 
gain selection is based on an analytical approach which 
shows that the pole and zero of the fundamental mode is 
dominant. The efficiency of the PMA using  velocity 
feedback  with a PI control law was examined by 
numerical simulations for different control maneuvers 
strategies. It was shown that one such  controller has 
damped the residual flexible vibration successfully. 
However, it was also shown that the control system 
efficiency is function of the maneuver strategy. 
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Introduction 
 
 Although there is an increasing interest in using small 
satellite1 for many different space missions, the space 
conquest as well as out space missions will not be 
possible without the use of large space structures (LSS). 
The construction of International Space Station  (ISS),  
despite technical and funding problems, it appears that it 
will go ahead, as a result, LSS construction creates new 
demands on dynamics techniques where the coupling2 
between the rigid and the flexible motion must be take 
into account in the control system design. On the other 
hand, the  interaction3,4 between the control system and 

the flexible structure motion play an important rule in 
the control system performance. Robust techniques5,6  
can also be implemented to consider the parameter 
variation7  during the maneuver of rigid/flexible satellite 
in space.   
  Investigation  in the field of active control of structures 
vibration in space have covered in the last decades 
many important topics8, among which the electrically 
drive actuators known as proof mass actuators9 has 
captured the interest of many research group. The 
advantage of this device is that electrical power can be 
produced directly in space comparing with jet thrusters 
that require fuel tank. Besides, controllers based on high 
bandwidth can become a serious concern as for flexible 
structural motion and control system interaction. 
 In this the paper one concentrates on the specific 
problem of damping out flexible motion when rotating a 
satellite composed of a rigid rub plus a cantilevered 
flexible beam with a proof-mass actuator  located at the 
beam free end.. A simple structural dynamics approach 
is applied to investigate the dynamics and control  of 
such maneuvers   
. 

Equations of Motion 
 
 Initially the satellite is modeled by a rigid central rub 
plus an uniform cantilever beam with a tip-mass M at its 
free end. Using  the Euler-Bernoulli theory with the 
assumptions, that the shear deformation is small 
compared to the bending deformation. The transverse 
displacement of the beam  from  its equilibrium position 
x at time t is given by y(x,t). See  Fig.1.  
 

 
 
Figure 1 : Rigid/Flexible Satellite with a tip-mass M 



  The equation of motion of a uniform cantilever beam 
is a fourth order partial differential equation given by 
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where E is the Young´s modulus of elasticity, I is the 
beam moment of inertia and σ is the mass per unit 
length.  
  The  following boundary conditions are associated  
with the clamped-free beam motion 
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  In order to find the modal equations governing the  
vibration motion, one needs to find the natural 
frequencies  and the modes shapes of the beam plus tip-
mass. Assuming the solution of eq.(1) in the following 
separable form  
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where Y(x) and  φ(t) are  the nth mode shape and 
generalized coordinate, respectively.  
 
  Substituting eq.(3) into eq.(1) and using the previously 
boundary conditions,  after  some manipulation the 
natural frequencies is found solving 
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where λ4 =σω2 /EI  and c=cos, s=sin, ch=cosh sh=sinh. 
   
  Using  the data from reference 10 to solve Eq.(4) 
numerically, the first three natural frequencies for 
different values of tip-mass are given by  Table 1. It is 
possible to note that the frequencies decrease as the 
mass increase.  Considering that φ(x) = 1, the expression 
for the the nth mode shape is  given by 
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Table 1: Natural Frequencies in rad/s 

 
 

Modal Equation of Motion 
 
 The attitude maneuver is performed by the satellite 
angular acceleration generated by any type of  torque 
actuator (reaction wheel or thruster).  
  To find the equations of motion one uses the 
Lagrange´s equation  
 

r
rrr

Q
q

V

q

T

q

T

dt

d
=

∂
∂

+
∂
∂

−








∂
∂
&

                                       (6) 

 
where T and V correspond to the kinetic and potential 
energy of the system. The rth generalized coordinate is 
qr and  Qr is the generalized force  which is applied at 
the beam free end in the same direction  as y(x,t).  
 
  The general expression  for the kinetic energy of a 
beam with a tip-mass M is  
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with the beam velocity given by 
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where xdθ/dt is the tangential velocity due to a  rotation 
θ at a radius x. 
 
  Substituting Eq.(3) and Eq.(8) into Eq.(7), the total 
kinetic energy of the system is  
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  The potential energy due to the strain energy is given 
by 
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which using Eq.(3) and  the following relationship10  

2

dx
dx

)x(Yd

EI
2

)L(MYG

L

0

2

2
n

2

2
nn2

n

∫ 













=












 +σ
ω       11) 

 
can be rewritten in the following form 
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  Substituting the expressions for the kinetic and 
potential energy in the Lagrange´s equation, the modal 
equations of motion for the beam under rotation is  
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  Note that in order to use these equations the values of 
the constants  Ln , Mn,  , Fn and Gn must be found for the 
first N modes of interest. In short , given a particular 
maneuver  with acceleration given by d2 θ/dt2 , the PMA 
function is damp-out some eventual residual flexible 
vibration (q(t)) using the tip force F(t), which from mow 
on can also be  represented by U(t) 
 

Tip-Mass and Pole-Zero Location 
 
 An analytical transfer function from the control force 
input to the deflection at various points on the beam can 
be determined using the analytical approach11. This 
analysis provide some physical insights of the 
rigid/flexible satellite behavior which helps in the 
modeling and control system design. In order to do that, 
the transcendental transfer function from the tip force 
U(s) to the beam deflection Y(x,s) at location x is. 
  

( )( ) ( )( )
( )







 µµ−µµ
σ
µ+µµ+µ

µ−µµ+µ−µ−µµ+µ=
LLchsLLcsh

M
LLcch1EI2

xchxcLshLsxshxsLchLc

)s(U

)s,x(Y

3

(14) 

  In particular, the transcendental transfer function from 
the tip force to the tip deflection at x=L , with λ=µL is  
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  By determining the roots of the numerator and 
denominator of these transfer functions for  given tip-
mass, these transcendental transfer function can be 
represented as infinite products of pole and zeros. 
Eq.(14) shows that the transfer-function zeros are 
independent of the tip-mass , while the poles represents 
the natural frequencies are dependent on the tip-mass. 
The poles and zeros of Eq.(15) for tip-mass of  10kg and 
162Kg are shown in Fig 2 and Fig. 3.One observes, that 
when M increases, the poles and zeros associated with 
the second and higher modes became closely spaced and 
the first mode becomes a single dominant mode. 
 

 
Figure 2: Poles and zeros for tip-mass 10kg 

 

 
Figure 3: Poles and zeros for tip-mass 162kg 

 



Proof-Mass Actuator Dynamics 
 
 The proof-mass actuator consists of a mass m 
connected to a spring  of constant k. The mass is acted 
on by a linear dc motor supplying a force U(t). This in 
turn, affects  the tip of the beam as shown inn Fig. 4. 
 

 
 

Figure 4 : The proof-mass actuator 
 
  The control force expression for the PMA is   
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where p(t) is the displacement of the spring from its 
equilibrium length. The term mLd2θ/dt2 may be 
regarded as modifying the excitation due to the satellite 
rigid motion, therefore, this term is not a control force 
from the PMA. 
  Assuming a control law given by 
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where K  is the gain of the actuator which is associated 
to the gains of a PI controller (Kp and KI ) by the 
expression 10 
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  The tip velocity of the beam for the first three mode 
considering Yn (L)=1 is given  
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  Substituting the previous equations into eq.(13) and 
rearranging the terms, the general  modal equation for 
flexible motion including the light structural damping β 
and  compensated by the  PMA is given by  
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PMA Actuator Gain Selection  

 
 In practice the gain selection might be done just for 
the fundamental mode, since its pole and zero are 
dominant, as shown previously. Thus KI can be estimate 
considering only the first mode in Eq.(20) to achieve a 
compensated damping of ζ by the  following 
expression10  
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  Then the value of KI may be used in a model of the 
system involving the first N modes. One has assumes a 
design damping of 0.05 (ζ) and a structural damping of 
0.002 (β1) for the fundamental mode 
 

Control System Simulations 
 
 All simulation are based on Eq.(20), which must be 
solved numerically for particular acceleration profile 
with n=3. 
  The maneuvers were considered to star with the 
satellite at rest, following a angular motion and bring 
the satellite back to rest at their end.. The overall 
satellite angle rotation is found by integrating its 
acceleration.  The maneuvers strategies simulated are 
shown in table 2 and its respective results with a tip-
mass of 10Kg are shown in Figures 5 to 13. 
 
 

Table 2: Maneuvers Strategies Profile 
 

 
 



 
Figure 5 : First mode – Maneuver 1 

 
Figure 6 : Second mode – Maneuver 1 

 
Figure 7 : Third mode – Maneuver 1 

 
Figure 8 : First mode – Maneuver 2 

 
Figure 9 : Second mode – Maneuver 2 

 

 
Figure 10 : Third mode – Maneuver 2 

 
Figure 11 : First mode – Maneuver 3 

 
Figure 12 : Second mode – Maneuver 3 

 

 
Figure 13 : Third mode – Maneuver 3 

 
Comments 

 
  From the previously Figures one can observes that the 
fundamental mode is predominant, since it moves the 
beam from its equilibrium position much more than the 
second and third modes. Therefore,  unless a very fine 
control of the beam is required it may be sufficient to 
control the fundamental mode. The results also 
demonstrate that the PMA does provide sufficient 
damping , since at the end  of each maneuver all the 



mode are gradually damped out. This confirm that gain 
selection based on the fundamental mode, neglecting the 
higher modes, is a very good approximation.  As for the 
maneuvers strategy , one observes that after the first 
maneuver has ended the first mode oscillations still 
reach the amplitude of over  0.8, while after the  second 
maneuver the first mode oscillations do not exceed 0.5 
and after the third maneuver the first mode do not 
exceed 0.1. This suggest that the complete success of 
the control system is very dependent upon the maneuver 
strategy. 
 

Summary 
 
  In this paper the study of dynamics and control for 
rigid/flexible space system is presented.  It is 
investigated the particular problem of rotating a flexible 
beam attached to a rigid hub and the performance of the 
proposed control system based on a PMA. The 
dynamics of the beam were modeled, and its modes 
shapes and natural frequencies found. Lagrange´s 
equation was then applied to find the modal equations 
of motion for the rotating flexible structure. The 
efficiency of the proof-mass actuator using  velocity 
feedback  with a PI control law was examined. It was 
shown that one such  controller has damped the residual 
flexible vibration successfully. However, it was also 
shown that the control system efficiency is function of 
the maneuver strategy. 
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