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Abstract the flexible structure motion play an importanteruh
the control system performance. Robust technitfues

The paper presents the results of an active stalctucan also be implemented to consider the parameter
vibration control of a flexible satellite performéxy a variatiod during the maneuver of rigid/flexible satellite
proof-mass actuator (PMA) during an attitude rotati in space.
maneuver . The satellite investigated is compadeal  Investigation in the field of active control stfuctures
rigid rub plus a cantilevered flexible beam witheth vibration in space have covered in the last decades
PMA located at the beam free end. As the satellimany important topiés among which the electrically
manouvers from rest to a pre-defined position,ripiel  drive actuators known as proof mass actudtdwss
body motion can excite the flexible part of theelie. captured the interest of many research group. The
The PMA tasks is to damp-out any residual vibratioadvantage of this device is that electrical povwaer be
caused by this manouver efficiently. The rigid/fldg produced directly in space comparing with jet ttets
satellite is modeled, using a relatively simpleustural that require fuel tank. Besides, controllers bamedhigh
dynamics approach. Having found the vibration moddsandwidth can become a serious concern as fobfexi
of the structure, expressions for kinetic and pidén structural motion and control system interaction.
energy are derived. Lagrange’s equation is thetieapp In this the paper one concentrates on the specific
to obtain the satellite equations of motion. THdAP problem of damping out flexible motion when rotatia
gain selection is based on an analytical approdubhv satellite composed of a rigid rub plus a cantileder
shows that the pole and zero of the fundamentaken®d flexible beam with a proof-mass actuator locatetha
dominant. The efficiency of the PMA using velocitybeam free end A simple structural dynamics approach
feedback with a PI control law was examined bys applied to investigate the dynamics and contadl
numerical simulations for different control manexssze such maneuvers
strategies. It was shown that one such contrdibes

damped the residual flexible vibration successfully Equations of Motion
However, it was also shown that the control system
efficiency is function of the maneuver strategy. Initially the satellite is modeled by a rigid ceaitrub

plus an uniform cantilever beam with a tip-masstMsa
free end. Using the Euler-Bernoulli theory witheth
Key words. Large Space Structure, Vibration Controlassumptions, that the shear deformation is small

Attitude Maneuver, Proof-Mass Actuator. compared to the bending deformation. The transverse
displacement of the beam from its equilibriumipos
Introduction x at time t is given by y(x,t). See Fig.1.
Although there is an increasing interest in usnall vA

satellit¢ for many different space missions, the spac
conquest as well as out space missions will not t
possible without the use of large space struct{uss).

The construction of International Space StatiosS{|

despite technical and funding problems, it apptaasit

will go ahead, as a result, LSS construction ceeatav o] —
{1

demands on dynamics techniques where the codplir Rl
between the rigid and the flexible motion must aleet
into account in the control system design. On ttheo
hand, the interactidff between the control system and Figure 1 : Rigid/Flexible Satellite with a tip-massM




The equation of motion of a uniform cantileveabe SAX +ShAX _ SAL+shAL
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where E is the Yom_mg_s modul_us of elasticity, the O sl 124007 Ceo63 Ceast e
beam moment of inertia and is the mass per unit
Iength 2 16.8277 |15.3369 13.6454 12.9167 12.4090
The following boundary conditions are associate | 3 47.1183 434931 |40.5068  |39.4959 | 38.8678

with the clamped-free beam motion

Modal Equation of Motion

yoy-o ;2D =g 2.1) | | .
0x The attitude maneuver is performed by the satellit
angular acceleration generated by any type of utorqg

a2y(L, 1) o d2Y(L, 1) _ actuator (reaction wheel or thruster).

> , > 0 (22) To find the equations of motion one uses the
oX dx Lagrange’s equation
0%y (L, t a%y(L,t

ot ox dt{og, ) og, ag,

In order to find the modal equations governing th L .
vibration motion, one needs to find the naturaYvhere T and V correspond to the kinetic and potential

frequencies and the modes shapes of the beamiplus energy of the system. The rth generalized coordinate is

. i : g- and Qs the generalized force which is applied at
gaapsasr.aﬁlsesgorprlr?g the solution of eq.(1) in the folluy the beam free end in the same direction as y(x,t).

_ The general expression for the kinetic energy of a
y(x, 1) = Y (x)4(t) 3)( beam with a tip-mass M is

where Y(x) and ¢(t) are the nth mode shape and oL M
generalized coordinate, respectively. T :EJ-O v (x,t)dx+7v2(L,t) )

Substituting eq.(3) into eq.(1) and using thevjanasly

1 ; ' with the beam velocity given b
boundary conditions, after some manipulation the ¥ y

natural frequencies is found solving v(x,t) = XG(t) + ay(x, 1) ®)
’ ot
1+ cALchhL +M7)\[C)\|_Sm,_ —sALch)\L] -0 4) where xcﬂ)_/dt is the tangential velocity due to a rotation
o 0 at a radius x.

where\* =0 /El and c=cos, s=sin, ch=cosh sh=sinh.
Substituting Eq.(3) and Eq.(8) into Eq.(7), theatot

Using the data from reference 10 to solve Eq.(&inetic energy of the system is

numerically, the first three natural frequencies fo

different values of tip-mass are given by Tabldtis T(t)=

possible to note that the frequencies decreasénas t

mass increase. Considering tipat) = 1, the expression ML? ., . . Mh o oo
for the the nth mode shape is given by 2 © (t)+MLe(t)Zl:Y“(L)%(t)+EZ£Y“(L)<”%(I)
n=; n=:

Ol

|_3 . . N . o N .
s 62(t) + oe(t)anZ:l:(pn(t) +E§(p§(t)en + o

Y(x)= [(S?\X —sh\x) + (CchAx — C)\X)LIJ] -

where F, = J'L XY, (X)dx,G, = J-LYnz(x)dx
[@\L -shL) + chAL —cAL)y] 0 0

(5)
The potential energy due to the strain energy is given
by



El (L( 02y(x 1) 2 In particular, the transcendental transfer fuorctirom

V(t) = ?j (y—zJ dx (10) the tip force to the tip deflection at x=L , wikkrpL is

0 0X
which using Eq.(3) and the following relationsfiip Y (L9) _ SAChA —sh\cA (15)

IL [ dZY”(X)Td U@©  A%(1+cAchh)+mi*(cAshh —sAchh)
2 2

w2 0G, + MY, (L) | _ oL dx 11) By determining the roots of the numerator and

2 denominator of these transfer functions for givigA

mass, these transcendental transfer function can be
can be rewritten in the following form represented as infinite products of p(_)le and zeros.
Eq.(14) shows that the transfer-function zeros are
\ , independent of the tip-mass , while the poles TS
_ o[ G, +MY (L) the natural frequencies are dependent on the tgsma
vy = 2[%( 2 (pzn(t) (12) The poles and zeros of Eq.(15) for tip-mass of glékd
n=1 162Kg are shown in Fig 2 and Fig. 3.0ne observesd, t
o ) o when M increases, the poles and zeros associatbd wi

potential energy in the Lagrange’s equation, thélaho the first mode becomes a single dominant mode.
equations of motion for the beam under rotation is

Pale-zero map

. L. . Y (L) 150
@n (1) + 0, (1) = ——-B(t) +—"—= (1) (13) | | |
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Note that in order to use these equations thgegabf e @ """""""" """""""" i
the constants 1, M, , F, and G must be found for the - 5
first N modes of interest. In short , given a padtr S 05 0 05 1

Real Axs

maneuver with acceleration given R@ddt’ , the PMA . .
uver wi lon giv Figure 2: Poles and zeros for tip-mass 10kg

function is damp-out some eventual residual flexibl
vibration (q(t)) using the tip force F(t), whiclofn mow

on can also be represented by U(t) 150 1 Folezero mer
Tip-Mass and Pole-Zero Location 100 ............... sb ................ ............... J
An analytical transfer function from the controrde S IR b S |

input to the deflection at various points on tharhecan

be determined using the analytical appréacfihis & | SR N ]
analysis provide some physical insights of the g 4
rigid/flexible satellite behavior which helps in eth N I AR S R |
modeling and control system design. In order tdhdd,
the transcendental transfer function from the tpcé P R L S |
U(s) to the beam deflection Y(x,s) at location X is 1 i :
i | i
Y (x8) _ (ouk +chul )(sux — sthax) - (sl + shul )(opx — chyx) : S !
u M
© ZE|M3(1+ chuLcpl +?H(SWLCML -SIJLChHL)j Figure 3: Poles and zeros for tip-mass 162kg
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Proof-Mass Actuator Dynamics

The proof-mass actuator consists of a mass
connected to a spring of constant k. The massteda
on by a linear dc motor supplying a force U(t). I'm
turn, affects the tip of the beam as shown inn &ig

ult)

force

proof-mass, m

ko

spring constant

Base of beam

Figure 4 : The proof-mass actuator

The control force expression for the PMA is

u(t) = —mp(t) - m(y(L, 1) +LB(B)) - kn(t)
. (16)
= Uy (t) —mLe(t)
where p(t) is the displacement of the spring fram
equilibrium length. The term mEe/d? may be
regarded as modifying the excitation due to thelkat
rigid motion, therefore, this term is not a contfotce
from the PMA.
Assuming a control law given by
uy (1) = =Ky(L, 1) (17)
where K is the gain of the actuator which is asted

to the gains of a PI controller (Kand K ) by the
expressiort’

Kp

(18)

=~|3

The tip velocity of the beam for the first thremde
considering ¥, (L)=1 is given

Y(L, 1) DY (L)@ (1) + Y2 (L) (1) + Y3(L)es ()

. : . (29)
=@y (1) + @y (1) + @3(t)
Substituting the previous equations into eq.(a8j
rearranging the terms, the general modal equdtion
flexible motion including the light structural daimg 3
and compensated by the PMA is given by

r‘cgn(t)+29nwnépn(t)+vn(c'pl(t)+<'pz(t)+c'p3(t))+
L,+mL

. ) (20)
WPy (1) = (T]G(t)

mK,

where vy,

n
PMA Actuator Gain Selection

In practice the gain selection might be done jost f
the fundamental mode, since its pole and zero are
dominant, as shown previously. Thusdan be estimate
considering only the first mode in Eq.(20) to avhi@a

compensated damping of by the following
expressioff

2M
K ==L (- (21)

m

Then the value of Kmay be used in a model of the
system involving the first N modes. One has assumes
design damping of 0.0%) and a structural damping of
0.002 @3,) for the fundamental mode

[
Control System Simulations

All simulation are based on Eq.(20), which must be
solved numerically for particular acceleration Heof
with n=3.

The maneuvers were considered to star with the
satellite at rest, following a angular motion anmihgy
the satellite back to rest at their end.. The diera
satellite angle rotation is found by integrating it
acceleration. The maneuvers strategies simulated a
shown in table 2 and its respective results wittipa
mass of 10Kg are shown in Figures 5 to 13.

Table 2: Maneuvers Strategies Profile

Maneuver Description (s and rad/s®)

1 t,=0
Bt1=0.0167

t,=0

=4 t=8

Bt=-0.0167

t,=5.3 ,=10.6
(1=-0.0167

1,=7.5

&(1=0.0167
1,=0 L,=2.5

1,=10

8()=0.0167 (=0 Bo=-0.0167
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Figure 5 : First mode — Maneuver 1
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Figure 6 : Second mode — Maneuver 1
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Figure 7 : Third mode — Maneuver 1
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Figure 9 : Second mode — Maneuver 2
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Figure 13 : Third mode — Maneuver 3

Comments

From the previously Figures one can observestiieat
fundamental mode is predominant, since it moves the
beam from its equilibrium position much more thha t
second and third modes. Therefore, unless a \eey f
control of the beam is required it may be suffitiem
control the fundamental mode. The results also
demonstrate that the PMA does provide sufficient
damping , since at the end of each maneuver all th



mode are gradually damped out. This confirm that ga “Silva, A.R and Souza, L.C.G; "Control System Fléxib
selection based on the fundamental mode, negletiting Satellite Interaction During Orbit Transfer Manomiv
higher modes, is a very good approximation. Adtier Preprint of AAS/GSFC 1% International Symposium on
maneuvers strategy , one observes that after the fiSpace Flight Dynamics. Editor: Tom Stengler, Mayl51
maneuver has ended the first mode oscillation$ stppp. 501-510, 1998. USA NASA/CP-206858/VOL1.
reach the amplitude of over 0.8, while after thecond
maneuver the first mode oscillations do not exd@&d °Souza, L.C.G; "Robust Controller Design for Flegibl
and after the third maneuver the first mode do n@pace System using a Combination of LQG/LTR and
exceed 0.1. This suggest that the complete suafessPRLQG Methods". Dynamics and Control of Structure i
the control system is very dependent upon the mameu Space Ill, Editors: C.L. Kirk and D.J. Inman,
strategy. Computational Mechanics Publication - CMP, 156;16
1996. ISBN: 1-85312-415-X.
Summary
®Souza, L.C.G , "Dynamic Model for a Flexible System

In this paper the study of dynamics and contosl f aiming at a Robust Control Design". X ENIEF -
rigid/flexible space system is presented. It iMecanica Computacional, Vol. XVIII, pp. 367-376..Ed
investigated the particular problem of rotatindexible E. Dari, C. Padra, Novenber 10-14, Bariloche,
beam attached to a rigid hub and the performantieeof Argentina, 1997.
proposed control system based on a PMA. The
dynamics of the beam were modeled, and its mod&oares, A.M., Souza, L.C.G and Gées. L.C., "Modal
shapes and natural frequencies found. Lagrangéimalysis of a a Multibody System with Flexible
equation was then applied to find the modal eqnatio Appendages". In Nonlinear Dynamics , Chaos, Céntro
of motion for the rotating flexible structure. Theand Their Applications to Engineering Sciencesl, 3,0
efficiency of the proof-mass actuator using veloci J.M.Balthazar, D.T. Mook, and J.M. Rosario, Editors
feedback with a Pl control law was examined. Iswapp. 312-316 (1997). -Published by American Academy
shown that one such controller has damped thdualsi of mechanics (AAM) ABCM- ISBN: 85-900351-15.
flexible vibration successfully. However, it wassal
shown that the control system efficiency is functif  ®Hallauer, W.L.; Recent Literature on Experimental

the maneuver strategy. Structural Dynamics and Control Research, Mechanics
and Control of Large Flexible Structures, ed. J.L.
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