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Abstract
A movement of mass centres of celestial bodies and

The algorithm is designed to perform the calculatiospacecraft for used model of the acting forces
of probabilityP of the satisfaction of the restrictions on(movement model) is defined by representation ef th
spacecraft movement with respect to the celestidyb kinematic parameters of their trajectories in somitél
(other spacecraft, orbital station, planet, saeelbf a moment and by the parameters of the movement model.
planet, etc.) at moments from finite setT . It is assumed that

For each calculation oP it is necessary to compute * kinematic ~ parameters  of  trajectories,
the many-dimensional integral. Computing a manyParameters of movement model and their errors are
dimensional integral is usually executed by thehmet known;
of a separation of domain of integration into smalf restrictions on the parameters of spacecraft
parallelepipeds that is immediately followed frommovement define the domai& which is not changed
mathematical definition of a integral. In our case (in the course of time) in a Cartesian system of
calculation of integral by the methods of a sepamnadf  coordinatesOXYZ ;
domain requires execution of a lot of operationsrel  * position of the axes of coordinate system
it is done for one moment only. In solving applied OXYZ in an inertial space is given function from time.
problems a setl that t belongs to being generally  The algorithm for calculation of probabilityP
large, in computing it is impossible to limit onds®  utilizes practically justified assumptions abouawcter
above-mentioned method of a separation of a domagfi the errors in knowledge of initial movements fhe
through a large time of its execution. In connettidth  celestial bodies and the parameters of movemeneimod
this the more effective algorithm is offered foviieg  and about topology of the doma@@ :

the problem. * in initial moment (for the interval of prediction
Solving the problem is divided into two time stage:  of movement) the errors are distributed in accocdan
1) preliminary stage and with normal law (Gauss law) for which the parameter
2) stage of immediate computation &(t) for all (mathematical expectation and covariance matrig) ar
t from setT . Lmown; . . -
A finite set Jof integrals whose values are in any moment (from the interval of prediction

independent ont is computed in a preliminary stageOlc movement) the deper}de,nce of deviations of !<|n!ma_
parameters of the bodies’ movement on deviations in

when time to calculate is practically unlimited. rFo ! ial t of h i q i f
calculated mathematical expectations, covariandg1@ moment 0T 'SUCh parameters and parameters o

matrices and values of integrals from sala movement model can be presented by linear part of

computation of valuesP(t) is realized in the stage 2 Taylor series;

o e domain Q is bounded.
by using simple formula and does not require bigetdf The algorithm was used successfully for
execution.

a) choosing the trajectories ensuring the autonomic

. o . closure between the vehicle and orbital station,
Key words: Trajectory monitoring, Coming together of b) projection and implementation of the closure

spacecraft and celestial body, Restrictions onepall  eqyeen artificial satellite of Mars and Fobos,

movement, Probability. c) estimation of safe coming together of spacecraft
and etc.

Introduction



Description of the algorithm The expression (1) can be rewritten in the form:

Input information for algorithm are: P(t) = QJ‘J‘J‘ exp(-X"K X /2 +a" K "x )ixdydz
setT; Q
* mathematical expectation and covariance )
matrices of where

a) initial conditions of movements of g — T
spacecraft and the celestial body; X =(x, y’Z)S/Z' s L

b) parameters of the manoeuvres to perform Q(t) = (277)""(detK )"~ expta 'K aR)
(jet thrust, orientation of the jet axis is  The formula (2) is replaced by the approximate

space, etc.) and formula
C) parameters of the movement model;

* parameters to define domain in which 9 . T fo L T
restrictions on spacecraft movement are satisfied. P(t) = QZ_(; (7] )H.[ (X AX+b 'X) " dxdydz

Output information of algorithm are value of the ” @ 3
probability ®)

1 L where
P_7(2/7)“’2(detK)MieXp(_(x_a) K™ x-a)/2)x, ..dx, A(t) — _K_l(t) /2

M bm=K*®aw
at every momentt from set T. Here a,K are (the limit of (3) asN becomes infinite is equal to (2)).

. : . : It is obvious that calculation oP(t) by the formula
mathematical expectation and covariance matrixdor _ _ & _
kinematic parameters of spacecraft at the coordina@) is reduced to calculation of the sétof the integrals

systemOXYZ in which the restrictions are imposed.

In common case the movement of celestial bodies is J(K,l,m) = jﬂ x*y' z"dxdydz. (4)
described by the system of differential equatioor F Q
calculation of the matrixK it is necessary to calculate
the partial derivatives of current kinematic parsare of Solving the problem is divided into two time stage:
the spacecraft movement in coordinate sysf@XYZ 1. preliminary stage,
with respect to a) initial kinematic parameters of. stage of immediate computation &%(t) ,t 0T .
movement of the spacecraft and the celestial bdaly, Stage 1.
parameters of the manoeuvres and c) parameténg of Being independent of the values of integrals (4)
movement model. These derivatives can be calculatgds caiculated in stage 1. The calculation of iratlsg(4)

by the method of the finite differences. In theaalthm .o (05704 for all nonnegative integeksl,m that
the computation of their derivatives is executedthsy

numerical solution of Cauchy problem for thesatisfy the inequalitk +1+m<2N. )

corresponding system of differential equations. The N addition centre coordinates and radii of two

algorithm of such computation of the covariancerinat spheres (S,S,) are calculated. The spheres

was presentéd in detail. _ - S, S, satisfy relationsS,, 0 Q,S, 0 Q and they
After a computation of _ the covanan_ce_matnce%ave maximal and minimal radii respectively.

K(t) and the mathematical expectationa(t),

t 0T, the valuesP(t) are calculated. A computing of  Stage 2.

the probability P is highly laborious process even for  In stage 2 a computation dP(t) is executed by
the individual value oft. Our algorithm exploits using linear dependence of (3) on the integrals

effective the computation method for calculatingJ(k,l,m) with coefficients that are relatively simple

probability P . ; a
Method for calculating probability. functions of components of the vect@(t) and the

Without loss of generality the method is presentegovariance matrixK (t) .
for the case when theQ) is three-dimensional 1- The stage is executed in the following succession.
connected and bounded domain.




1. Let EU be ellipsoid which is similar to the the condition (8) exists in most practical tasks,an

concentration ellipsoid of the stochastic vectothwi consequently, calculation of the probability is
covariance matrix K. A centre and directions of COMpleted by the formula (9).

principal axes ofE; is the same as those of ellipsoid of Char acteristic of the algorithm

concentration but form off, is determined by matrix

The algorithm was put in the base of the software
(software A) to calculate probability of satisfacti of
the restrictions on spacecraft movement paramelaes.
basic characteristics of the algorithm are showed i
connection with problem of coming together of two

spacecrafts, and S,).

The mass centres (poin€; andO,) of spacecrafts
E,nS,=0 )(6 move along their trajectories in a  Cartesianesysof
coordinates OXYZ . The point O, is centre of the
then P is set equal to 1 in case (5) or 0 in case (6).  sphere with radiusR (sphere of safety). For each
It is perfectly permissible for practical calcutats if moment t JT it is necessary to calculate the

U =5. probability P of the event when poin©; hits into
2. For known values of the integrals (4) thesphere of safety.
following values

U 2K whereU is a given scalar. If by researching it
has been found that either

E, n Sy = Ey (®)

or

If K;,l; are covariance matrix and mathematical

1 . o expectation of position of the poif®d , i =1,2. then
- F”j (X" AX +b ' X)’ dxdydz (7)  expression (1) may be written in form:
T Q
1 y
= - -(X-a) K (x-a)/2)xdyd
are calculated in succession foy =0,,...,N by (2”)3'2(de“<)”xawzi)fp( R
using simple relations. The calculation are exetute (10)
until
(the domainQ) is unit sphere; the centre of sphere is
‘Q W.‘<5 @) point O,). Here, K,a are covariance matrix and
1B
mathematical expectation of position of spaceciGft
where 0 is a given small value. with respect to spacecra$, ,
If the inequality (8) is satisfied forj” < N, the K=(K,+K,)/R?,
probability P is set equal 3= (r—l - rz) /R,
i x=(xY,2).
P=Q)V,. 9)
j=0 The basic characteristics of the algorithm are

represented in Tables 1, 2, 3 for the series oficest
It should be noted that the numb®& is empirical K and vectorsa .
found with regard for restrictions on executiondind The values ME,UX,ay,UZ are modulus of the

on size of computer storage for coefficients Ofrnathematical expectationa and square roots of

- vT AY + BT w) ) - ) )
polynomials (X" AX+b'X)’', j=12,..,N. gjgenvalues of the covariance matrk . The values
Taking in into account we have recommendsd= 14 Py, and P; are results of calculations of the

for three-dim.ensional dor.nair?N is .set equal 11-, 9,7 probability P by using software A (withd = 0.00Zin
for four-, five- and six-dimensional domairf) ihequality (8)) and the algorithm of the separatifn

respectively). In addition it should be noted tha}jomain Q into parallelepipeds (sofware S)
generally for this value ofN a number | satisfying respectively. The parallelepiped edges are equal



.o, 1 . O, 1 .o, 1
min(—=,—), min(—,—), min(—%,—),
NN NN NN

where N = 40. This value of N makes possible tg

compute probability with accuracy 0.0005.

Table 1: Characteristics of algorithm.

Domain contains mass centre

of spacecr aft.

ME I:)M PS Trel
0,,0,,0,
0.0 0.3321 | 0.3323 | 292
0.8, 0.8, 0.80
0.0 05729 | 05729 | 371
0.6, 0.6, 0.60
0.0 0.5671 | 0.5667 | 163
0.8, 0.6, 0.40
0.0 0.5468 | 0.5453 53
0.9, 0.6, 0.33
0.5 0.2887 | 0.2888 | 350
0.8, 0.8, 0.80
0.5 0.4742 | 0.4742 | 151
0.6, 0.6, 0.60
0.5 0.4957 | 0.4955 | 168
0.8, 0.6, 0.40
0.5 0.4877 | 0.4866 55
0.9, 0.6, 0.33

Table 2: Characteristics of algorithm.

Boundary of domain contains

mass centr e of spacecr aft.

15 0.0918 0.0918 103
0.8, 0.8, 0.80

15 0.0898 0.0896 82
0.6, 0.6, 0.60

15 0.1637 0.1638 163
0.8, 0.6, 0.40

15 0.1924 0.1925 89
0.9, 0.6, 0.33

2.0 0.0328 0.0327 110
0.8, 0.8, 0.80

2.0 0.0180 0.0179 47
0.6, 0.6, 0.60

2.0 0.0599 0.0599 168
0.8, 0.6, 0.40

2.0 0.0837 0.0842 99
0.9, 0.6, 0.33

2.5 0.0085 0.0084 110
0.8, 0.8, 0.80

2.5 0.0021 0.0020 62
0.6, 0.6, 0.60

2.5 0.0159 0.0158 163
0.8, 0.6, 0.40

2.5 0.0282 0.0284 99
0.9, 0.6, 0.33

3.0 0.0017 0.0015 >1752
0.8, 0.8, 0.80

3.0 0.0000 0.0001 >2049
0.6, 0.6, 0.60

3.0 0.0032 0.0030 414
0.8, 0.6, 0.40

3.0 0.0074 0.0073 181
0.9, 0.6, 0.33

ME I:)M PS Trel
0y.,0y,0,

1.0 0.1887 | 0.1888| 159
0.8, 0.8, 0.80

1.0 0.2612 | 0.2612] 75
0.6, 0.6, 0.60

1.0 0.3292 | 0.3293| 163
0.8, 0.6, 0.40

1.0 0.3449 | 0.3451| 52
0.8,0.6,0.33

Table 3: Characteristics of algorithm.
Domain do not contains
mass centr e spacecr aft.

ME
0y.,0y,0,

Py

Ps

Trel

An algorithm effectiveness is characterized by galu
t
Trel =_S (11)
tM
where tg,t,, are times of the computations by using
the softwares S and A respectively.
The problem of coming together of two spacecrafts
(Earth satellites) was solved by software A andverie
S repeatedly. The movement model was sufficiently
preciséK . The calculations showed effectiveness of
software A. The calculation time of probabilitf® by
using software A is approximately by two order ltest
this time by using software S. The vallg, (see (11))
increases if dimension of domain is increased.
Consequently the effectiveness of algorithm inazsas
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