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Abstract 

 
  In this paper the problem of spacecraft orbit transfer 
with minimum fuel consumption is considered. The 
main goal is to study the effects of errors in the thrust 
vector in a tridimensional biimpulsive orbit transfer 
problem. After a search in the literature and analysis of 
the results available, we select and extend a method 
developed by Altman and Pistiner to be the base to the 
algorithm developed. The spacecraft is supposed to be 
in Keplerian motion controlled by the thrusts, that are 
assumed to be impulsive with errors in magnitude and 
direction. Results of simulations are also presented, to 
show the extra fuel and time required to complete the 
maneuver, as functions of those errors. 
 
Key words: Orbital Transfer, Impulsive Maneuvers, 
Thrust Errors. 
 

Introduction 
 
  The launching of a geostationary or an 
heliosynchronous satellite, the orbit corrections, the 
maintenance of space stations, the interplanetary trips 
and the interceptation of celestial bodies are examples 
of ordinary space missions very popular nowadays due 
to the great advance of the Space Sciences, and that 
require orbital maneuvers for their execution. Since it 
became necessary to use vehicles equipped with 
propulsion systems to perform such space missions, it 
became also necessary to study the optimal transfer 
problem of a spacecraft between two given orbits. 
  In this paper we summarize part of our study2 on 
tridimensional orbital transfers with errors in the thrust 
vector. There, we give a conceptual definition of the 
orbital transfer problem and its options. We also study 
tridimensional optimal biimpulsive transfers solving the 
poin-to-point formulation of Altman and Pistiner1. We 
extended it to become an orbit-to-orbit formulation and 
to include maneuvers with errors in the thrust vector. 

Simulations were performed to test the developed 
program. Finally, we present the contributions of this 
research, as well as the conclusions obtained concerning 
the effects of such errors on the tridimensional 
biimpulsive maneuvers. They show that the method may 
give good "a priori" estimates of the extra time and 
consumption required by a transfer which considers the 
effects of such errors. They also show that in the 
transfers where the error in magnitude drives the thrust 
to a value superior to the nominal, there is a bigger 
increase in ∆V (requiring more time and a bigger 
number of maneuvers to reach an orbit closer to the 
final orbit desired) than when the error in magnitude 
results in a thrust smaller than the nominal. Yet, the 
extra expenditures in time and fuel can not be 
considered insignificant fractions of nominal time and 
fuel, and do not necessarily decrease with the proximity 
of the orbits. Thus, the impact of the errors in the thrust 
vector is an important factor to be considered in the 
study of transfers. 
 

Revision of the Literature 
 
  The problem of optimal transfers (in the sense of 
minimum fuel consumption) between two Keplerian 
coplanar orbits has been investigated for a long time. In 
particular, many papers solve this problem for an 
impulsive thrust system with a fixed number of 
impulses. The literature is full of solutions for particular 
cases, like the Hohmann3 and the Hoelker-Silber4 
transfers between two circular orbits and its variants for 
ellipses in particular positions. Different approaches can 
be found in Lawden5,6 and Ting7. 
  Goddard8 was one of the first researchers to work on 
the problem of optimal transfers of a spacecraft between 
two points. He proposed optimal approximate solutions 
for the problem of sending a rocket to high altitudes 
with minimum fuel consumption. 
  After him comes the very important work done by 
Hohmann3. He solved the problem of minimum ∆V 



transfers between two circular coplanar orbits. His 
results are largely used nowadays as a first 
approximation of more complex models and it was 
considered the final solution of this problem until 1959. 
A detailed study of this transfer can be found in Marec9 
and an analytical proof of its optimality can be found in 
Barrar10. 
  The Hohmann transfer would be generalized to the 
elliptic case (transfer between two coaxial elliptic 
orbits) by Marchal11. Smith12 shows results for some 
other special cases, like coaxial and quasi-coaxial 
elliptic orbits, circular-elliptic orbits, two quasi-circular 
orbits. A numerical scheme to solve the transfer 
between two generic coplanar elliptic orbits is presented 
by Bender13. 
  Hohmann type transfers between noncoplanar orbits 
are discussed in several papers, like McCue14, that study 
a transfer between two elliptic inclined orbits including 
the possibility of rendezvous; or like Eckel and Vinh15, 
that solve the same problem with time or fuel fixed. 
  Another line of research studies the effects of the 
reality of finite thrust in the results obtained from the 
impulsive model. Zee16 obtained analytical expressions 
for the extra fuel consumed to reach the same transfer 
and for the errors in the orbital elements and energy for 
a nominal maneuver (a real maneuver that uses the 
impulses calculated with the impulsive model). 
  More recently, the literature studied the problem of a 
two-impulse transfer where the magnitude of the two 
impulses are fixed, like in Jin and Melton17, Jezewski 
and Mittleman18. 
  The three-impulse concept was introduced in the 
literature by Hoelker and Silber4. They showed that a bi-
elliptical transfer between two circular orbits has a 
lower ∆V than the Hohmann transfer, for some 
combinations of initial and final orbits. After that, Ting7 
showed that the use of more than three impulses does 
not lower the ∆V, for impulsive maneuvers. Roth19 
obtained the minimum ∆V solution for a bielliptical 
transfer between two inclined orbits. 
  Following the idea of more than two impulses, we 
have the work done by Prussing20 that admits two or 
three impulses; Prussing21 that admits four impulses; 
Eckel22 that admits N impulses. 
  Another line of research that comes from the Hohmann 
transfer is the study of multi-revolutions transfer with N 
impulses applied during N successive passages by the 
apses. Spencer, Glickman and Bercaw23 show equations 
and pictures to obtain the ∆V required for this transfer, 
as a function of the number of revolutions allowed for 
the transfer. After that, Redding24 and Matogawa25 
would extend this concept of multi-revolution transfer 

to the non-impulsive case, by applying finite thrust 
around the apses. 
  Some other researchers worked on methods where the 
number of impulses was a free parameter, and not a 
value fixed in advance. It is the case of the papers made 
by Lion and Handelsman26, Jezewski and Rosendaal27, 
Gross and Prussing28, Eckel29 and Prussing and Chiu30. 
Most of the research done in this particular case is based 
on the"Primer-Vector" idea developed by Lawden31, 32. 
 

Orbital Transfers Without Errors 
 
  An orbital transfer consists of changing the state of a 
space vehicle. The state is defined as the position, 
velocity and mass of the vehicle at a given time. Fig. 1 
shows an orbit transfer between two points marked by 
the subscripts “0” and “f”.  
  The most studied transfer is the biimpulsive coplanar 
transfer. Suppose that we have a spacecraft in a 
Keplerian orbit O1. We desire to transfer this spacecraft 
to a final Keplerian orbit O2, coplanar with O1. Figure 2 
shows a sketch of the transfer and defines some of the 
variables used. At the point P1 (r1, θ1), we apply an 

impulse with magnitude ∆V1 that has an angle φ1 with 
the local transverse direction. The transfer orbit crosses 
the final orbit at the point P2 (r2, θ2), where we apply 

an impulse with magnitude ∆V2 making an angle φ2 
with the local transverse direction. 
  Figure 3 shows a noncoplanar orbital transfer. The 
spacecraft follows an initial orbit A until it reaches point 
P1. At P1 it receives an impulsive thrust that changes the 
velocity in zero time, putting the spacecraft into a 
transfer orbit P1 – P2. At P2, a new impulsive thrust puts 
the spacecraft into a final orbit B (the orbits are defined 
by their orbital elements; points A and B are defined by 
their true anomalies). 
 
Options For Dynamics, Actuators and Optimization 

Methods 
 
  There are several choices that we can make related to 
those aspects. For the dynamics we have the most usual 
possibilities: 
i) Two-body Problem 
ii) Two-body Perturbed Problem 
iii) Three-body Problem (in particular, the restricted 
version of this problem) 
iv) N-bodies Problem 
 
  For the control (engine to be used to complete the 
maneuver) we have two main possibilities: 



i) Impulsive system, (∆V), that changes the velocity in a 
time very short time, that can be considered zero; 
ii) Continuous system, that applies a finite force during 
a certain time. 
 
  As far as the optimization method is concerned, the 
main possibilities are: 
i) Direct methods (search of parameters that minimizes 
a certain objective function); 
ii) Indirect method (first-order necessary conditions); 
iii) Hybrid approach (first-order necessary conditions 
are written and transformed in a search of parameters). 
 

The Method of Altman and Pistiner and Our 
Extension of It 

 
The method developed by Altman and Pistiner1 solves 
the problem of minimum biimpulsive transfer between 
two given points. It uses an analytical approach based in 
the hodograph orbital parameters that transform the 
solution of this problem in finding the root of a 
polynomial of order 8, that is then solved numerically. 
This method was extended by Santos-Paulo2, to solve 
the problem of minimum transfer between two given 
orbits. This is done by varying the true anomaly of the 
initial and final points involved in the transfer and 
applying the method developed by Altman and Pistiner 
for each pair of points. Each solution is saved and 
compared with the previous results to find the global 
minimum. 
 

Orbital Transfers With Errors 
  

  Based on our extension2 of the Altman and Pistiner1 
algorithm that solves the minimum fuel biimpulsive 
transfer, we developed a numerical scheme that 
incorporates errors in magnitude and direction of the 
impulsive thrust. The steps to be followed are (Fig. 4): 
Step zero: Calculate the optimum biimpulsive transfer 
(TSE) between the two given orbits (ID, FD); not 
including the errors; 
Step one: Calculate the actual transfer orbit, subject to 
errors (TCE). The values of the errors are assumed by 
hypothesis; 
Step two: The actual transfer orbit (TCE) is assumed to 
be the initial orbit of a new maneuver. The calculation 
of the new minimum fuel maneuver (T2SE) is made 
assuming that there are no errors involved; 
Step three: Step one is repeated, and we can find a new 
real transfer orbit, including  errors (T2CE). 
Step four: We repeat step two, now assuming that the 
real transfer orbit (T2CE) obtained in step three is the 
initial orbit. The steps above are repeated as many times 
as necessary to achieve a final orbit (TNCE ≅ FD) with 

the accuracy required. Fig. 5 shows a sequence of 
maneuvers used in a complete transfer. 

 
  

Figure 1 – Orbital Transfer 
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Figure 2 - A Biimpulsive Coplanar Transfer. 
 

Results 
 
  Two test cases were calculated to show the importance 
of the algorithm developed: 

1) The initial orbit ID has a = 7500 Km, e = 0, i = 10°, Ω 
= 0°; and the final orbit FD has a = 9000 Km, e = 0, i = 
10°, Ω = 45°. Table 1 shows their results for several 
error values. 
2) The initial orbit ID has a = 7500 Km, e = 0.1 , i = 0°, 
Ω = 0°, ϖ = 10°; and the final orbit FD has a = 800 km, e 
= 0,2, i = 5°, Ω = 0°, ϖ = 10°. Table 2 shows their results 
for several error hypotheses. 
  They show that: a)an increase in the ∆V (δ∆V> 0) 
causes an increase in the time and in the number of 
iterations used to solve the problem; b) when the real ∆V 
is smaller than the nominal value (δ∆V < 0), the 
corrections due to the errors are faster and cheaper; 



 
Figure 3 – Noncoplanar Transfer 
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Figure 4 – Steps for the Orbital Transfer with Errors. 
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Figure 4 (cont.) – Steps for the Orbital Transfer with 
Errors. 



 

 
 Figure 5 – Complete Orbital Transfer with Errors. 

 
c) considering errors in direction only, when they make 
the angles smaller than the nominal values (δα< 0, δβ < 
0), it is necessary to use more ∆V and time to complete 
the maneuvers, and the accuracy obtained is smaller. 

 
Conclusions 

 
  We developed, implemented and tested a numerical 
algorithm that calculates minimum fuel maneuvers that 
use an impulsive propulsion system with errors in 
magnitude and direction. The tests showed the 
applicability of the method. We considered that the 
errors in the thrust vector already exist and that it is not 
possible to change them, since the spacecraft is already 
flying. Then, what we did was to estimate their effects. 
Several simulations were performed with this goal. We 
were able to see that, in some simulations, even 
increasing the number of iterations and so the fuel and 
time required for the transfer, the Nth.  transfer orbit with 
errors TNCE does not reach the final desired orbit FD. 
This will happen even for infinite number of iterations 
due to the thrust errors. 
  The results also showed that the longitude of the 
ascending node and the inclination changes very little, 
while the argument of the periapse has larger changes. 
This happens because, when we modify the shape of an 
orbit the periapse and apoapse may exchange places. 
This fact may cause larger changes in this parameter 
with little errors in the maneuvers. 
  The longitude of the ascending node Ω and the 
inclination i require more torque to be changed, because 
it is necessary to change the angular momentum of the 
orbit. This angular momentum is perpendicular to the 
orbital plane, so modifications in the direction of this 
plane (parameters “i” and “Ω”) change the angular 
momentum. Since the magnitude of the angular 
momentum is large, to change it requires a large torque. 

  The application of this research is very large, including 
all the space missions that require orbital maneuvers and 
that can be modelled by an impulsive thrust, such as the 
Brazil-China Remote Sensing Satellite-CBERS. 
Interplanetary missions can also benefit from this 
method in parts of the mission. 
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Table 1 - Results for the First Simulation 

 
 

KEPLERIAN 
ELEMENTS 

OF THE 
DESIRED 

FINAL 
ORBIT 

 
a = 9000  km 

 
e = 0 

 
i  = 10° 

 
Ω = 45° 

 
ω = undefined 

∆tIDEAL 
1 hour 

∆V IDEAL 
1,1261 km/s 

 
δδδδαααα  =  δδδδββββ 

δδδδ∆∆∆∆V 

A 
0° 

3% 

B 
0° 

-3% 

C 
0° 

5% 

D 
0° 

-5% 

E 
0° 

10% 

F 
0° 

-10% 

G 
-2,5° 
0% 

H 
2,5° 
0% 

I 
- 5° 
0% 

J 
5° 

0% 

L 
- 2,5° 
-5% 

 

M 
2,5° 
-5% 

 
 

N 
-5° 

-5% 

P 
5° 

-5% 

 
KEPLERIAN ELEMENTS OFTHE REACHED FINAL ORBIT 

 
 

a (km) 
 

8993 
 

8999 
 

8794 
 

8982 
 

8933 
 

8977 
 

8951 
 

8937 
 

8988 
 

8970 
 

8952 
 

8992 
 

8959 
 

8985 
 
e 

 
0,0005 

 
0,0006 

 
0,06 

 
0,003 

 
0,009 

 
0,002 

 
0,006 

 
0,006 

 
0,005 

 
0,002 

 
0,02 

 
0,001 

 
0,04 

 
0,004 

 
i (degrees) 

 
10 

 
10 

 
10 

 
10 

 
10 

 
10 

 
10 

 
10 

 
10 

 
10 

 
9 

 
10 

 
10 

 
9 

 
Ω (degr.) 

 
45 

 
45 

 
34 

 
43 

 
42 

 
45 

 
45 

 
45 

 
45 

 
45 

 
28 

 
45 

 
34 

 
42 

 
ω (degr.) 

 
312 

 
211 

 
125 

 
37 

 
295 

 
350 

 
55 

 
37 

 
260 

 
341 

 
14 

 
39 

 
24 

 
320 

 
∆tTOTAL 

 
5h32’ 

 
3h28’ 

 
9h09’ 

 
2h45’ 

 
5h40’ 

 
3h18’ 

 
4h30’ 

 
2h07’ 

 
5h29’ 

 
3h31’ 

 
5h36’ 

 
4h17’ 

 
4h33’ 

 
4h29’ 

∆VTOTAL 

(km/s) 
 

2,9430 
 

1,1537 
 

2,1116 
 

1,1214 
 

1,9987 
 

1,1668 
 

1,8287 
 

1,2610 
 

1,9849 
 

1,2255 
 

1,4388 
 

1,1753 
 

1,6288 
 

1,0946 
Increment 

in t 
 

4h32’ 
 

2h28’ 
 

8h09’ 
 

1h45’ 
 

4h40’ 
 

2h18’ 
 

3h30’ 
 

1h07’ 
 

4h29’ 
 

2h31’ 
 

4h36’ 
 

3h17’ 
 

3h33’ 
 

3h29’ 
Increment 

in ∆V 
(km/s) 

 
1,8169 

 
0,0276 

 
0,9855 

 
- 

0,0047 

 
0,8726 

 
0,0407 

 
0,7026 

 
0,1349 

 
0,8588 

 
0,0994 

 
0,3127 

 
0,0492 

 
0,5027 

 
- 0,0315 

Number 
of  

iterations 

 
13 

(13) 

 
7 (7) 

 
15 (19) 

 
7 (7) 

 
9 (9) 

 
7 (7) 

 
9 (9) 

 
7 (7) 

 
9 (9) 

 
7 (7) 

 
9 (9) 

 
7 (7) 

 
9 (9) 

 
7 (7) 



 
Table 2 - Results for the Second Simulation 

 
KEPLERIAN 

ELEMENTS OF 
THE DESIRED 
FINAL ORBIT 

a (km) 
 

8000 

e 
 

0,2 

i (degrees) 
 
5 

Ω (degrees) 
 
0 

ω (degrees) 
 

10 
 

∆tIDEAL 
 

45 minutes 

∆VIDEAL 

 
 0,7545 km/s 

 
 

ERROR 
HYPOTHESES 

 

A 
δδδδαααα = δδδδββββ = 0° 
δδδδ∆∆∆∆V = 3% 

B 
δδδδαααα = δδδδββββ = 0° 
δδδδ∆∆∆∆V = -3% 

G 
δδδδαααα=δδδδββββ=-2,5° 
δδδδ∆∆∆∆V = 0% 

H 
δδδδαααα=δδδδββββ= 2,5° 
δδδδ∆∆∆∆V = 0% 

 
KEPLERIAN ELEMENTS OF THE REACHED FINAL ORBIT 

 
a (km) 8045 7981 8072 7982 

 
e 0,2 0,2 0,2 0,2 

 
i (degrees) 5 5 5 5 

 
Ω (degrees) 358 359 359 358 

 
ω (degrees) 11 12 10 24 

 
∆tTOTAL 43’ 45’ 2h50’ 60’ 

 
∆VTOTAL 

(km/s) 
0,7352 0,7347 0,7609 1,0100 

 
Increment in t -2’ zero 2h05’ 15’ 

 
Increment in ∆V 

(km/s) 
-0,0194 -0,0198 0,0064 0,2555 

 
Number of iterations  3 (7) 3 (7) 7 (7) 5 (7) 

 
 
 
 


