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Abstract Simulations were performed to test the developed
program. Finally, we present the contributions lukt
In this paper the problem of spacecraft orbihdfar research, as well as the conclusions obtained coince
with  minimum fuel consumption is considered. Theahe effects of such errors on the tridimensional
main goal is to study the effects of errors in theust biimpulsive maneuvers. They show that the method ma
vector in a tridimensional biimpulsive orbit traesf give good "a priori" estimates of the extra timedan
problem. After a search in the literature and asialpf consumption required by a transfer which considees
the results available, we select and extend a rdetheffects of such errors. They also show that in the
developed by Altman and Pistiner to be the baghdo transfers where the error in magnitude drives kinast
algorithm developed. The spacecraft is supposduokto to a value superior to the nominal, there is a déigg
in Keplerian motion controlled by the thrusts, tlaaé increase inAV (requiring more time and a bigger
assumed to be impulsive with errors in magnitudé amumber of maneuvers to reach an orbit closer to the
direction. Results of simulations are also presknte final orbit desired) than when the error in magméu
show the extra fuel and time required to complég t results in a thrust smaller than the nominal. Ybe
maneuver, as functions of those errors. extra expenditures in time and fuel can not be
considered insignificant fractions of nominal tiraad

Key words. Orbital Transfer, Impulsive Maneuvers,fuel, and do not necessarily decrease with theipriox

Thrust Errors. of the orbits. Thus, the impact of the errors ia thrust
vector is an important factor to be consideredha t
Introduction study of transfers.
The launching of a geostationary or an Revision of the Literature

heliosynchronous satellite, the orbit correctiotise
maintenance of space stations, the interplanetipg t The problem of optimal transfers (in the sense of
and the interceptation of celestial bodies are gtasn minimum fuel consumption) between two Keplerian
of ordinary space missions very popular nowadays dgoplanar orbits has been investigated for a lomg tiln
to the great advance of the Space Sciences, and tRarticular, many papers solve this problem for an
require orbital maneuvers for their execution. 8inic impulsive thrust system with a fixed number of
became necessary to use vehicles equipped withpulses. The literature is full of solutions faarpicular
propulsion systems to perform such space missions,cases, like the Hohmahnand the Hoelker-Silbér
became also necessary to study the optimal transtéansfers between two circular orbits and its vasdor
problem of a spacecraft between two given orbits.  €ellipses in particular positions. Different apprbes can

In this paper we summarize part of our sfudy be found in Lawdetf and Tind.
tridimensional orbital transfers with errors in tieust ~ Goddardl was one of the first researchers to work on
vector. There, we give a conceptual definition loé t the problem of optimal transfers of a spacecraftvben
orbital transfer problem and its options. We alsalg two points. He proposed optimal approximate sohgio
tridimensional optimal biimpulsive transfers solyithe for the problem of sending @ocket to high altitudes
poin-to-point formulation of Altman and Pistifeive  With minimum fuel consumption.
extended it to become an orbit-to-orbit formulatam  After him comes the very important work done by
to include maneuvers with errors in the thrust @ect Hohmann. He solved the problem of minimumV



transfers between two circular coplanar orbits. Hito the non-impulsive case, by applying finite thrus

results are largely used nowadays as a firstround the apses.

approximation of more complex models and it wasSome other researchers worked on methods where th

considered the final solution of this problem ud®59. number of impulses was a free parameter, and not a

A detailed study of this transfer can be found iarbt value fixed in advance. It is the case of the papeade

and an analytical proof of its optimality can berid in by Lion and Handelsmah Jezewski and Rosendal

Barrar®. Gross and Prussiffy Eckef® and Prussing and CHfu
The Hohmann transfer would be generalized to thdost of the research done in this particular cadesed

elliptic case (transfer between two coaxial eltipti on the"Primer-Vector" idea developed by Lawtleit

orbits) by Marchdf. SmitH? shows results for some

other special cases, like coaxial and quasi-coaxial Orbital Transfers Without Errors

elliptic orbits, circular-elliptic orbits, two quasircular

orbits. A numerical scheme to solve the transferAn orbital transfer consists of changing theestatt a

between two generic coplanar elliptic orbits issemted space vehicle. The state is defined as the position

by Bendel’. velocity and mass of the vehicle at a given timg. E
Hohmann type transfers between noncoplanar orbgbows an orbit transfer between two points marked b

are discussed in several papers, like Mcubat study the subscripts “0” and “f".

a transfer between two elliptic inclined orbitsliuding The most studied transfer is the biimpulsive aopt

the possibility of rendezvous; or like Eckel anchW?, transfer. Suppose that we have a spacecraft in a

that solve the same problem with time or fuel fixed Keplerian orbit Q. We desire to transfer this spacecraft
Another line of research studies the effects [ t to a final Keplerian orbit @, coplanar with @. Figure 2

reality of finite thrust in the results obtainearr the shows a sketch of the transfer and defines sontheof
impulsive model. Ze® obtained analytical expressionsvariables used. At the pointyRr1, 67), we apply an

for the extra fuel consumed to reach the same feans, ) ) )
and for the errors in the orbital elements andgnéor MPulse with magnitudéVy that has an angkgL with

a nominal maneuver (a real maneuver that uses the local transverse direction. The transfer ochitsses
impulses calculated with the impulsive model). the final orbit at the point 2(r2, 62), where we apply
More recently, the literature studied the problefva an impulse with magnitudAVo> making an anglepp
two-impulse transfer where the magnitude of the twgiih the local transverse direction.
impulses are £|xed, like in Jin and Mel{dnJezewski Figure 3 shows a noncoplanar orbital transfere Th
and M|ttlema_r1| ' _ _ spacecraft follows an initial orbit A until it relaes point
‘The three-impulse concept was introduced in the, At p, it receives an impulsive thrust that changes the
literature by Hoelker and SilbeiThey showed that a bi- velocity in zero time, putting the spacecraft irao
elliptical transfer between two circular orbits has ansfer orbit P— P, At P, a new impulsive thrust puts
lower AV than the Hohmann transfer, for somene spacecraft into a final orbit B (the orbits defined

combinations of initial and final orbits. After tha'ing’ by their orbital elements; points A and B are defirby
showed that the use of more than three impulses dafeijr true anomalies).

not lower theAV, for impulsive maneuvers. R
obtained the minimumAV solution for a bielliptical Options For Dynamics, Actuators and Optimization
transfer between two inclined orbits. Methods

Following the idea of more than two impulses, we
have the work done by Prussffighat admits twoor ~ There are several choices that we can make detate
three_impulses; Prussifigthat admits four impulses; those aspects. For the dynamics we have the moat us
Eckef? that admits N impulses. possibilities:

Another line of research that comes from the Halm i) Two-body Problem
transfer is the study of multi-revolutions transféth N ii) Two-body Perturbed Problem
impulses applied during N successive passages édy fll) Three-body Problem (in particular, the redeid
apses. Spencer, Glickman and Ber&ashow equations version of this problem)
and pictures to obtain th&V required for this transfer, iv) N-bodies Problem
as a function of the number of revolutions allowed
the transfer. After that, Reddiffgand Matogaw® For the control (engine to be used to complet th
would extend this concept of multi-revolution tréers maneuver) we have two main possibilities:



i) Impulsive system,AV), that changes the velocity in athe accuracy required. Fig. 5 shows a sequence of

time very short time, that can be considered zero; maneuvers used in a complete transfer.
i) Continuous system, that applies a finite foci&ing
a certain time. 1. my

As far as the optimization method is concernée, t
main possibilities are:
i) Direct methods (search of parameters that miresi 2
a certain objective function);
i) Indirect method (first-order necessary condit
iiiy Hybrid approach (first-order necessary corati
are written and transformed in a search of parasiete

¥
The Method of Altman and Pistiner and Our ° .
Extension of It . e

The method developed by Altman and Pistireslves Figure 1 — Orbital Transfer
the problem of minimum biimpulsive transfer between
two given points. It uses an analytical approacdedan

the hodograph orbital parameters that transform the
solution of this problem in finding the root of a
polynomial of order 8, that is then solved numdlyca
This method was extended by Santos-Paulw solve

the problem of minimum transfer between two given
orbits. This is done by varying the true anomalythaf
initial and final points involved in the transfench
applying the method developed by Altman and Pistine

Transfer
Orbit

Initial
Orbit

for each pair of points. Each solution is saved and Final ?
compared with the previous results to find the glob Orbit
minimum.

Orbital Transfers With Errors

Based on our extensionf the Altman and Pistinkr
algorithm that solves the minimum fuel biimpulsive ] . )
transfer, we developed a numerical scheme that Figure 2 - A Biimpulsive Coplanar Transfer.
incorporates errors in magnitude and direction raf t
impulsive thrust. The steps to be followed are (Big Results
Step zero: Calculate the optimum biimpulsive transf _

(TSE) between the two given orbits (ID, FD); not Two test cases were calculated to show the irapoet
including the errors; of the algorithm developed:

Step one: Calculate the actual transfer orbit,entbjo 1) The initial orbit ID has a = 7500 Km, e =0, 18°,Q
errors (TCE). The values of the errors are assubyed= 0°; and the final orbit FD has a = 9000 Km, e,% 8
hypothesis; 10°, Q = 45°. Table 1 shows their results for several
Step two: The actual transfer orbit (TCE) is asiitee €rror values.

be the initial orbit of a new maneuver. The caltala 2) The initial orbit ID has a = 7500 Km, e = 0.1 0°,

of the new minimum fuel maneuver (T2SE) is mad@ = 0°,@ = 10°; and the final orbit FD has a = 800 km, e

assuming that there are no errors involved; =0,2,i=5°Q =0°w = 10°. Table 2 shows their results
Step three: Step one is repeated, and we can firelva for several error hypotheses.
real transfer orbit, including errors (T2CE). They show that: a)an increase in th¥ (SAV> 0)

Step four: We repeat step two, now assuming that ttauses an increase in the time and in the number of
real transfer orbit (T2CE) obtained in step threghie iterations used to solve the problem; b) when gadiV
initial orbit. The steps above are repeatedhasy times s smaller than the nominal valud®Ay < 0), the

as necessary to achieve a final orbit (TNGED) with corrections due to the errors are faster and chgape



Final Orkit B
il Obi A, ~ =~ ‘_\ D

IDEAL TRANSFER - T25E

FINAL DESIRED
e

Transfer
Dbt
DEPARTURE ORBIT
- =~
,.f/
TCE
Figure 3 — Noncoplanar Transfer STEP 2
IDEAL ARRIVALORBIT

DEPARTURE
ORBIT N ~, ACTUAL ARRIVAL
ORBIT
D
S
TCE
STEP 3

STEP ZERO

IDEAL TRANSFER

A
T2CE
ACTUAL TRANSFER
STEP 4
STEP 1 Figure 4 (cont.) — Steps for the Orbital Transféhw

Figure 4 — Steps for the Orbital Transfer with Esro Errors.



The application of this research is very large|uding
all the space missions that require orbital maneuaed
that can be modelled by an impulsive thrust, sictha
Brazil-China Remote Sensing Satellite-CBERS.
Interplanetary missions can also benefit from this
method in parts of the mission.
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Table 1 - Results for the First Simulation

KEPLERIAN Atipear AV pear
ELEMENTS a=9000 km e=0 i =10° Q =45° w = undefined 1 hour 1,1261 km/s
OF THE
DESIRED
FINAL
ORBIT
A B C D E F G I J L M N P
oa = of 0° 0° 0° 0° 0° 0° -2,5° 2,5° -5° 5° -2,5° 2,5° -5° 5°
3AV 3% -3% 5% -5% 10% -10% 0% 0% 0% 0% -5% -5% -5% -5%
KEPLERIAN ELEMENTS OFTHE REACHED FINAL ORBIT
a(km) | 8993 | 8999 8794 | 8982 | 8933 8977 8951 8937 8988 8970 8952 8992 8959 8985
e 0,0005| 0,0006 | 0,06 | 0,003| 0,009 | 0,002 | 0,006 0,006 0,005 | 0,002 0,02 0,001 0,04 0,004
i (degrees) 10 10 10 10 10 10 10 10 10 10 9 10 10 9
Q (degr.)| 45 45 34 43 42 45 45 45 45 45 28 45 34 42
w (degr.)| 312 211 125 37 295 350 55 37 260 341 14 39 24 320
Atrora. | 5h32' | 3h28’ | 9h09' | 2h45' | 5h40’ | 3h18 | 4h30 2ho7’ 5h29" | 3h31' | 5h36’ | 4hl17' | 4h33 | 4h29
AVTOTAL
(km/s) |2,9430| 1,1537| 2,1116 |1,1214| 1,9987 | 1,1668 | 1,8287 | 1,2610 | 1,9849| 1,2255| 1,4388 | 1,1753 | 1,6288 | 1,0946
Increment|
int 4h32’ | 2h28' [ 8h09' | 1h45' | 4h40’ | 2h18 | 3h30’ 1h07’ 4h29’ | 2h31' | 4h36’ | 3hl7 3h33 | 3h29
Increment|
inAvV [1,8169 0,0276 | 0,9855 - 0,8726 | 0,0407 | 0,7026 | 0,1349 | 0,8588 | 0,0994 | 0,3127 | 0,0492 | 0,5027 | - 0,0315
(km/s) 0,0047
Number
of 13 7 | 15(19) | 7(7) 9(9) 7(7) 9(9) 7(7) 9(9) 7(7) 9(9) 7(7) 9(9) 7(7)
iterations| (13)




Table 2 - Results for the Second Simulation

KEPLERIAN a (km) e i (degrees) Q (degrees) w (degrees) Atpeac AV pear
ELEMENTS OF
THE DESIRED 8000 0,2 5 0 10 45 minutes | 0,7545 km/s
FINAL ORBIT

A B G H
da =983 =0° da =8B =0° da=5p=-2,5° d0=0p=2,5°
ERROR 34V = 3% SAV = -3% 34V = 0% 3AV = 0%
HYPOTHESES

KEPLERIAN ELEMENTS OF THE REACHED FINAL ORBIT

a (km) 8045 7981 8072 7982
e 0,2 0,2 0,2 0,2
i (degrees) 5 5 5 5
Q (degrees) 358 359 359 358
w (degrees) 11 12 10 24
AtroraL 43’ 45’ 2h50’ 60’
AVtoraL 0,7352 0,7347 0,7609 1,0100
(km/s)
Increment in t -2' zero 2h05’ 15’
Increment inAV -0,0194 -0,0198 0,0064 0,2555
(km/s)
Number of iterationg 3(7) 3(7) 7(7) 5(7)




