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Abstract

This work discusses and simulates the discrete-tinhkdowever, this creates a fundamental problem when th
control of artificial satellites with flexible appdages, vehicle is flexible: to control infinite vibratiomodes
and its stability in function of growing sampling(as it occurs in the real case) with a digital cointhat
periods. Due to mission needs the dimensions of tletrinsically has an upper frequency limik=wx / 2,
appendages tend to increase becoming more fleXilsle. wherews is the sampling frequency as explained below.

3. r.(teslult,h I 'St "“.”Ft’.o”am tr? |nvest|ga|1.te the _ef(;ie«:if A first problem of a digital control is its sarmm in
igital characteristics such as sampling periodayde time, especially when it is controlling flexible

(in inputs, processing and outputs) and amp“tUdgtructures. The structures oscillate with infinit®des

quantization on it. In this work pnly the_sampllpgnod of vibration (maximum spectral component frequency
effects are investigated. The discrete-time PDrotlat .
Whax— ), but the A/D converter samples the signal

design is done considering aspects such as thgngia e :
and the hidden oscillations. It is tested with nmisds with a finite frequency called sampling frequeny,

an harmonic oscillator and a of the CBERSl(Chind’-"_here_(JJS << Whnax .5117' Th's causes a drast|c__ loss,
Brazil Earth Resources Satellite), comparing thelegg distortion or mutilation of information, by the asing
PD with discrete-time PDs obtained by standard s{nasking) or even hiding of the frequencies in the
mappings (Tustin and Schneider) and by a neifterval®y2 <w< s So, the aliasing and the hidden
mapping, using the same gains for them. Root-loc‘i),sc'"at'ons will occur when the knpwn Nyquist
transient and steady-state responses were used frRfluencyw=ws/ 2 is less than the maximum spectral
analyze their performances. These suggest partR@mponent of frequencyoms, causing effects little
methods of stabilization; and that the new mapyiag  Studied in the literaturé".

the best performance among the mappings tested.

Introduction The discretization process can be analyzed &sifol

a) given the analog system of Figure 1, where B(g)
G(s) are the controller and the plant transfer tioms,
respectively; we want to analyze an equivalenttdigi
Bntrol system of Figure 2 by: b) rearranging itias
Figure 3; c) a simple block manipulation as in Fé&4;

modeling the A/D converter as in Figure 5; e)

presenting it as in Figure 6.

As detailed in the literatutethe worldwide space trend
in the next century will be the production of bigdpit
lighter space systems. These systems will be mo
flexible and deformable and then will demand th
control of its vibrations and forms. To meet thessv
requirements such controls must have increase
capabilities and must solve new problems, as the on
discussed below.

This work discusses and simulates the discratéralo
of satellites with flexible appendages using moadélan
harmonic oscillator and of the CBERS-1 sateffité\s
detailed in literature™**" it is interesting to use digital
computers and signals in control systems, becdee t -
are cheap, practical, etc., and they offef
capabilities(logical, reprogramming, etc.) convenito

build and maintain the control program of a_
vehicle/mission. Fig. 1. Closed-loop analog control system.
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Figure 2: Closed-loop digital control system block diagram.
In Figure 6 we have the discrete-time controllér)
and the plant Zero-Order Hold equivalenig) given
by: Gld)
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Fig.5: Closed-loop digital control system rearranged (3)

with A/D and D/A sample & hold models.

In the next session we’'ll explain some s-z maggin

Fig.3:Closed-loop digital control system rearranged (1).
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Fig.6:Discrete-time approximation to the closed-loop

Fig.4:Closed-loop digital control system rearranged (2)analog control system.




S-Z Mappings Used T.
& =6t TZ (5uy +8uy; ~uy) ©)

All the control algorithms that are processedan inat can be written as follows:
digital computer possess a structure based onefinit

differences equations. The standard ones usedisn th _1(12 (10)
paper are in Table 1: Uy " 5] i'Dq ~ 8y Uy
1) Backward®'’ approximation: its difference
equation is given by: Applying (3) in (9) (or (10)) we have the follong s-z
mapping:
P @
Ts Ts S~U(Z) :E' z(z-1) (11)

where T is the sampling period, @and y are theinput E(z2 Ts 5z°+8.z-1

and output sequences of samples when the plant is a o ) _
derivative transfer function. Taking the one sided AS shown in Fig. 7, the Schneider s-z mapping can
transform of (2) given by the definition (3), wheff,) uns_tab!llze the clos_ed-!oop control system when a
is a generic sequence, we can write the s-z maggg)ng derivative control action is employed.

A A +oo
F(Z)=Z{fk}22fk.z"k To<|Zd <o 3) 1
k=0 08t
Y@ _z-1 4) l
E(z) Ts.z

02F
2) The Forwart®” approximation has the following

difference equation:

ok

Imag Axis

02k

1 &~ & 04r
U = L g, = He1 & (5)
k T, €1 T, EZ
and, after using (3), it gives the following s-zppang: '71' . ‘ ~ .
s~ U(Z) - 27_1 (6) -2 -15 -1 Re-g\.ist 0 05 1
E(@ T,

From (5) we may see its non-causality charadieris Figure7: Unstable pole of Schneider s-z mapping.
to generate the current outpytitiis necessary to have
the next input g4! Filters designed with this kind of 5) The new-rul¥ has the following difference
approximation become unstable in the closed loogquation:
system and never can be employed in real-timeadligit

control systems. u, = 2 Oe, - &y, 0<&<1 (12)

3) The Tustift®*" (or Bilinear) approximation is better s

than the last two because its s-z mapping preser/B€reé is a constant. The new rule was inspired in the
stability, i.e., all the left half s-plane is mappe TUstin rule displacing its,;z= -1 pole to Z = -§, 0 <&
biunivocally in the interior of the unit circle ithe z- < 1. It produces good results in comparison wita th
plane, as we can see in Fig. 8. Its difference tayués classical mappings. The new rule moves thgale to
given by the second-order Adams-Moulton integratiof’€ interior of the unit circle, using as a design

formula* parameter.
u, = E.Dek ~Uy (7 Using (3) in (12) gives the s-z mapping:
. U@ _2 z-1 (13)

which, after using (3), gives the s-z mapping: E(z) T. z+¢

S~ lé(z) = TA Z;i ®) The used discrete-time approximations can beddnn
(2) s ? 1417 - ) Table 1. In Table 2 we can find the PD controllers
4) The Schneider rfe™™" is described as an s-z designed with these approximations, wheyard k are

mapping using the third-order Adams-Moultonihe ~ proportional and  derivative control  gains.
integration formula:
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Figure 8: S-plan to z-plan mappings of the asymptoticalipkd region
Table 1: Discrete-time mappings

Analog Discrete-time mappings
case
Forward Backward Tustin Schneider New-rule
s z-1 z-1 22z-1 [12_z(@z-) [ 2 z-1
T, Te.Z T, z+1 Ts 522+8z-1 T, z+¢

Table 2: D(2) discrete-time PD controllers

Caég?)l?g PD Discrete-time PD controllers
troll
controtier Forward Backward Tustin Schneider New-rule
\ L kT —zm] 1% 1% W—%}
k, +ky.S - S 4 R
p ks K Z{K)-E‘lJ o) kR | Z+[K).Ts+2m AR 2 T
5 K . T z T z+1 5P+ L) =
Table 3: Har monic oscillator zero order hold equivalences.
Gro(2)
Free: z+1
1-cosw,.TS)|.
| @) 2% - (2.cos, Tg))z+1
Case:

5, —[56_ o coa f)]s+e_snf

S|:]'—SG_Qf'COS(’9 1°) -6 [i 21ef %) —co¢S f)ﬂw_s“f +6_ (Qj 21ef %) —cod J_Z)J

Damped:




Schneider mappings of the PD control didn't behave
well and will not be shown.

Sf) A model of the CBERSL1 satellite: Figures 13 to 20
show the results for the Tustin mapping and for the
.2 new-rule mapping controlling the 2 modes model. We

G =" (15 may note a strong control signal in Fig. 16 prowbke
S+, probably by the sampler keying. These Figures shown
) very clearly that the new-rule mapping has a better

G(s) = W, (16) performance that the Tustin mapping (note the biesta

s+ 20w, .5+ wn2 Yaw axis in Figures 13 and 16).

Plants Used

1) Free and Damped Harmonic Oscillators, who
transfer functions are:

Their discrete-time equivalents.&), given by (1), Conclusions

are showed in Table 3. First, it is important to call the attention fohet

. . . existence of the problem of instability that can be
't2) A CBI?R51 mot(r:i]el. accprﬁtlng to curlrent I|tera‘[ﬁ[. introduced in the discrete-time control systemsnhyai
: employs € right-eigenvalues matriX oy high sampling periods T The choice of the

®=[¢ ¢,i¢g,...i¢ ] as the transformation oo niing period T, aliasing filter, control gains,
matrix from a modal coordinatey(t) to physical structural damping, and the type of s-z mapping to
coordinates{(t) given by: design such controller in discrete time will be ide@
factors for reaching stability.
X({)=.n(t) a7 Second, the new rule represents a promisingnaliee

for the stabilization of a control system in timsalete

The modal equation of motion of a satellite, inithg ~ when the plant is a flexible structure and has kigjhes
of the sampling periodgl The simulations with the new
rule shown a better performance for the damped
harmonic oscillator as for the CBERS1 model used.
However, it is very important to note that this raBlis

- diag(o,o,o,wf,wzz,,,,,wn_lz)jz =o' b.u (18) a linear model with five modes of vibration andides
where is the damping ratio, | is the inertia tensarjs N0t represents all nuances of the real structume; i
the natural undamped frequency, is the control Particular, the increasing damping with the mode

the structural damping used is:

I Q + Z.Z.diag(0,0,0,wl,wz,...,wn_l)jz +

influence matrix and u is the control vector. number and other energy dissipative phenomena.
given by: used in this work but not necessarily for the real

satellite. It is suggested to verify them with bett
models and/or experimentally in future works.
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% 10°%n = 0.8244 radisec; T = 1.6 sec; damping-ratic = 6 wn = 0.8244 radfsoc; Ts = 1.6 soc; coi = 0.2; zota= 6; kp= 3.2; kd= 4.8
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Fig. 9. Overdamped harmonic oscillator Fig. 10. Overdamped harmonic oscillator
controlled by a PD designed by the Tustin- rule controlled by a PD designed by the new-
(T< = 1,6 seconds): unstable. rule (Ts = 1,6 seconds): assymptot.stable.

=02, 7ota=; kp=32; ki= 48

wn = 06244 radsec; T= 1.6 sec; damping-ratio = 6

Fig. 11. Root-locus relative to Fig. 9. Fig. 12. Root-locus relative to Fig. 10.
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Fig. 13. Attitude angles of a CBERS1

simulation with the Tustin-rule.
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Fig. 17. Attitude angles of a CBERS1

simulation with the new-rule.
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Fig. 14. Mode 1 for the simulation with the

Tustin rule.
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Fig. 18. Mode 1 for the simulation with the
new rule.
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Fig. 15. Mode 2 for the simulation with the

Tustin rule.
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Fig. 19. Mode 2 for the simulation with the

new rule.
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Fig. 16. PD Control signals for the
CBERS1 simulation with the Tustin-rule.

Fig. 20. PD Control signals for the CBERS1
simulation with the new-rule.



