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ABSTRACT 
 
The Moon-to-Earth trajectories of “detour” type are 
found and studied in frame of the Moon-Earth-Sun-
particle system. These trajectories use a passive flight to 
the Earth from an initial elliptic selenocentric orbit with 
a high aposelenium and differ from usual ones of a 
direct flight to the Earth using an initial hyperbolic 
selenocentric orbit. A qualitative theoretical analysis of 
these trajectories is performed. The Earth perturbation 
increases the selenocentric energy from a negative value 
first to zero and then to a positive one and therefore 
leads to a passive escape of the particle motion from the 
Moon attraction near the translunar libration point L2. 
This results in the particle flight to a distance of ~1.5 
million km from the Earth where the Sun gravitation 
decreases the particle orbit perigee distance to a small 
value, that leads to the particle approach the Earth 
vicinity in ~100 days of the flight. A set of the Moon-to-
Earth “detour” trajectories for the flight to the Earth-
altitude of ~50 km for the atmospheric reentry is defined 
by a numerical method. The start from both the low 
orbit of the Moon satellite and the Moon surface is 
considered. Characteristics of these trajectories are 
presented. They are compared with the usual trajectories 
of the direct flight. The ”detour” Moon-to-Earth 
trajectories with initial elliptic orbit and gravitational 
escape from the Moon attraction are shown to result in 
essential economy of energy relative to the usual ones 
with initial hyperbolic orbit. A more exact control 
system of navigation and correction is required for the 
Moon-to-the Earth “detour” flight of spacecraft. 
 
 
1. INTRODUCTION 

 
Investigations of space trajectories for flights from the 
near-Moon vicinity to the Earth are important for both 
Celestial Mechanics and Astronautics. Usual trajectories 
(see, e.g., [1]) for the Moon-to-Earth direct space flights 
within the Earth’s sphere of influence with respect to 
the Sun are well studied. In this case, perturbations 
caused by the Sun are small, and the model of the 
restricted three-body problem (Moon-Earth with a 
particle of negligible mass) is used in fact. Trajectories 
of this type were used for space flights from the Moon 
(in both the USA project of the Apollo manned flight 
and the Soviet project for robotic capture of the lunar 
matter and its delivery to the Earth [2]). These 
trajectories are characterized by small (several days)  

 
 
 
 
flight time and by the fact that the departure of the 
particle from the Moon occurs along a hyperbola. 
Recently [3-7, et al.], a new class of trajectories with the 
Earth–to–Moon indirect detour space flight was 
discovered in the framework of the four-body system 
(Earth-Moon-Sun-particle). These trajectories use first 
the space flights towards the Sun (or away from the 
Sun) beyond the Earth's sphere of influence, and only 
afterwards, space flights towards the Moon. These space 
flights seem to be similar to bielliptic ones proposed by 
Sternfeld [8-10]. But they differ in dynamics. Here, the 
perigee distance rises due to the Sun gravitation. In 
addition, now the particle approaches the Moon along 
an elliptic trajectory, i.e., the capture by the Moon takes 
place. Thus, for the spacecraft capture to the lunar 
satellite orbit or for its landing onto the Moon, these 
detour space flights are more profitable than direct or 
bielliptic ones. An idea arises to employ this detour 
scheme for the Moon-to-Earth space flights [4]. The 
present paper describes main results of numerical and 
analytical studies in the problem shown. A family of 
trajectories for passive space flight to the Earth from an 
elliptic orbit of a lunar satellite has been constructed, 
and characteristics of these trajectories are analyzed 
[11]. In addition, the effects of gravitational 
perturbations resulted in the formation of these 
trajectories, particularly, in both the particle’s 
gravitational escape from the lunar attraction and 
passive decreasing the perigee distance of the particle 
orbit (approximately from the value of the lunar orbit 
radius to almost zero), which makes possible the 
particle passive flights to the Earth, have been analyzed.  
 
 
2. MOON-TO-EARTH DETOUR TRAJECTORIES 
 
2.1 Algorithm of Calculations 

 
As a result of the analysis and with taking into account 
the experience of the Earth-to-Moon trajectories studies 
[7], a numerical algorithm has been developed that has 
allowed us to find a family of detour trajectories for 
space flights to the Earth from elliptic orbits of the lunar 
satellite. These trajectories correspond to the spacecraft 
start from both the Moon's surface and the low orbit of 
the lunar satellite for several positions of the Moon on 
its orbit. The spacecraft trajectories have been 
determined by integration (using the method described 



in [12]) of the equations for the particle motion. These 
equations are written in the Cartesian nonrotating 
geocentric-equatorial coordinate system OXYZ in the 
attraction field of the Earth (with taking into account its 
main harmonic c20), the Moon, and the Sun with the 
high-precision determination of the Moon and Sun 
coordinates, which is based on the DE403 JPL 
ephemerides. The particle motion in the selenocentric 
coordinate system MXYZ is also determined.  
 
2.2 Some Numerical Characteristics of the Moon-to-

Earth Detour Flights 
 
Characteristics of a typical detour trajectory are 
presented in Figs 1-3.  
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Fig. 1. The XY view for the Moon-to-Earth geocentric 
trajectory of detour flight 
 
 
The solid curve in Fig. 1 presents geocentric motion of a 
spacecraft, and the dot-and-dash line shows the lunar 
orbit M. At the point D, the spacecraft flies away from 
the Moon on May 11, 2001 (for the position of the 
Moon near the apogee), from the perilune of an initial 
elliptic orbit with the perilune altitude Hπ0 = 100 km and 
semimajor axis a0 = 38 455 km. This orbit is close to the 
final orbit of the Earth-to-Moon space flight, which was 
presented in [7]. All the following motion of the particle 
is passive (without taking into account possible 
corrections). Under the effect of the Earth's gravitation, 
evolution of the selenocentric orbit and an increase in 
the selenocentric energy  
 

saMMVsE 2//2/2 µρµ −=−=          (1) 
 
occur. In Eqn. 1 V and ρ are the selenocentric velocity 
of the particle and its distance from the Moon, 
respectively, sa  is semimajor axis of the particle orbit, 

and µM (≈ 4902 km3 s-2) is the lunar gravitational 
parameter. At the point P1 in the space flight time ∆t ≈ 
19 days, the energy is Es ≈ - 0.031 km3 s-2, sa  ≈ 79⋅103 
km, and ρ ≈ 76⋅103 km. At the point Es for ∆t ≈ 20.6 
days and ρ ≈ 91.85⋅103 km in the region of the 
translunar libration point L2, there is the escape from the 
lunar attraction, i.e., Es = 0 here, and the orbit is 
parabolic with the zero velocity “at infinity”, V∞ = 0. 
Further, the particle moves from the Moon along a 
hyperbola. At the point P2 for ∆t ≈ 21.1 days and ρ ≈ 
101⋅103 km, the energy is Es ≈ 0.011 km2 s-2, V∞ = 0.15 
km s-1. At the point P3 for ∆t ≈ 21.9 days and ρ ≈ 
120.2⋅103 km, the energy becomes equal to Es ≈ 0.031 
km2 s-2, and V∞ = 0.25 km s-1. Then, the spacecraft flies 
away from both the lunar orbit and the Earth and 
reaches in ∆t ≈ 70 days the maximal distance rmax ≈ 
1470⋅103 km from the Earth. At that moment, the point 
S (rmax) determines the direction to the Sun. By the 
effect of the Sun gravitation, the perigee is gradually 
lowered, and for ∆t ≈ 113 days at the point F, the 
spacecraft approaches the Earth E having the perigee’s 
osculating altitude Hπ = 50 km.  
Figs 2 and 3 show the evolution of the spacecraft detour 
motion with respect to the Moon at the initial part of the 
space flight where there is the escape from the lunar 
attraction. 
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Fig. 2. The XZ view for the Moon-to-Earth selenocent-
ric trajectory of detour type at initial part of the flight 
 
 
Fig. 2 gives selenocentric trajectory in the XZ plane. 
The point E (Es) determines the direction to the Earth at 
the moment of the escape from the lunar gravitational 
attraction. The initial (at the point D) spacecraft velocity 
is +

0V ≈ 2282 m s-1. For leaving a circular lunar-satellite 
orbit with the altitude of 100 km and velocity 

≈−
0V 1633 m s-1, the velocity increment is ∆V0 ≈ 649 



m s-1. For the usual direct space flight scheme and the 
minimal departure energy, V∞ ≈ 0.8 km s-1, the flight 
time T ≈ 5.5 days, we have the initial velocity +

0V  of 
about 2443 m s-1, the velocity impulse ∆V0 of about 810 
m s-1, that is at about 161 m s-1 more than for the case of 
detour space flight. For a case when spacecraft leaves 
the Moon's surface, the detour trajectory (with a0 = 
38455 km again) has approximately the same 
characteristics as for the indicated case of the start from 
the lunar satellite orbit. The decrease in the velocity 
increment is equal to about 156 m s-1 in this case.  
Fig. 3 gives the selenocentric energy constant 2Es versus 
the time for the initial part D P1 Es P2 P3 of the motion 
with escape from the lunar attraction. Here and below, 
on Fig. 4, the time t is counted off from the Julian date 
2451898.5, that is 20.12.2000.0.  
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Fig. 3. Selenocentric energy versus the time for initial 
part of the Moon-to-Earth detour flight with escape 
from the lunar attraction 
 
 
3. EARTH GRAVITY EFFECT ON THE 

PARTICLE ESCAPE 
 
We now qualitatively analyze the gravitational effects 
on the formation of the detour trajectory. First, we 
estimate an increase ∆Es = - Es0 of selenocentric energy 
(1) from the negative value Es0 for the initial elliptic 
orbit to the zero energy which can be caused by the 
Earth gravity during the particle selenocentric motion 
on the arc D Es from the initial state D to the escape 
point Es. On the base of the orbit evolution theory [13] 
and assuming that the particle orbit eccentricity is e ≈ 1, 
the mean energy is Es ≈ - ∆Es/2, and taking into account 
the change in the Moon-Earth direction, we obtain [7]: 
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In Eqn. 2, Eµ  is the Earth's gravitational parameter, 

Ma  is the semimajor axis of the Moon's orbit, Mn  is 
the angular velocity of its orbital motion,  
 

,2sin2cos αγβ =                      (3) 
 
γ  is the slope of the radius vector rB for an external 
body (for the Earth, in this case) to the plane of the 
particle orbit, and α is the angle between the projection 
of the radius vector rB onto this plane and the direction 
to the orbit perilune. For ∆Es >0, it is necessary to have 
sin2α>0, 0<α<π/2 or π<α<3π/2. Estimation by Eqns 2-
3 gives ∆Es= - Es0 ≈ 0.096 km2 s-2, a0 ≈ 25,600 km for 
middle value β = 0.5. This gives estimation for minimal 
value of semimajor axis a0 for the initial elliptic 
selenocentric orbit in the Moon-to-Earth detour 
trajectory. This theoretical evaluation well fits the 
results for our numerical calculations of the Moon-to-
Earth detour trajectories. E.g., for the Moon-to-Earth 
flight during a month from May 12, 2001, and for initial 
inclination i0=90°, we received for the Moon-to-Earth 
calculated trajectories the minimal value of semimajor 
axis a0min≈24,500-27,000 km for initial ascending node 
Ω0=0; a0min≈23,500-28,500 km for Ω0 ≈ - 63.9°; 
a0min≈24,000-28,000 km for Ω0= -90°, see Fig.4.  
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Fig.4. Minimal value of initial semimajor axis 
depending on the time of start from near-Moon elliptic 
selenocentric orbit for the Moon-to-Earth detour 
trajectories 
 



 We can see that, if the orientation of the particle initial 
orbit relative to the Earth is suitable and its negative 
energy is large enough, the Earth's gravitation provides 
a sufficient increase in the particle orbital energy and 
allows its passive escape from the lunar attraction. 
 
 
4. EARTH GRAVITY EFFECT ON THE 

PARTICLE ACCELERATION TO 
HYPERBOLIC SELENOCENTRIC MOTION  

 
Now we approximately analyze the acceleration of the 
particle motion with respect to the Moon from the zero 
energy to a positive one for a hyperbolic trajectory with 
velocity at “infinity” ∞V  which is equal to about 0.15 – 
0.25 km s-1 on the subsequent short arc Es P2 P3 (even 
on the somewhat larger arc P1 Es P2 P3 from the energy 
Es < 0). This acceleration is qualitatively described by 
approximate model of the one-dimensional rectilinear 
particle’s motion with the Earth, placed on the same line 
at a distance rM beyond the Moon [7], see Fig. 5. 
 
 

 
 
Fig. 5. A model for the particle selenocentric motion 
from the Moon 
 
 
In this case dρ/dt > 0, i.e., the particle moves away from 
the Moon. The Earth's perturbation δaE = µE/rM

2 − µE 
/(rM + ρ)2 > 0, it accelerates the particle motion. For this 
model, assuming that, approximately, rM = const, we 
can integrate the equations for the perturbed motion of 
the particle: 
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 Example. Let for the presented trajectory at the 
point Es of the gravitational escape the selenocentric 
energy be Es = E0 = 0, ρ = ρ0 = 91850 km, rM = 376000 
km. Then, the model of Eqns. 4-6 gives ρ ≈ 102.5⋅103 
km for ∞V  = 0.15 km/s (point P2), ρ ≈ 120.4⋅103 km for 

∞V = 0.25 km/s (point P3), and ρ ≈ 55⋅103 km for Es = − 
0.031 km2/s2 (point P1). We can see the qualitative 
correspondence with the numerical results presented 
above, especially for Es > 0. 
 Thus, for the given class of the Moon-to-Earth 
detour space flights, the Earth's gravitation in the region 
of the translunar libration point L2 allows increasing the 
selenocentric energy of the particle motion from the 
zero value to the positive one for a hyperbolic 
trajectory. Afterwards, the particle moves away from 
the Moon orbit, at a large geocentric distance. 
 
 
5. SUN GRAVITY EFFECT ON DECREASE OF 

THE PARTICLE ORBIT PERIGEE DISTANCE 
 
Next, we estimate the effect of the Sun gravitation on 
the variation ∆rπ of the particle orbit perigee distance rπ 
on the final arc P3 F of the space flight. We use the 
theory [13] of the orbit evolution for one orbital 
revolution of a planet’s (the Earth’, here) satellite due to 
an external body’s (the Sun’s, now) gravity perturbation 
assuming the Earth-Sun direction to be constant. Since 
the final geocentric distance rπf for the particle orbit 
perigee is very small (rπf = rπ0 + ∆rπ ≈ 0), we assume 
that eccentricity e ≈ 1 and take for rπ its mean value rπ = 
(2rπf − ∆rπ)/2≈ − ∆rπ/2. Thus, we have: 
 

.06/72))/()2/15((sign <≈∆ EaaESr βµµπβπ   (7) 

 
Here, µS is the gravitational parameter of the Sun, aE 
and a are the semimajor axes for the Earth's orbit and 
for the particle geocentric orbit, the value β is 
determined by Eqn. 3 with the Sun as the external body. 
For ∆rπ < 0, it follows from Eqn. 7 that sin2α<0, 
π/2<α<π or 3π/2<α<2π. Then, we estimate the desired 
value of the semimajor axis for the spacecraft orbit as 
 

.7/1]2))/()2/15/((6[ βµµππ ESEara ∆≈   (8) 
 
For estimation, we have assumed that ∆rπ = – 500⋅103 
km and β = – 0.5. Then, according to Eqn. 8, the 
semimajor axis of the particle geocentric orbit at the 
final part of the flight is a ≈ 870⋅103 km and its apogee 
distance is rα ≈ 1500⋅103 km. If we take into account 
that the Earth-Sun direction is not constant in time, this 
changes the result only slightly. Thus, if the orientation 
of the particle orbit with regards to the Sun is suitable 



enough and the orbit apogee distance is large enough (of 
about 1.5⋅106 km), the particle perigee distance 
decreases from about the lunar-orbit radius to almost 
zero. This allows the particle’s passive approach the 
Earth. 
 
 
6. CONCLUSIONS 
 
Reviewing the results of our analysis, we can see that 
gravitational perturbations of the Earth and the Sun 
make it possible for the particle beginning its motion 
from the selenocentric elliptic orbit to escape the motion 
from the lunar attraction, to transfer it to the Moon-to-
Earth detour trajectory, and then to approach the Earth. 
This leads to noticeable decrease in the energy 
consumption for the Moon-to-Earth space flights. Such 
a conclusion is confirmed by both the numerical 
calculations of relevant trajectories and their theoretical 
analysis. 
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