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ABSTRACT 

The paper presents how the formation is controlled to 
the intended shape by a decentralized control. The 
formation behaviour is dealt via a z-transformation 
method and a uniformly convergent strategy that each 
spacecraft performs is proposed. Not only one-
dimensional but tow-dimensional examples are shown. 
Since the strategy is highly flexible, it is applicable to a 
variety of the formation flying space missions. 

1. INTRODUCTION 
Formation Flying has become very common recently 
and its keeping strategies are now of great interest in 
astrodynamics these days. It may be simply true that the 
optimal station keeping is realized only when every 
spacecraft information is shared by every spacecraft in 
the formation. This is the case called ‘fully informed’ 
state and the strategy taken results in a centralized 
control. However, in case the number of spacecraft 
constituting a formation becomes infinitely large, since 
the communication load becomes divergent and also 
since the states uncertainty may deform the relative 
geometry before the entire information is exchanged 
and shared amid the formation, above mentioned ‘fully 
informed’ state will not appear actually.  
 
Instead of this cumbersome ‘fully informed’ control law, 
it is practical to apply a localized control law that 
requests the relative motion among a few spacecraft 
nearest to and adjacent to each other. In this case, the 
strategy will be a decentralized one. An important 
phenomenon observed here is a non-optimal transition 
behaviour, via which the formation is deformed and 
settles to the targeted formation shape, the goal. This 
‘Partially informed’ control schemes sometimes make 
the transition behaviour not uniformly converged to the 
goal and the settle time increases. Besides, the time 
delay via which the relative motion spreads to the entire 
formation significantly affects to both the settle time 
and transition behaviour. This feature also leads to the 
traffic jam phenomenon in highways on the ground.  
 

This paper presents how the formation control structure 
is expressed explicitly and how a kind of traffic jam 
appears analytically.  
 
 
2. Z-TRANSFORMATION APPLIED TO SPATIAL 
INFORMATION EXPRESSION 
 
A Z-transformation is a classical analysis strategy for 
discrete time systems to represent a series of impulses in 
time-domain. The same method is in this paper revisited 
and used to express the formation flying information 
that is inevitably defined at discrete nodes.  

 
 
Fig. 1 above shows a typical one-dimensional formation 
such as a car train running on a highway. The most 
fundamental expression rule in z-transformation is in 
impulses. The z-transformation of a single impulse is 
unit, 1. And here, shifting an impulse backward is done 
by an operator of 1/z, while forward shifting is by z. 
Therefore, when a series of constant impulses from the 
top position at zero is given by 

* * *
2 3

1 1 1 11 1 11

zy y y
z z z z

z

 + + + ⋅⋅⋅ = =  −  −
,         (1) 

where y* denotes the intensity of the impulses. 

 

3.  ONE-DIMENSION FORMATION  

 – CARS INTERVALS  
 
The most fundamental equations of motion are those for 
the distance intervals between the cars running on a 
highway. Here denote yn be the interval between the (n-

n n-1 n-2 n+1 n+2 

Fig. 1  1-dimensional Formation (Car Train) 
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1)-th car and the n-th car and also denote un be the 
velocity increment applied to n-th car as a control input, 
the equations of motion are written by 

1 1 2 2 1, 3 3 2,     ,y u y u u y u u= − = − + = − + ⋅⋅⋅� � � .    (2) 
Introduction of z-transformation makes this written 
simply by 

1 1z zy u
z

 = − 
 

� .             (3) 

 
 
 
 
 
 
 
 
 
 
As Fig. 2 shows, it should be noted that the acceleration 
applied to the leading car appears as being shifted 
backward via 1/z operation. The most straightforward 
control strategy may be found as 

( )*
n nu k y y= − .         (4) 

This is what usual drivers do and is to make the distance 
to the leading car be controlled to a certain appropriate 
distance y*. Similarly at this step, instead of 
acceleration input to each car, the equations of motions 
including feedback control are expressed by those 
rewritten via the z-transformation. Using the intervals 
stream yz, they are 

*1 1 ,   
1z z z z

zy u u k y y
z z

   = − = −   −   
� .        (5) 

Note even what this expresses is a kind of decentralized 
control where no one collects every information of the 
formation, while entire formation constituted by the 
participants (cars) perform the each task implicitly 
supposed to do trying to run smoothly. This is one of the 
most basic decentralized formation control examples 
already established. The closed loop response in this 
example is obtained by 

*1 1
1z z

zy k y y
z z

  = − −  −  
� .         (6) 

Obviously, the intended formation appears if 0zy =� , 
when the steady state solution is an infinite series of 
constant impulses as eq. (6) indicates. The solution of 
this is easily obtained in time domain as 

*
0

1 1exp 1 exp
1z z

z z zy kt y y kt
z z z
−  −    = + −    −    

, (7) 

where yz0 denotes the initial interval stream which may 
be expressed as follows, in case they are constant 
distance interval stream y0: 

0 01z
zy y

z
=

−
    (8) 

 
3.1   Traffic Jam Phenomenon 
First of all, the case when y* is zero is studied. This 
case correspond to the situation when the top car stops 
or decelerates and the traffic jam builds up. Intrinsically, 
in view of the first term in eq. (7), the behaviour of  

0
1exp

1
z zy kt

z z
− 

 −  
   (9) 

seems to describe the monotonous decay in terms of 
time. However, it is not true. What happens is observed 
through the inversed z- transformation. The above 
equation is decomposed and rewritten as: 
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−   =   − −   
  = + + + + ⋅⋅⋅ + + + ⋅⋅⋅  

  
     = + + + + + + + + + + ⋅⋅⋅    
     

(10) 
Since the 1/zm indicates the m-times shifting backward, 
rear cars retains the initial formation shape information 
more. In other words, this is interpreted as the 
propagation takes step by step from front to rear 
direction and this transition results in.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 above presents a numerical simulation in case the 
target interval is taken zero. This shows how traffic jam 
grows and the intervals become short gradually. An 
important point is in the fact that the propagation takes 
1/k second, which is imbedded in the servo dynamics 
here. Later discussion provides how the delay time 
effect that contributes to this phenomenon. The results 
in Fig. 3 is well reviewed by eq. (10) whose 
characteristics are depicted in Fig. 4 below. 
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Fig. 2  Shifting Train backward 

( )u z

1 ( )u z
z

-2

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

Vehicle's Distance Trend

k: Vehicle(k-1) - Vehicle(k)

t=0

t=10 s
t=20 s

t=30 s

t=40 s

t=50 s

Fig. 3  Car Train Response to Jam 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2  Resume of Traffic Jam 
If the behaviour is evaluated from the moment when 
every initial interval is zero and the top car starts 
constant velocity cruise. This corresponds to the case 
when the traffic jams starts resume. The transition is 
described by the second term in eq. (7), where the 
interval stream yz converges according to the 

characteristics of 11 exp zkt
z
− −  

 
 operator.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Above figure shows the results obtained by the 
numerical simulation. The transition occurs in reversed 
way to the case the traffic jams starts. An intuitive and 
qualitative understanding is glimpsed by Fig. 6 below 
that illustrates the tendency that appears in eq. (10). 
 
There might be questioned why intervals propagate and 
take some time, while each car tries to maintain a 
constant interval. This apparently seems strange, 
however, an interpretation looms when the control effort 
applied is consequently written by 

( )1 1n n n n ny u u k y y− −= − + = − −� .   (11) 
Here no targeted interval y* appears explicitly in the 
dynamics. Actually, as the intervals between cars 
become constant even though they are slightly different 
from those specified, the formation is not updated 
quickly as eq. (11) shows. Only the information from 
leading cars propagates and updates the shape. 
 
 
4.  DECENTRALAIZED UNIFORM TRANSITION 
STRATEGY 
 
Generally speaking, the formation transition example 
here is governed by the following equation. 

*1 1 ( , )z z zy u y y
z

 = − 
 

�   (12) 

How to design uz determines the transition behaviour. 
The primary reason why the transition occurs no-
uniformly is in the equivalent gain contains spatial 
information z. Consequently, if the gain is tactically 
chosen, a uniform transition may be expected. If the 
following strategy is introduced,  

*

1 1z z
z zu k y y

z z
 = − − − 

,  (13) 

the formation response is written as: 

*

1z z
zy k y y

z
 = − − − 

�   (14) 

Since the closed loop gain portion excludes z variable, 
the solution is simply 

 ( ) ( )( )*
0exp 1 exp

1z z
zy kt y y kt

z
= − + − −

−
. (15) 

This transition proceeds uniformly and is ideal. 
Investigating the structure of this strategy is beneficial 
and rewarded. This strategy accumulates the 
acceleration input to the leading cars.  
Since *( 1)

1z z
zz u zk y y

z
 − = − − 

 is equivalent to 

*1(1 )
1z z

zu k y y
z z

 − = − − 
, 

*
1

1(1 )
1z n n z

zu u u k y y
z z−

 − = − = − − 
.    (16) 

This states the accumulation structure of 
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*
1 1n n z

zu u k y y
z−

 = + − − 
.  (17) 

It should be again noted 1/z operation shifts the stream 
backward.  
Alternatively, this strategy is obtained from the 
equations of motion. In 
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−     
    −     =
    −
       

     

u v

�
�

� �
�
i

,   (18) 

what is intended is to have ( )*k y= − −v y  directly 

so that the stream can converge uniformly. It is the 
inversion of matrix A and since  

1

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

A−

− 
 − − =
 − − −
 − − − − 

,  (19) 

the control strategy is expressed as 
*

11 1
* *

1 22 1 2
* *

2 33 1 2 3
* *

3 44 1 2 3

2
3

4

uu y y
u y yu y y y

k
u y yu y y y y
u y yu y y y y y

 −  
    + − + −    = =     + − + + −
        + − + + + −     

. (20) 

Note this equation actually corresponds to the above 
mentioned method in eq. (17). The essence lies in 
obtaining the distance from the top car at each car 
position by relaying the foreside information. And this 
is performed also in decentralized manner.  
The inversion of A matrix corresponds to the centralized 
control, while the decomposed and rewritten strategy in 
eq. (17) replaces it.  
 
In a sense, this strategy requests the transmission 
capability equipped with at each car. However, the 
centralized control also requests the direct 
communication between the top car and each car. In 
terms of the communication resource point of view, the 
latter centralized way requests a larger resource which 
may need high power transmitter aboard. From this 
point of view, the former decentralized scheme is better, 
since each car has only to be equipped with smaller 
radio instruments. It might be concluded that the 
decentralized and relayed control will be a solution to 
the formation transition from its nature. 
 
There is, however, a drawback found for the 
decentralized method. Any communication malfunction 
between the cars will result in the formation disruption 
at that point. But another view may state such a division 
may be better from fault tolerance point of view.  
 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Fig. 7 above provides a monotonous behaviour, which 
in a sense presents a uniform convergence of the stream.   
 
4.1  Feedback of Interval to Rear Car 
As eq. (11) points out, another strategy of using the 
interval information to the rear car apparently may help 
the transition. However, this is not true. The control law 
of 

( ) ( )* *
1 1( ) ( )n n n n nu k y y y y k y y+ += − − − = − ,  (21) 

which is 

*(1 )
1z z

zu k z y y
z

 = − − − 
,  (22) 

makes the response as 
2

*(1 )
1z z

z zy k y y
z z

−  = − − 
� .  (23) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here is left z variables in gain part and this results in a 
non-uniform transition. Only the target interval 
information is provided from the last car propagates to 
the entire formation and takes a lot of time. This is 
recognized by Fig. 8 above. While the control law 
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seems to possess the target interval information as 
*(1 )

1z z
zu k z y y

z
 = − − − 

, the reality is 

1( )n n nu k y y += − . 
 
5. DELAY EFFECT TO TRANSITION AND 
STABILITY 
 
It was mentioned the strategy of 

*

1 1z z
z zu k y y

z z
 = − − − 

  (24) 

provides a good transition. However, owing to the time 
delay existing in the loop prevents the formation from 
exhibiting a quick response. Collecting information 
between cars and deciding strategy at each car is done 
almost instantly., while the acceleration takes some 
delay ∆t. That is the control is expressed practically by 

*

1 1
ts

z z
z zu e k y y

z z
−∆  = − − − 

.   (25) 

The use of this with an first order approximation shows 
the response of  

*

1 1z z
k zy y y
k t z

 = − − − ∆ − 
� .  (26) 

The following condition is found obvious for the 
stability 

1 k t> ∆     (27) 
and the resulted response time constant is found 
significantly affected by the delay. The stability here 
infers that the feedback should not be so high and 
sensitive and also that the acceleration performance of 
each car had better be higher. The latter is not always 
controllable and managing k is left tuned for the 
stability. 

What needs to be stressed here is that collecting 
information and decision process should exclude delay. 
Provided there is delay ∆tc in obtaining information, 
from 

*
1( ) ( )n n c nu u t t k y y−= − ∆ + −   (28) 

it results in 

( )/ /* 1
1 1

c ct t zt t
n z

z zu k y y e e
z z

∆ − ∆ = − − − − 
  (29) 

and un itself may diverge. This will restrict the 
formation length and the size. The formation transition 
is affected by delays not only in acceleration but also in 
communication. 
 
 
6.  TWO DIMENSIONAL ORBITAL FORMATION 
CONTROL IN HILL’S MOTION 
 
6.1  Formation Description in Hill’s Motion 
In the formation flying around an object, the equations 
of motion are written by Hill’s popular equations. What 

is studied here is how the large scale formation 
consisting of many spacecraft should be controlled. As 
already mentioned, the strategy had better not rely on 
the high power communication equipment from 
resource point of view. And the centralized control 
gathering every information between the spacecraft may 
not be appropriate. Precisely speaking, bilaterally 
relayed communication may constitute such ‘Fully 
Informed’ formation, however, as the number of 
spacecraft increases, the communication traffic explodes. 
The subsequent study discusses the decentralized and 
teamed controlled strategy under the Hill’s motion by 
extending one-dimensional formation control results. 
 
The control law developed here is characteristic in terms 
of 1) decentralized control, and 2) isolated x-y motion. 
In actual applications, as the above equation shows, 
there is some time delay associated with eq. (43) that 
reconstructs the acceleration, besides the delay 
associated with the actuators’ performance. As 
discussed previously, those delay is limited in terms of 
the stability and also may lengthen the settle time. And 
any delay in relay communication, even if it is small, 
will destabilize the formation and the formation size 
controlled is not infinite but limited. 
 
Stationary Formation in Hills’s Motion 
So far the discussion has proceeded the station-keeping 
method for the formation intended to be fixed on the x-y 
coordinate. However, in this formation, without control 
acceleration, even when ,   ij ijx y∆ ∆  are once controlled 

to zero, (2)
ijx∆  does not become zero, oscillation 

remains in x direction. And the control acceleration 
needs to be applied continuously and it is not a practical 
formation except around some specific true anomaly 
region.  
The subsequent discussion looks at the closed trajectory 
on the x-y coordinate in Hill’s motion. Such locus 
appears when appropriate orbital parameters are taken.  
Hill’s popular equations of motion is written: 

22 3 ,     2x ny n x u y nx v− − = + =�� � �� �      (30) 
In eq.  (30), equating ',   2 'x x y y= = gives  

2 1' 4 ' 3 ' ,     ' '
2

x ny n x u y nx v− − = + =�� � �� � .    (31) 

This corresponds to a circular motion when trajectory is 
contracted 1/2 in y direction. And introducing the 
rotation coordinate defined as  

' cos sin
' sin cos

x
y

θ θ ξ
θ θ η

    
=    −    

  (32) 

makes the equations of motion converted on 
ξ η− coordinate, where nθ =�  always holds. Denote 

( )Tp ξ η=  and 



 

( )
cos sin ˆ1sin cos

2

u
p A p U

v
θ θ

θ
θ θ

 −  + = =     

�� �    (33) 

is obtained for a spacecraft motion. Here,  

( )
2

2

3sin cos 1 3cos
1 3sin 3sin cos

A n
θ θ θ

θ
θ θ θ

 −
=  

− + − 
.    (34) 

Eq. (33) shows the steady state of .p const= , which 
implies .,     .const constξ η= = . And the stationary 
formation appears in the ξ η− coordinate. Note this 
does not state the locus on the original x-y plane 
maintains a constant distance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Stabilization of ξ−η Motion 
The discussion starts from the stabilization of eq. (33) 
first. With scalar variables c, k , what follows proves the 
system (33) is stabilized. With the proposed control law 
example 

Û cp kp= − −� ,    (35) 
when the Lyapunov function of  

1
2 2

T TkV p p p p= +� �    (36) 

is taken, time derivative of it is written as 
( )( )1TV p c A pθ= − +� � � .  (37) 

The eigen values of the matrix ( )A θ are, regardless of 

θ , 2n±  and if  

2c n>     (38) 
is satisfied, for any θ, eq. (37) becomes negative definite 
and the system is stabilized. Since c, k are all scalar, the 
control law proposed in eq. (35) admits the control to 
ξ, η direction independently.  
 
 
 
 
 
 
 

Formation Flying Control Laws 
 
With all preparations, also assuming the uncoupled 
controller’s structure to ξ, η directions, the relative 
distance to back-and-forth and left-to-right directions is 
expressed via z transform:  

( )

1 1 0
ˆ

10 1
z z z

z
p A p U

z

ξ

η

θ

 − 
 ∆ + ∆ =
 

−  
 

�� �       (39) 

results and taking the advantage of uniform convergent 
control strategies developed through a single degree of 
freedom formation, the strategy of 

( )
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U cp kp
z

z

ξ
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η

η

 
 − = + 
  − 

�   (40) 

is proposed here. This is rewritten to the control 
acceleration performed at each spacecraft as  

( )

( )
1cos sin

1 sin cos
2

1

z zz

z
z z

z
c ku z

zv
c k

z
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η η

ξ

ξ

η

η

ξ ξ
θ θ
θ θ

η η

 
∆ + ∆   −    =     −    ∆ + ∆   − 

�

�

. (41) 

Naturally, the control acceleration is a cross feedback of 
both formation error in ξ, η directions. When the 
strategy is reversely converted to the time-domain, here 
is obtained  

cos sin
1 sin cos
2

k m

k m

u

v

θα θβ

θα θβ

= +

= − +
.  (42) 

Here 

1

1

,    k k k k

m m m m

c k
c k

α α ξ ξ
β β η η

−

−

= + ∆ + ∆
= + ∆ + ∆

�

�
  (43) 

appears. This structure is the accumulation structure that 
the uniformly convergent formation control concludes. 
Also as stated in one-dimensional formation discussion, 
it is, at the same time, a decentralized process that relays 
the accumulated information to the next, so that the 
entire formation is controlled with little delay. 
 
 
7. CONCLUSION AND REMARKS 
The paper presented the decentralized and localized 
formation keeping control strategies for both one and 
two dimensional systems. A new z-transformation 
approach was developed and successfully derived the 
relayed and decentralized control strategies. This dealt 
with first the formation decentralized control for the 
formation in Hill’s motion. 
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