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ABSTRACT

The higher order effects of a full lunar gravitational field on the dominating forces on a spacecraft
in the vicinity of the moon are investigated. The long term behavior becomes apparent after a first
order averaging that removes the spacecraft’s mean anomaly and argument of the node. Recurrence
equations for the averaged flow in the eccentricity and the argument of perilune are built upon prior
recurrences by one of the authors that avoid the need of computing quadratures. Zeros of the re-
duced flow, which are easily found by means of root-finding procedures, represent higher-order
solutions to the frozen orbit problem. These frozen orbits have the argument of perilune either
at 90 or 270 deg., depending on inclination, and may hold low eccentricities. Having available
analytical equations, the computation of frozen orbits’ eccentricity–inclination diagrams is almost
inexpensive, and reveals the minimum eccentricity orbits commonly required in preliminary mis-
sion design.

1. INTRODUCTION

There is a renewed interest in missions to the moon with a variety of ongoing or proposed missions,
including the return of humans for extended stays [1, 2, 3, 4, 5, 6]. New requirements such as lunar
satelite communications allowing for permanent south pole coverage, challenge mission designers
in the search for frozen orbit architectures that provide long-lifetime orbits in the vicinity of the
moon [7, 8, 9, 10].

For higher altitudes than 750 km, operational experience has shown that Earth perturbations
dominate the dynamics [8], which can be described with very simple analytical models based on
averaging. For lower altitudes, the highly non-spherical lunar gravity field has a notorious effect on
the dynamics [11, 12, 13, 14], and full potential models are required for giving a correct description
of the motion of low lunar orbiters, even a qualitative one [15, 16, 9, 17].

The derivation of analytical equations for orbit perturbations centered at the moon needs aver-
aging full potentials and the following computation of the averaged flow. But this kind of averaging
requires to handle very large expressions formally, and, as a rule, is a priori discarded for general
use in preliminary space mission design. However, recent results show that the extensive alge-
braic manipulations demanded by perturbation methods and the manipulation of resulting huge
expressions admit dramatic simplifications in the case of high-inclination orbits. For the specific



case of almost polar orbits, an analytical model that considers fifty zonal gravitational harmonics
in addition to the Earth perturbation has been proved to yield the required insight for preliminary
mission design [17]. The theory demonstrates the secular drifts in the eccentricity and argument
of pericenter due to the third-body and nonspherical gravity perturbations, and reveals as an useful
tool for finding (polar or almost polar) frozen orbits.

We extend the theory of Ref. [17] to orbits at any inclination, where simplified potentials are no
longer allowed to alleviate computations. However, the averaging process can be avoided because
generic analytical recurrences that provide the averaged terms of the perturbing potential for any
number of zonal harmonics have been recently derived [18]. The only burden that remains is the
size of the formal expressions to handle, but managing large amounts of information is routine for
modern computers and software. Besides, there is not need of printing these large formulas to get
the required insight, and the formal expressions are safely allocated in few megabytes of memory
to be evaluated at will.

The perturbation model consists of a high degree (50×0) lunar gravitational field superimposed
on the Earth-moon Hill problem. To the known recurrences in the literature that give the first order,
zonal, averaged Hamiltonian, we add new recurrence relations for computing the reduced flow in
the eccentricity and the argument of the pericenter, which we use in the search for frozen orbits.
We find that the frozen orbits of interest always have an argument of the perilune fixed either at
90 or 270 degrees. Therefore, the frozen orbit computation problem is reduced to a simple one
dimensional root-finding problem in the eccentricity for each of these arguments of the perilune.

Because the analytical theory is computed once and for all, we may repeat the search for frozen
orbits for a variety of inclinations and, hence, produce the frozen orbits’ eccentricity–inclination
diagrams that are so useful in preliminary mission design. These kind of diagrams may reveal
“critical” inclinations or regions where frozen orbits do not exist, or dips in eccentricity corre-
sponding to almost circular frozen orbits. In addition, contour plots of the averaged perturbing
function may be depicted in the form of eccentricity vector diagrams, from which the stability of
a given frozen orbit can be assessed. Therefore, by simple inspection of the diagrams produced
by the almost inexpensive evaluation of the analytical theory, one can get a general view of the
frozen orbits problem and find lunar orbits with usable mission parameters that reduce the need for
stationkeeping.

Finally, long-term propagations of selected frozen orbits of our theory show that they remain
frozen in the non-averaged model. Besides, we test the reliability of our averaging by comparing
our solutions with previous results based on periodic orbits computation on non-averaged full
potentials [9]. Thus, starting from the averaged values of the semimajor axis and inclination of a
variety of given repeat ground-track, low altitude orbits of the moon, we compute corresponding
frozen orbits within the frame of our theory. The agreement between frozen orbit’s mean elements
and periodic orbits’ averaged elements is quite impressive and, in our opinion, supports the validity
of the analytical theory.

2. DYNAMICAL MODEL AND AVERAGING

In a planetary satellite system, the motion of a spacecraft around the satellite can be described
using Hamiltonian formulation. With an aim of applying perturbation methods, we formulate the
problem as a perturbed two-body problem in a rotating frame with constant velocity ν and with its
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origin at the center of mass of the satellite. Thus,

H = (1/2) (X ·X)− ν · (x×X)− (µ/r)− P(x) (1)

where x = (x, y, z) is the position vector of the orbiter, r = ||x||, X = (X, Y, Z) is the vector
of conjugated momenta —velocity in the inertial frame, µ is the satellite’s gravitational parameter,
and the perturbing function P includes the perturbations of the planet on the spacecraft and the
effects due to the non-centrality of the satellite’s potential.

The Hamilton equations ẋ = ∇XH, Ẋ = −∇xH, of Eq. (1) give

ẍ+ 2ν × ẋ = −ν × (ν × x)− (µ/r3)x+∇xP , (2)

which are the equations of motion of a nonlinear dynamical system with three degrees of freedom,
yet accepting the Jacobi integralH(X,x) = C.

For synchronous orbiting and rotating planetary satellites, equilibrium theory expedites the
representation of the satellite by a triaxial ellipsoid with matching orbital and equatorial planes,
and with the axes of smaller inertia pointing to the planet. Then, in the Hill problem approximation,
the perturbing function is

P =
ν2r2

2
(3 cos2ϕ cos2λ− 1) +

µ

r

∑
n≥2

(
ρ

r

)n n∑
m=0

(Cn,m cosmλ+ Sn,m sinmλ)Pn,m(sinϕ), (3)

where ρ is the equatorial radius of the satellite, sinϕ = u = z/r, tanλ = y/x, Cn,m, and Sn,m are
harmonic coefficients, and Pn,m(u) are associated Legendre polynomials of degree n and order m.

In the application of this model to the Earth-moon system we neglect the ±5.5% variation in
the Earth-moon radius, the±8 deg. librations of the moon, and the 5.2 deg. inclination of the moon
equatorial plane with respect to its orbital plane.

2.1. Averaged model

The long term dynamics can be studied by averaging the perturbing potential Eq. (3). Due to the
small orbital period of an orbiter close to the moon relative to the ∼ one month rotation period of
the moon, deep tesseral resonances are not expected in general, and a zonal model

Z =
µ

r

∑
n≥2

(
ρ

r

)n
Cn,0 Pn,0(sinϕ) (4)

will suffice for studying the secular drifts in the orbital elements produced by the non-sphericity of
the central body.

For orbits above, say, few hundred km over the surface of the moon Earth’s perturbations
dominate the dynamics, and simple analytical expressions can be used to describe the long-term
dynamics [7, 8]. Quite on the contrary, higher degree potentials are required for providing a correct
description of the motion of low lunar orbiters, even a qualitative one, and the usual claim is that at
least 50 zonal harmonics must be retained in the Selenopotential [15, 16, 9]. Averaging potentials
of such a high degree requires extensive algebraic manipulations, although dramatic simplifications
may be achieved in specific cases [19, 17]. Therefore, the analytical approach is usually discarded
for general use in preliminary space mission design of low lunar orbiters. However, at least for

3



a first-order averaging, straightforward recurrences have been recently established for the direct
computation of the averaged zonal potential [18].

To express the perturbing function in orbital elements, we note that

sinϕ = sin(f + ω) sin I, r =
a η2

1 + e cos f
,

where η =
√

1− e2 is the eccentricity function, e the eccentricity, f is the true anomaly, I the
inclination, ω the argument of the pericenter and a the semimajor axis. Then, after averaging the
mean anomaly ` in Eq. (4) one obtains [18],

〈Z〉` =
µ

2a

∑
n≥2

Cn,0

(
ρ

a

)n 1

2n−1η2n−1
Sn(e, I, ω)

where, calling n2 = mod(n, 2) that is n2 = 0 for even terms and n2 = 1 for odd terms,

Sn =
n−2∑
j=n2

α̃j,n e
j

n∑
i=n2

β̃i,n siniI

n2 − 1

2
γ̃i,j,0 +

i∑
k=n2

ı̇ık−n2 γ̃i,j,k cos(k ω − π
2
n2)

 (5)

with all three summations going in steps of 2, and the rational coefficients α̃j,n, β̃i,n, and γ̃i,j,k are

α̃j,n =
1

2j

(
n− 1

j

)
, β̃i,n = (2 ı̇ı)n−i

(n− 1 + i)!!

(n− i)!! i!
, γ̃i,j,k = 2

(
i
i−k
2

)(
j
j−k
2

)
.

We use the notation ı̇ı =
√
−1 for the imaginary unit, which is always raised to an even number.

Note that we introduced slight modifications to De Saedeleer’s original formulas for convenience
in our computational procedures, and write reordered coefficients with a tilde to stress that they are
different from those in [18], a reference which should consult any reader interested in details.

In addition, the third body contribution needs a double averaging to remove also the argument
of the node in the rotating frame h = Ω − ν t. The doubly averaged Hill problem is a recurrent
model in the Literature since its original proposal [20, 21]. A list of references can be found in
[22] where details on the averaging are also provided.

Averaging over h lefts 〈Z〉` unaltered, resulting in the doubly averaged perturbing function

P̃ = 〈P〉`,h = 〈Z〉` +
µ

2a

(
ν

N

)2 1

8

[
(2− 3 sin2I) (2 + 3e2) + 15e2 sin2I cos 2ω

]
, (6)

where N =
√
µ/a3 is the mean motion of the orbiter, which is constant after averaging, and has

been introduced to manifest the relative importance of the third body perturbation. Thus, for orbits
close the moon the mean motion is of the order of two hours what makes (ν/N)2 ∼ 10−5, while
many of the un-normalized gravitational harmonics of the moon are of the same order.

2.2. Reduced flow: frozen orbits

Better than working with Lagrange planetary equations and orbital elements, we introduce their
canonical counterpart: the set of Delaunay elements (L,G,H, `, g, h), where L =

√
µ a is the

Delaunay action, G = L
√

1− e2 is the modulus of the angular momentum vector, H = G cos I
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is its polar component, g = ω is the argument of the pericenter, and ` and h have been already
defined as the mean anomaly and the argument of the node in the rotating frame, respectively.

Because ` and h are cyclic in the averaged Hamiltonian

H̃ = 〈H〉`,h = − µ2

2L2
− ν H − P̃(g,G;L,H), (7)

L and H are integrals of the averaged motion, and the reduced flow in (G, g)

ġ =
∂H̃
∂G

= −∂P̃
∂G

, Ġ = −∂H̃
∂g

=
∂P̃
∂g

, (8)

decouples from the other Hamilton equations.
The reduced flow, Eq. (8), is of one degree of freedom and, therefore, integrable; once it has

been integrated, the secular evolution of ` and h can be obtained by quadratures

` = `0 +N t−
∫ ∂

∂L
P̃(g(t), G(t);L,H) dt, h = h0 − ν t−

∫ ∂

∂H
P̃(g(t), G(t);L,H) dt.

The analytical solution of the averaged flow is made of huge expressions that involve elliptic
and hyper-elliptic integrals, therefore, providing poor insight, if any, on the averaged dynamics.
Then, instead of trying to find the analytical solution to the averaged problem, we better pay
attention only to particular solutions of interest in astrodynamics. Specifically we focus on the
equilibria of the reduced flow Ġ = ġ = 0. These solutions correspond to orbits that, on average,
remain with constant eccentricity and inclination, and with fixed argument of pericenter, which are
called frozen orbits (see [23] for a large list of references on the topic).

Recurrences for constructing the time derivative of G are trivial from Eq. (5), because it only
implies changing sines by cosines and vice-versa, besides the introduction of corresponding fac-
tors. On the contrary, the time derivative of g is much more involved. However, after some manip-
ulation, one finds that the recurrences are strikingly similar to those of the Hamiltonian. Thus,

ġ = N
(
ν

N

)2 3

8η

[
4η2 + 5(e2 − sin2I) (1− cos 2g)

]
+N

∑
n≥2

Cn,0

(
ρ

a

)n S?n(e, I, g)

2n η2n
, (9)

where the S?n are constructed from corresponding Sn by simply changing the coefficients β̃i,n by
the new functions Ψi,j,n(e, I) that are given by

Ψi,j,n =
(

1 + j − i− 2n+
i

sin2I
− j

e2

)
β̃i,n. (10)

We note that Ġ ≡ 0 for g = ±π/2. Therefore, the search for frozen orbits with the pericenter
either at 90 or 270 deg. reduces to a one dimensional, root-finding problem in G in Eq. (9) where
ġ(g = ±π

2
, G;L,H) = 0. Once G is solved, the frozen orbit’s eccentricity and inclination are

easily computed from e =
√

1−G2/L2, and sin I =
√

1−H2/G2.
Alternatively, taking advantage of the fact that Eq. (9) is expressed in orbital elements, the

frozen orbits, root-finding problem can be solved directly in the eccentricity for a given inclination.
In fact, we only need to deal with one of the cases g = ±π/2. Indeed, the third body contribution
to Eq. (9) depends on cos 2g that evaluates to −1 for g = ±π/2. Besides, we note in Eq. (5),
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and in its starred analog, that for n even, cosines in the argument of the pericenter just evaluate
to the same expression: plus ore minus one for g = ±π/2, whereas e is always raised to even
powers. Alternatively, for n odd, sine functions in the argument of the pericenter in Eq. (5), and in
its starred analog, change their value from ±1 to ∓1 when the argument of the pericenter switches
from g = π/2 to g = −π/2, whereas e is always raised to odd powers. Therefore, we see that
orbits with frozen pericenter at ±π/2 may be computed from a numeric root-finding in Eq. (9)
for the single value g = π/2 but allowing for “negative” e values, which correspond to the case
−e = e sin(−π/2).

The numerical search can be made by standard methods, but paying special attention to the
numerical errors because of the large number of terms involved. Thus, for instance, the Newton-
Raphson approach:

em+1 = em −
ġ(em)

∂ġ(em)/∂em
,

besides the evaluation of ġ requires the evaluation of

∂ġ

∂e
= N

(
ν

N

)2 3e

8η

[
5
η2 + cos2I

η2
(1− cos 2g)− 4

]

+N
∑
n≥2

Cn,0

(
ρ

a

)n 1

2n η2n

[
2n e

η2
S?n(e, I, g) +

∂S?n(e, I, g)

∂e

]
,

with trivial recurrences for the computation of ∂S?n/∂e, but which roughly doubles the number of
terms in ġ.

Other frozen orbits might exist with different arguments of pericenter, the computation of
which requires a numerical two dimensional search in (G, g). We did not succeed in finding any
of them, at least for the low eccentricities required by non impact, low altitude lunar orbits.

3. RESULTS

Once the necessary formulas have been tuned, we are ready to explore the long term behavior of
the orbital elements. In our computations we use a 50×0 truncation of the spherical harmonic rep-
resentation of the gravity field of the moon, which we extract from the publicly available1 lp150q
model [24, 25] —un-normalized n-zonal coefficients are obtained multiplying corresponding nor-
malized ones of the lp150q model by the factor

√
2n+ 1. Besides, in all our simulations we

consider the Earth perturbations in the Hill problem approximation. Therefore, in what follows,
when we talk about some truncation of the selenopotential it must be always understood that the
model also includes the third-body perturbations.

For given values of the integrals L and H of the averaged problem, or a = L2/µ and

σ = H/L =
√

1− e2 cos I,

we can compute a frozen orbit with g at π/2 or −π/2 by making ġ = 0 in Eq. (9) and solving
it for G. Alternatively, we can fix the semimajor axis and compute directly the eccentricity of the
frozen orbit (with pericenter at plus or minus π/2) for a given value of the inclination from Eq.

1http://pds-geosciences.wustl.edu/geodata/lp-l-rss-5-gravity-v1/lp 1001/sha/jgl150q1.sha
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(9) as described above. By repeating the procedure for all the range of inclinations of interest, we
obtain the eccentricity-inclination diagrams that are so illustrative in preliminary mission design.

Figure 1 shows an eccentricity-inclination diagram of frozen orbits with a mean semimajor
axis a = 1861 km (the same semimajor axis as the 30× 216 km quasi-frozen orbit considered for
the commissioning period of the Lunar Reconnaissance Orbiter [8]). We choose this semimajor
axis because the third-body perturbation starts to be apparent at corresponding altitudes, although
the selenepotential clearly dominates the dynamics. As the averaged problem is symmetric with
respect to the inclination, which only appears through sin functions in the Eqs. (6) and (9), we
only present the case of direct frozen orbits. In the figure we limit the range of eccentricities to
non-impact orbits, which exist for all the range of inclinations except for three gaps in the vicinity
of 35, 55, and 65 deg., respectively.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

-0.06
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-0.02

0.00
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0.06

Mean inclination HdegL

e
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nH
Ω
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a = 1861 km

Fig. 1. Lunar frozen orbits eccentricity-inclination diagram (50 × 0 truncation). The argument of
the perilune is restricted to either ω = 90 or ω = 270 deg.

In reference to Fig. 1, starting from polar we find a frozen orbit with the pericenter at ω = 270
deg. and e ≈ 0.04; the eccentricity decreases with inclination while the pericenter holds until
reaching an inclination I = 84.5 deg., where we find a circular frozen orbit (mean eccentricity
zero). The pericenter of lower inclination frozen orbits switches to ω = 90 deg., and the eccen-
tricity increases until a frozen orbit impacts the moon at I = 66.4 deg. (e = 0.066). We do not
find more non-impact forzen orbits until the inclination reduces to I = 60.8 deg. The frozen orbits
become impact orbits again at I = 57.2 deg. After a new gap of about 3 deg. of inclination, we
find new non-impact frozen orbits for inclinations below I = 54 deg., but now the pericenter is
at ω = 90 deg. A new circular frozen orbit is found with I = 49.6 deg. For lower inclinations
the pericenter changes to ω = 270 deg. and the eccentricity grows. A new impact frozen orbit is
found at I = 36.4 deg. Non-impact frozen orbits exist again for I < 32.3 deg. with a circular one
at I = 24.4 deg.; at this point the pericenter switches again to ω = 90 deg. and remains there for
lower inclinations.

It remains to check the stability of specific solutions. Since Eq. (8) is a differential system
of one degree of freedom, the reduced flow is made only of equilibria and closed curves. Stable
equilibria are elliptic points of the flow, and unstable equilibria are hyperbolic points. Therefore,
the stable or unstable character of the computed frozen orbits (equilibria of the reduced flow)
should be obtained from the graphic representation of the flow, which can be done in the form of
eccentricity vector diagrams. These diagrams can be constructed without need of integrating Eq.
(8), by simple evaluation of the averaged perturbing function, Eq. (6), as indicated below (see also
[26]).

For given values of the integrals L and H of the averaged problem (or a and σ), the perturbing
function is constant on average; say P̃(G, g;L,H) = P0. If the averaged perturbing function is
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written in terms of the semi-equinoctial elements q = e cos g, p = e sin g, then, contour plots of
P̃(q, p; a, σ) for different values of P0 will provide the desired eccentricity vector diagram.

We illustrate the procedure by computing several of these eccentricity vector diagrams for the
value a = 1861 km. We choose the values of the parameter σ corresponding to the frozen orbits
detailed in Table 1. Then, contour plots of the averaged perturbing function for each pair (a, σ) are
computed for the range of non-impact orbits. Results are shown in Fig. 2.

Table 1: Lunar frozen orbits with mean semimajor axis a = 1861 km. S stands for stable and U
for unstable

σ 0.9841 0.7061 0.5870 0.5144 0.3904 0.1736
e 0.0388 0.0537 0.0530 0.0504 0.0440 0.0177
I deg. 10 45 54 59 67 80
ω deg. 90 270 90 270 270 90
Stability S S S U S S

The stability behavior of the frozen orbits on Table 1 is easily appreciated in the plots of Fig. 2.
At the altitudes corresponding to the selected semimajor axis a = 1861, we find that lunar frozen
orbits are generally stable. The stable behavior manifests by the ellipses surrounding the fixed
points in most of the plots of Fig. 2. But we also find unstable behavior for inclinations between
I = 57.2 and I = 60.8 deg., conform the eccentricity vector diagram in the center right plot of Fig.
2, where the reduced flow clearly shows the hyperbolic character of the fixed point (frozen orbit).

To stress the important variations in the behavior of frozen orbits when lower degree truncations
of the Selenopotential are considered, we compute similar eccentricity-inclination diagrams for a
20 × 0 and a 7 × 0 truncations of the selenopotential. Results are presented in Fig. 3. While the
20 × 0 truncation (dotted line) shows a similar qualitative behavior to the 50 × 0 one (full line),
the aproximation is only acceptable for medium and low inclination orbits. For higher inclination
orbits the 20×0 truncation only approximates roughly the 50×0 case, giving frozen orbits that, in
general, show lower eccentricities, and shifting the zero eccentricity solutions to lower inclinations
by several degrees. Even worse is the case of the 7×0 truncation of the selenopotential (dashed line
of Fig. 3), which provides a correct qualitative description only in the case of low inclinations. For
medium and high inclination frozen orbits the behavior of the 7× 0 truncation is clearly different
from the other truncations, not only for the notably different evolution of the eccentricity values,
but for it also provides a completely wrong argument of the periapsis in many cases.

For orbits at higher altitudes, the harmonics of higher degree have a lesser influence and the
gravitational model can certainly be simplified. Thus, for instance, for orbits about 300 km over the
surface of the moon the 20 × 0 truncation may be enough for describing the long term dynamics
of the lowest eccentricity frozen orbits. However, as Fig. 4 shows, the 7 × 0 truncation still
provides a wrong behavior for high inclination orbits. From our computations, we find that the
7× 0 truncation of the selenopotential starts to be an acceptable model for low-eccentricity orbits
that remain above, say, 600 km over the surface of the moon.

Comparison with periodic solutions of the non-averaged problem provides a further test on the
correctness of the analytical approach. To this effect we use results computed in [9]; specifically,
we deal with the family of 328-cycle repeat ground-track orbits computed for the same, 50 × 0
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Fig. 2. Eccentricity vector diagrams of lunar orbits with a = 1861 km and: σ = 0.9841, top left,
σ = 0.7061, top right, σ = 0.5870, center left, σ = 0.5144, center right, σ = 0.3904, bottom left,
and σ = 0.1736, bottom right.

9



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

Mean inclination HdegL

e
si

nH
Ω
L

a = 1861 km

Fig. 3. Lunar frozen orbits: 50 × 0 (full line), 20 × 0 (dotted), and 7 × 0 (dashed) truncations of
the selenopotential. The argument of the perilune ω is restricted to either 90 or 270 deg.
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Fig. 4. Lunar frozen orbits: 50 × 0 (full line), 20 × 0 (dotted), and 7 × 0 (dashed) truncations of
the selenopotential. The perilune is at either ω = 90 or ω = 270 deg.

truncation of the selenopotential, although the Earth perturbation was modeled in [9] using the
circular restricted three-body problem instead of the Hill’s simplification. This difference in the
model introduces negligible effects in the low altitude orbits we deal with in the present study.

Figure 5 shows a direct comparison between the lunar 328-cycle family of periodic orbits and
our family of frozen orbits with mean semimajor axis a = 1861 km. The qualitative agreement
is good, but we note that the direct comparison is not quite correct because, whereas the mean
semimajor axis of the computed frozen orbits remains constant, the semimajor axis of the repeat-
ground track orbits must change with inclination to maintain periodicity. And it does vary between
1808 and 1903 km for the chosen example, as shown by the dashed line on Fig. 5 going from the
left-down to the top-right corners of the plot. The change in semimajor axis is what produces the
non-symmetric behavior of the eccentricity of direct and retrograde inclination orbits. In addition,
frozen orbits are quasi-periodic solutions of the non-averaged problem that do not need to be
periodic neither on average or in the non-averaged problem.

We carry out a more consistent comparison by computing a frozen orbit for each semimajor
axis and inclination of the corresponding repeat-ground track orbit. The new results are presented
in Fig. 6, where we now note the perfect agreement between the mean elements predicted by the
analytical theory and average elements of the periodic orbits of the non-averaged model.

We perform several further tests to asses the degree of correction of the analytic theory in
quantitative terms. To this effect, we transform the frozen orbit’s mean elements provided by the
analytic theory directly into initial conditions, and propagate them in the non-averaged model.
Thus, Fig. 7 shows a long term propagation of a frozen orbit with mean elements a = 1861 km,
e = 0.0036, I = 84 deg., and g = 90 deg.; the initial conditions were computed for ` = h = 0.
After three years, the orbit remains frozen with elements that average to a = 1861.6 km, e =
0.0041, I = 83.94 deg., and ω = 92.36 deg.; the perilunar distance averages to 115.88 km, and the
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Fig. 5. Frozen (dots) vs. periodic orbits (full line) evolution with inclination (50 × 0 truncation).
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Fig. 6. Frozen (dots) vs. periodic orbits (full line) with the same semimajor axis and inclination
(50× 0 truncation). ω is either 90 or 270 deg.

node rate is of ∼ 0.12 deg./day.
The orbit indeed remains frozen, but it is still affected of small amplitude, long period effects

of about two years. Besides, medium period effects due to the third body perturbations, missed in
the averaging, are apparent in the propagation to show weekly oscillations with an amplitude less
than one thousand in eccentricity, 25 deg. in the argument of the perilune, and of ±0.5 km in the
semimajor axis. Semimonthly oscillations of 0.13 deg. in inclination are also observed.

Lower eccentricity orbits in the long term may be obtained from frozen orbits with zero mean
eccentricity, however they result in circulating perilune in the non averaged problem. Figure 8
shows the evolution of some orbital elements in a three year propagation of the frozen orbit with
mean elements a = 1861 km, e = 0.0007, I = 84.6 deg., g = 270 deg., ` = h = 0. As observed in
the figure, the osculating eccentricity remains with very low values, always below one thousandth.

Another worthy test on the reliability of the theory is the computation of the unstable frozen
orbit in the center right plot of Fig. 2, because this orbit is not apparent in lower order theories,
cf. Fig. 3. We compute initial conditions from mean elements a = 1861 km, e = 0.04268,
I = 59.1 deg., g = 270 deg., ` = h = 0, and launch a three years propagation. Results are shown
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Fig. 7. Osculating elements and periselene distance d of the frozen orbit of Fig. 1 with mean
inclination I = 84 deg. Abscissas are days.

in Fig. 9, where we note that the orbit remains with constant orbital elements, on average, for
more than one year; then, it derails over the unstable manifold: the eccentricity grows high and,
if left uncontrolled, the orbiter impacts the moon after 2.8 years with an argument of the perilune
ω = 237 deg.
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Fig. 8. Osculating eccentricity and inclination of the almost circular frozen orbit of Fig. 1 with
mean inclination I = 84.6 deg. Abscissas are days.
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4. CONCLUSIONS

With the current state of computational power, high degree potential models can be handled for-
mally without major difficulties, a fact that provides new views on how to face up to orbit design
problems since the preliminary stages. This is of particular relevance in the case of the moon,
where the orbit behavior is highly influenced by the distribution of the lunar mascons and Earth
perturbations, and high fidelity potential models are required to capture the dynamics of orbiters
close to its surface.

For the gravity field of the moon, the present analytical study demonstrates the existence of
low-eccentricity frozen orbits in all the range of inclinations. These frozen orbits are generally
stable, and may enjoy very low eccentricities at a handful of specific inclinations. The averaged
dynamics gives a qualitative description of the long term behavior of low lunar orbits, but it also
provides accurate enough initial conditions to be used in the non averaged model.

Our study considers perturbations from the Earth in the Hill problem approximation, and is
based on a 50× 0 truncation of the lp150q lunar gravitational model. However, since the theory
has been computed fully analytically, there will be no additional effort in updating the gravity field
with the improved values that should soon become available from a variety of missions like the
Japanese SELENE, the Chinese Chang’e-1, the Indian Chandrayaan-1, or the recent NASA Lunar
Reconnaissance Orbiter.
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