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1 Introduction

Spacecraft rendezvous is an enabling technology for present and future space missions. New challenges
arise from the International Space Station (ISS) and the numerous formation flight projects (PRISMA,
SYMBOL-X).
In this paper, the possibility to achieve a rendezvous with electric propulsion is investigated. In fact, Ion
thrusters have increased significantly their power and specific impulse in the recent years. This is the
main reason why they have been used and proposed for many space applications including orbit trans-
fers, attitude control, drag compensation for low earth orbits but also for interplanetary and deep space
missions. In this paper, the homing phase of a rendezvous will be achieved by means of a continuous
signal thrust.
The rendezvous problem, as one of the most fundamental problems in control of spacecraft trajectories,
has been extensively studied as an optimal control problem.Both impulsive thrust and the continuous
thrust assumptions have been exploited through the Pontryagin’s maximum principle respectively in
[11] and [9] and the references therein. Unfortunately, considering possible visibility or safety con-
straints in the frame developed in these works, increase drastically the complexity and may lead to an
untractable problem.
On the opposite to the so-called Pontryagin’s maximum principle methods, direct methods may easily
handle linear and non linear path constraints. These methods, based on the discretization of the original
optimal control problem have been successful in solving impulsive thrust rendezvous problem under
path constraints as demonstrated in [1] and the references therein. Nevertheless, some computed trajec-
tories may be observed violating the safety/visibility constraints between grid points as in [1]. In fact,
there is no guarantee between discretization points.
We propose, in this paper, a new methodology based on differential flatness that is able to ensure con-
straints satisfaction all along the path on the contrary to classical direct methods.
Flat systems, first introduced in [6], are characterized by the fact that there exists a minimal set of
particular outputs (the so-called flat outputs) that characterize all the state space motions and the corre-
sponding input history. Indeed, general optimal control problems could be solved by means of geomet-
ric techniques using the flat trajectory parametrization avoiding integration of the dynamics. In other
words, the above optimal control problem boils down to find the best flat output motion that lies into
the subspace and passes through a given set of points.
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In the differential flatness context, a classical and tractable methodology relies on B-splines based col-
location [17, 5, 16]. However, as in classical direct methods, this technique involves time sampling:
No guarantee on constraints satisfaction between collocation points may be ensured. This may lead to
critical issues that need to be detected by an appropriate post-analysis. Thus, both B-splines collocation
and direct shooting techniques require an interactive procedure between the trajectory synthesis and a
specific post-analysis.
In this paper, our goal is to design flat system trajectories,using the convenient B-splines parametriza-
tion, that guarantee continuous constraints satisfactionin time and without the need for a post-analysis.
Henrion and Lasserre tackled this problem in the case of linear systems in [10]. They proved that
motion planning under constraints can be recast as the inclusion of a univariate polynomial in a linear
semi-algebraic subset. By using results on positive polynomials [18] (based on conic duality), [19]
(based on sums of squares decomposition), the last problem turns out to be a Linear Matrix Inequalities
(LMI) optimization problem. Using the results from [14] on positive piecewise polynomials, the main
result of this paper is to provide a new motion planning methodology that allows to design a trajectory
fulfilling the constraints continuously in time.
In section 2, we briefly present the relative motion model andthe concept of differential flatness. Then,
the optimal path planning problem for flat systems is described. Our contribution is detailed in section
3 in two steps. First, in subsection 3.1, the results on positive polynomials from [14] is presented.
Subsequently, in subsection 3.2, the constrained B-splines optimization is formulated as a convex opti-
mization problem over linear matrix inequalities (LMI) forwhich efficient programming (SDP) solvers
are available. In section 4, an example of the resolution of an orbital homing problem illustrates the
methodology.

2 Problem statement

2.1 Relative motion model

In this paper, the Rendezvous mission consists of two spacecraft: one chaser satellite with full 3-axis
capability and one passive target spacecraft on an arbitrary elliptic orbit. The relative motion between
the two satellites in close space was firstly described in thespace context in [22] and [21]. In the
following, we describe briefly the developement of the equations of motions in order to obtain a state
model of the relative dynamics. Let~ρ be the relative vector between spacecrafts. Under the keplerian
assumption, the dynamic equation ofρ is:

(
d2~ρ

dt2

)

Bin

= ∆~g +
~Fchaser

mchaser

(1)

whereBin is the inertial earth frame,∆~g = ~g(Mchaser) − ~g(Mtarget) is the differential gravity force
with Fchaser andmchaser are respectively the propulsion force and the mass of the chaser spacecraft.
Therefore, the equations will be expressed in the Gauss-Hill frame (OS, ~R, ~S, ~W ) whereOS is the
center of mass of the target satellite (see figure 1).

In this framework, the relative position between spacecraft is such that:

~ρ = x~R + y~S + z ~W (2)

After the expansion ofd
2~ρ

dt2
and the linearization of the differential gravity term∆~g, equation (1) leads

to the so-called Tshauner-Hempel equations:






ẍ = 2n (1+e cos ν)2

(1−e2)3/2 ẏ − 2n2e sin ν
(

1+e cos ν
1−e2

)3
y + n2

(
1+e cos ν

1−e2

)3
(3 + e cos ν)x + n2uR

ÿ = −2n (1+e cos ν)2

(1−e2)3/2 ẋ + 2n2e sin ν
(

1+e cos ν
1−e2

)3
x + n2

(
1+e cos ν

1−e2

)3
(e cos ν)y + n2uS

z̈ = −n2
(

1+e cos ν
1−e2

)3
z + n2uW

(3)
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Figure 1: Hill frame

whereν is the true anomaly,n the mean motion and the input vectoru(t) is defined by:







uR =
Fchaser,R

mchasern2

uS =
Fchaser,S

mchasern2

uW =
Fchaser,W

mchasern2

(4)

Simplified Tschauner-Hempel equations can be obtained by replacing time as the independent variable
by the true anomaly:ν

d(·)

dt
=

d(·)

dν

dν

dt
= (·)′ν̇

d2(·)

dt2
=

d2(·)

dν2
ν̇2 + ν̈

d(·)

dν

= ν̇2(·)′′ + ν̈(·)′

(5)

and by using the classical change of variables:




x̃
ỹ
z̃



 = (1 + e cos ν)





x
y
z









x̃′

ỹ′

z̃′



 = (1 + e cos ν)





x′

y′

z′



− e sin ν





x
y
z









ũR

ũS

ũW



 =

(
1 − e2

1 + e cos ν

)3




uR

uS

uW





(6)

Tschauner-Hempel equations become:






x̃′′ = 2ỹ′ + 3
1+e cos ν

x̃ + ũR

ỹ′′ = −2x̃′ + ũS

z̃′′ = −z̃ + ũW

(7)
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We can now define the state vectorX̃(ν) =
[
x̃ ỹ z̃ x̃′ ỹ′ z̃′

]
and the associated input vector

ũ =
[
ũR ũS ũW

]
and deduce the linear time-periodic state space model:

dX̃(ν)

dν
= ÃTHX̃(ν) + B̃TH ũ(ν) (8)

with:

ÃTH =











0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3

1+e cos ν
0 0 0 2 0

0 0 0 −2 0 0
0 0 −1 0 0 0











B̃TH =











0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1











(9)

2.2 Differential flatness

Differential flatness, or flatness in short, has been introduced by Fliess et al. [7] in 1992. Consider a
nonlinear system:

Ẋ = f(X, u), (10)

whereX is then-component state vector andu them-component control assuming thatm ≤ n.

Definition 1 The nonlinear system(10) is differentially flat if there exists anm-dimensional vectorχ,
whose elements are differentially independent, such that:

χ(t) = Φ
(
X(ν), u(ν), u̇(ν), . . . , u(α)(ν)

)
, (11)

and: {

X(ν) = ΨX

(
χ(ν), χ̇(ν), . . . , χ(β−1)(ν)

)
,

u(ν) = Ψu

(
χ(ν), χ̇(ν), . . . , χ(β)(ν)

)
,

(12)

whereΨXandΨu are smooth functions,χ(k)
i (ν) denoting thekth order time derivative of theith com-

ponent ofχ(ν), and the multi-indexβ = (β1, . . . , βm) contains the characteristic numbers associated
to the flat outputs and is defined by::

βi = min

{

k ∈ N
∗ : ∂

(
dkχi

dtk

)

/∂uj 6= 0, j ∈ {1, . . . , m}

}

, (13)

with i = 1, . . . , m. The elements ofχ ∈ R
m are called flat outputs.

Since we focus attention on linear systems, we recall from [8] the following result:

Proposition 1 A linear sytem is flat if and only if it is controllable

In our case, system (8) is fully controllable since the chaser is fully actuated. One can easily check
that the controllability matrix of the pair(ATH , BTH) is full-row rank fore < 1. Consequently, system
(8) is differentially flat. Moreover, an elligible flat output is the position vectorχ = [x̃ ỹ z̃]T (see [12,
footnote 2] for complementary explanations). Indeed, by inversing system (7), we can express the input
vectorũ in terms ofχ:







ũR = χ′′

1 −
3

1+e cos ν
χ1 − 2χ′

2

ũS = χ′′

2 + 2χ′

1

ũW = χ′′

3 + χ3

(14)

The real interest of flatness for optimal control problem is that it also defined a Lie-Bäcklund equiv-
alence between a nonlinear system and a trivial system [8]. Asχ represent the state of the trivial system,
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them-components ofχ are differentially independent. Indeed, aχ-space of dimensionnχ can be con-
sidered with the coordinatesχ = {χ, χ′, χ′′, . . . , χ(p)} with p ∈ N where any curve of this space is
equivalent to the system trajectories.
As it will be described in the next paragraph, the solution tothe optimal control problem can be de-
scribed as a particular curve of theχ-space.

2.3 Optimal path planning for flat systems

The generation of constrained trajectory consists in determining a finite-time trajectoryt 7→ (X̃(ν), ũ(ν))
with t ∈ [ti ; tf ], satisfying the set of constraints related to the dynamics of the underlying system,
boundary conditions, path and actuators constraints. The problem can be formulated as follows:

minũ J(X̃, ũ)
subject to:







dX̃(ν)
dν

= ÃTHX̃(ν) + B̃TH ũ(ν),

X̃(νi) = X̃0, ũ(νi) = ũ0,

X̃(νf ) = X̃f , ũ(νf ) = ũf ,

γ(X̃(ν), ũ(ν)) ≥ 0,

(15)

whereJ(X̃, ũ) represents a particular objective function andγ(X̃(ν), ũ(ν)) the path and actuators
constraints. The path and actuators constraints are such that:

HvisX̃ ≤ Kvis (16)

−ũmax ≤ ũi ≤ ũmax (17)

Equation (16) represents the visibility constraint: The chaser’s trajectory must lie in a visibility cone
defined by a polytope characterized by its cartesian coordinates(Hvis, Kvis). Equation (17) gives satu-
ration bounds on the actuators.

Using the specific flatness properties, the optimal control problem 15 is transformed into the fol-
lowing problem:

Problem 1 Considering the flat system(10), the optimal path planning problem can be formulated as
the following optimization problem:

minχ J(χ(ν))
subject to:







χ(ti) = χi,
χ(tf) = χf ,
χ(ν) ∈ Sχ,

(18)

whereχ are flat space coordinates and the subsetSχ, the so-called feasible region, is such that:

Sχ = {χ| γχ(χ(ν)) ≥ 0}, (19)

with γχ(χ(ν)) describing the path and actuators constraints in terms of ofχ.

Since the considered relative motion and constraints functional γ are assumed to be linear,Sχ is a
polytopic subset ofOχ. J(χ) is assumed to be convex in terms ofχ.

Then, by virtue of (18), it turns out that the optimal controlproblem for a flat system consists in
determining a finite time trajectoryν 7→ χ(ν) that connects two points of theχ-space and belongs
to the subsetSχ. Since all curves ofχ-space verify the nonlinear system dynamics, problem (15)
is equivalent to the geometric and integration-free problem (18). One of the advantages of problem
1 is that it can be solved by all algorithms able to determine curves belonging to a well-determined
subspace. Among eligible algorithms, B-splines collocation methods have been popular and largely
investigated [17, 15, 16]. However, the drawback of this method is that it does not guarantee the
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constraints satisfaction on the time continuum [16]. Nevertheless, the B-splines formalism offers a
convenient framework to define piecewise polynomial trajectories offering high flexibility with a low
number of parameters. Indeed, in this paper, the trajectories of the flat outputχ components and their
derivatives are represented with a B-splines basis:

χi(ν) =
∑nB

j=1 Ci,j.Bj,k(ν), i = 1, . . . , m

χ
(r)
i (ν) =

∑nB

j=1 Ci,j.B
(r)
j,k (ν), i = 1, . . . , m.

(20)

Here{Bj,k} is akth order B-splines basis built on a given knot sequenceT (see appendix A for defini-
tions and [3, chap. VIII] for more details). The control pointsCi,j are the coordinates of the piecewise
polynomialsχi(ν) in the B-splines basis.
Let C = (C1,1, . . . , C1,nB

, C2,1, . . . , C2,nB
, C3,1, . . . , C3,nB

) be the vector of the control points defining
the trajectoriesχ(ν). Using a B-splines parameterization of the flat output, the control pointsC become
the decision variables of the flat optimal control problem (18).

Problem 2 Consider flat system(10), the optimal path planning problem using B-splines parametriza-
tion can be formulated as follows:

minC J(χ(C))
subject to:







χ(ti, C) = χi,
χ(tf , C) = χf ,
χ(C) ∈ Sχ.

. (21)

The constraintχ(C) ∈ Sχ can be seen as an inclusion ofχ(ν) trajectories within the intersection
of several half-spaces. In fact, it will be shown that positioning the trajectoryχ(ν) in a half-space is
equivalent to evaluate the sign of the piecewise polynomialgap function,κ(ν), betweenz(ν) and the
hyper-plane boundary.Thus, this positioning problem is equivalent to a positivity problem of piecewise
polynomials. By using the concept of positive B-splines developed through LMI approach in [14], the
problem 2 will be recast as a semidefinite programming problem whose solution will effectively verify
the constraintχ(C) ∈ Sχ all along the path.

3 Path planning as a B-splines positivity problem

3.1 Elements of piecewise polynomial positivity

In [14], the sums of squares representation of piecewise polynomials function has been developed. This
representation is convenient since its positiveness only depends on the semi definite positiveness of a
weighting matrixY . Through the linear operatorΛ∗, the set of the coefficientsµ may be described on
a B-spline basisv(t) that define a positive piecewise polynomial function. In fact, this set is shown to
be a linear image of the cone of the positive semidefinite matrices.

Theorem 1 Letµ be an element of the closed, pointed and convex coneK defined by:

K = {µ ∈ R
nv : µ = Λ∗(Y ), Y � 0}. (22)

Each elementµ of K describes a positive semidefinite polynomial on the basisv(t) so that

P (t) =

nv∑

i=1

µivi(t) ≥ 0. (23)

In sake of conciseness, definitions ofΛ∗ and proof of the theorem 1 are detailed in [14].
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3.2 Motion planning as an LMI problem

This result, mainly based on theorem 1, is the description ofthe piecewise polynomial trajectory inclu-
sion into a polytope as a B-spline positivity problem and consequently as an LMI problem.
Le Oχ be the finite dimensional flat output space with the followingcoordinates:

χ = (χ1, . . . , χm, χ̇1, . . . , χ̇m, χ
(r)
1 , . . . , χ(r)

m )

Recall that the flat trajectories[ν0, νf ] → R
nχ, ν 7→ χ(ν) are parametrized onk-order B-splines basis

{Bk} (see equation (20)).
Let the feasible regionSχ be an intersection ofnc half-spaces ofOχ and Hi be theith half-space
described by its Cartesian coordinates:

Hi = {χ ∈ R
nχ| aT

i χ ≤ bi}, (24)

whereai ∈ R
nχ andbi ∈ R with i = 1, . . . , nc. We note thatχ(ν) belong to the half-spaceHi if and

only if:
aT

i χ(ν) ≤ bi (25)

Theorem 2 Solving the path planning problem defined by(21), is equivalent to solving the following
SDP problem:

min
C

J(χ(C))

subject to:







αiC − bi = Λ∗(Yi)

Yi � 0

ΘC = θ

, ∀i = 1, . . . , nc.
(26)

with the objective function assumed to be linear inχ and in the control points

C = (C1,1, . . . , C1,n, C2,1, . . . , C2,n, C3,1, . . . , C3,n)

as well.
Λ∗ is the dual operator defined in [14].αi ∈ R

nv×NC are linear matrix functions ofai, with ai andbi

associated to theith half-spaceHi (cf. equation(24)). The equality constraintΘC = θ represents the
initial and final conditions. The proof is detailed in appendix B.

4 Orbital homing example

In this section we detailed the rendezvous problem and propose a solution using the methodology
presented in section 3. The studied case is inspired by the ATV mission. The Keplerian parameters of
the target orbit are given in table 4: The Rendez-vous is given by the initial and final relative state:

Excentricitye 0.0052
Inclinaisoni 52◦

RAAN Ω 0
Perigee argumentω 0

Initial homing anomalyν1 0
Final homing anomalyνf 5rad

Table 1: Keplerian parameters of the target orbit
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X1 = [−800, 300, 0, 0, 0, 0] (27)

Xf = [−1, 0, 0, 0, 0, 0] (28)

(29)

The homing problem is formally described by the optimal control problem (15). Using flatness and
B-spline parametrization as explained in subsections 2.2 and 2.3, the problem to be solved is now the
following:

minC J(χ(C))
subject to:







χ(ti, C) = χi,
χ(tf , C) = χf ,
χ(C) ∈ Sχ.

. (30)

The cost to be minimized is the fuel consumption defined by i.e.
∫ νf

ν1
|ũ(ν)|dν. The feasible regionSχ

is given by the constraints on system (8).
The first constraint comes from the saturation on the actuators. In the sequel of the paper, saturation
bound in each directioñUmax is 2 N such that:







−Ũmax ≤ ũR ≤ Ũmax

−Ũmax ≤ ũS ≤ Ũmax

−Ũmax ≤ ũW ≤ Ũmax

(31)

Indeed, from equation (14), the saturation constraints maybe expressed in terms ofχ:






−Ũmax ≤ χ′′

1 −
3

1+e cos ν
χ1 − 2χ′

2 ≤ Ũmax

−Ũmax ≤ χ′′

2 + 2χ′

1 ≤ Ũmax

−Ũmax ≤ χ′′

3 + χ3 ≤ Ũmax

(32)

Since only the second derivative ofχ is involved in system (32), we will consider theχ−spaceOχ such
that:

Oχ = {χ, χ′, χ′′} (33)

Note that the dimension ofOχ is 9. Alternatively, the saturation contraint can be definedas the mem-
bership of the trajectoryχ(t) to polytope ofOχ described by its cartesian coordinates:

Hsatχ(ν) ≤ Ksat. (34)

In order to have a constant matrixH, we replace the variant term 3
1+e cos ν

by its upper and lower bound
3

1+e
and 3

1−e
such that:

Hsat =











3
1−e

0 −1 0 2 0 0 0 0

− 3
1+e

0 1 0 −2 0 0 0 0

0 −2 0 0 0 −1 0 0 0
0 2 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 0 −1
0 0 0 0 0 0 1 0 1











, Ksat = Ũmax. (35)

The visibility constraint will be defined as: The chaser mustkeep its position in an open polytope
behind the target satellite (see figure 2). The visibility cone is defined by the angleβ such that the
polytope is given by its cartesian coordinatesHvis andKvis such that:

Hvis





χ1

χ2

χ3



 ≤ Kvis (36)
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β

~R

~S

or ~W

Visibility cone

Target

Chaser

Figure 2: Visibility cone

with:

Hvis =









1 0 0
1 0 tan(π

2
− β)

1 0 − tan(π
2
− β)

1 tan(π
2
− β) 0

1 − tan(π
2
− β) 0









, Kvis = 0. (37)

Here,β = 20◦. Thus,nc, the number of linear constraints inχ, is 11 (6 for the saturation contraints and
5 for the visibility one).

The trajectoryt 7→ χ(ν) is a5th order piecewise polynomial function defined on the sequenceof
equidistant knotsξ = {ξ1, . . . , ξ10}. Indeedχ(ν) as element ofPk,ξ,ν admitsB(ν) as B-splines basis.
The continuity parameter vectorν are given in table 1. The dimension of the basisB(t) is n = 14.
In order to defineΛ∗, we need to characterize the gap functionκ(ν). Since the higher derivation order
involved inOχ is two, κ(ν) belongs toPk,ξ,ν⊖2 (see appendix B) and thus it admits a B-splines basis
v(ν) of dimensionnv = 32. Then, the corresponding basisw(ν) is computed. Its dimension isnw = 12.
The operatorΛ∗ is deduced fromv(ν), w(ν) and definitions given in [14].
Coefficient matricesαi of problem (26) are then calculated for each half-space of polytope Sp (see
(45)). The problem equivalent to (30) is finally set as:

minC J(C)
subject to:







α1C − b1 = Λ∗(Y1), Y1 � 0,
...

α11C − b11 = Λ∗(Y11), Y11 � 0,

ΘC = θ

(38)

whereC ∈ R
3n, αi ∈ R

nv×3n. The equality constraintΘC = θ represents the initial and final conditions
of the rendezvous. The cost need to be linear inC to be handle by the semidefinite programming:
J(C) = χ̈(tf , C). Problem (38) is solved using Yalmip [13] and Sedumi 1.02 [20].
The obtained trajectory is given in figure 1. Figure 3 shows that the in-plane trajectory is clearly
included in the visibility cone.
For sake of comparison, we solve problem (21) by means of flatness and collocation methods described
in [16, 17, 5]. Recall that the constraints are checked in a finite number of time called collocation points.
The problem is solved with the quadratic solver MATLAB quadprog considering 20 collocation points
that are equidistant in anomaly. Although an admissible solution for the collocation problem is quickly
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νiB-splines basis order
i = 1, 10 i = 2 − 9

B(t) 5 0 4
v(t) 5 0 2
w(t) 3 0 2

Table 2: B-splines basis parameters

obtained, the trajectory violates the constraints betweenthe collocation points(see figures 3 and 4) on
several intervals. Moreover, we can observe on figure 4a thatour methodology can produce trajectories
very close to the bounds without violating them. On the contrary, when collocation points get closed
to the boundaries, the situation could lead to constraints violation (see figures 4). With the above
collocation methods, an iterative process is needed to re-distribute the sequence or increase the number
the collocation points. This is to be compared to the one-shot method exposed in this paper.

−800 −700 −600 −500 −400 −300 −200 −100 0

0

50

100

150

200

250

300

x [m]

z 
[m

]

Figure 3: Trajectoriesχ(t) obtained by SDP (blue) and by collocation (black), the collocation points
are the black point, red lines give visibility constraints

5 Concluding remarks

In this paper, the orbital rendezvous planning problem using continuous thrust is solved by means of a
new approach based on the differential flatness and positivepiecewise polynomials results. As opposed
to most works on direct methods for optimal control problem reported in the literature, the developed
methodology provides a new framework for satisfying constraints all along the path.

A Piecewise polynomial function spaces and B-splines basisfunc-
tions

This appendix summarizes some results on B-splines basis functions on which the main contribution of
this paper is built. The interested reader can refer to [3] for further details.

Definition 2 (piecewise polynomial function space)Let k be a positive integer,ξ = {ξi}
l+1
i=1 be a

strictly increasing sequence of points called breakpointsand ν = {νi}
l+1
i=1 be a non negative integer
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Figure 4: (a) Focus between the8th and9th collocation points, (b) focus around the5th collocation
point, (c) focus on the vicinity of the RdV

sequence.Pk,ξ denote the linear space of all piecewise polynomial functions denotedf(x) of orderk
with breakpoint sequenceξ = {ξi}

l+1
i=1 and{P1, . . . , Pl} a sequence ofl polynomials of orderk such

that:

f(x) =







P1(x) if ξ1 < x < ξ2,
...

Pl(x) if ξl < x < ξl+1,

0 if x < ξ1 or ξl+1 < x.

(39)

Then,Pk,ξ,ν is a linear subspace defined by the collection of the piecewise polynomial functions ofPk,ξ

whose firstνi derivatives are continuous atξi (i.e. that areCνi at ξi).

Now let us describe a set ofk order B-splines functions as a basis ofPk,ξ,ν

Definition 3 (B-splines) Let T be a non decreasing sequence of points called knot sequence.T is
defined on the sequenceξ such that:

T = {t1, . . . , tp}

= {ξ1, · · · , ξ1
︸ ︷︷ ︸

ρ1 times

, ξ2, . . . , ξ2
︸ ︷︷ ︸

ρ2 times

, . . . , ξl+1, · · · , ξl+1
︸ ︷︷ ︸

ρl+1 times

}. (40)

In this formulation,p =
∑l+1

i=1 ρi andρ = [ρ1, . . . , ρl+1]
T is the vector of the{ξ} breakpoints multi-

plicity in the knot sequenceT . The setS of k order B-splines for the knot sequenceT is defined by the
iterative Cox-de Boor algorithm [3]:







Bi,0(x) =

{

1 ti ≤ x ≤ ti+1

0 otherwise
,

Bi,k(x) = x−ti
ti+k−1−ti

Bi,k−1(x) + ti+k−x

ti+k−ti+1
Bi+1,k−1(x).

(41)

By virtue of the Curry-Schoenberg theorem [2], the set ofk order B-splines defined on the knot se-
quenceT is a basis of the subspacePk,ξ,ν if and only if the knot sequenceT is structured such that the
ρi involved in (40) satisfy the following property:

ρi = k − νi, ∀i. (42)

The interested reader can refer to [3] and [4] for an exhaustive description and detailed proof of the
Curry-Schoenberg theorem.
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B Proof of theorem 2

To apply the positivity theorem, the inequalityaT
i z(ν) ≥ bi must be expressed in a B-splines basis (we

flipped the inequality (25) without loss of generality). Thus, by using (20), equation (25) is equivalent
to:

nB∑

j=1

(ai,1Bj,k(ν) + · · ·+ ai,(r−1)m+1B
(r)
j,k (ν))C1,j . . .

+ (ai,2Bj,k(ν) + · · ·+ ai,(r−1)m+2B
(r)
j,k (ν))C2,j + . . .

+ (ai,mBj,k(ν) + · · · + ai,rmB
(r)
j,k (ν))Cm,j ≥ bi.

(43)

In inequality (43), the piecewise polynomial function is composed of aPk,ξ,ν piecewise poly-
nomial and itsr first derivatives. Considering that for a B-splineBj,k ∈ Pk,ξ,ν, one hasḂj,k ∈

Pk−1,ξ,ν⊖1, . . . , B
(r)
j,k ∈ Pk−r,ξ,ν⊖r where the operator⊖ is defined byν⊖r = (max{ν1−r, 0}, . . . , max{νl+1−

r, 0}), with r ≤ νi for i = 2, . . . , l. Then the sum (43), representing the gap, belongs toPk,ξ,ν⊖r and, by
virtue of the Curry-Schoenberg theorem [2], admits the B-splines representation basisv(ν) such that:
(43) becomes:

nv∑

i=1

(
nB∑

j=1

α1,i,jC1,j + · · ·+ αm,i,jCm,j

)

vi,k(ν) ≥ . . . b = b

nv∑

i=1

vi,k(ν). (44)

with αp,j ∈ R
nv p = 1, . . . , m andj = 1, . . . , n. Vectorsαl,i,j are identified using the following system

of equalities:






E1(
∑nv

i=1 αl,i,jvi,k(ν)) = E1((ai,lBj,k(ν) + . . .

+ai,(r−1)m+lB
(r)
j,k (ν))),

...

Ep(
∑nv

i=1 αl,i,jvi,k(ν)) = Ep((ai,lBj,k(ν) + . . .

+ai,(r−1)m+lB
(r)
j,k (ν))),

(45)

with l = 1, . . . , m andj = 1, . . . , n.
Ep(f) =

∫ tf
0

xp f(x) dx denotes thepth order moment of the functionf . The indexp is chosen such that
equation (45) leads to a square linear matrix equality to obtainαl,i,j. Thus, inequality (25) is equivalent
to the following positivity problem:

κ(ν) =
nv∑

i=1

κivi,k(ν) ≥ 0 (46)

whereκi =
∑nB

j=1 (α1,i,jC1,j + · · ·+ αm,i,jCm,j) − b.
Then, determining the operatorsΛ andΛ∗ is needed to recast the positivity problem (46) into an LMI
problem by using theorem 1. These operators are built with a basisu(ν) satisfying the following in-
equality:ν ⊖r < k+1

2
if k is odd. So, theorem 1 gives conditions on theκ coefficients so that inequality

(B) holds: {

κ = Λ∗(Y ), Y � 0,

κ = αC − b.
(47)

Hence,
αC − b = Λ∗(Y ), Y � 0. (48)
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Finally, the inclusion of a trajectoryt 7→ z(ν) into the intersection ofnc half-spaces is written as the
conjunction of thenc membership problem defined in the theorem 2 i.e.







α1C − b1 = Λ∗(Y1), Y1 � 0,
...

αncC − bnc = Λ∗(Ync), Ync � 0.

(49)

which concludes the proof.
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