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1 Introduction

Spacecraft rendezvous is an enabling technology for praserfuture space missions. New challenges
arise from the International Space Station (ISS) and theemous formation flight projects (PRISMA,
SYMBOL-X).

In this paper, the possibility to achieve a rendezvous wéhbtac propulsion is investigated. In fact, lon
thrusters have increased significantly their power andip@&mpulse in the recent years. This is the
main reason why they have been used and proposed for marg apglications including orbit trans-
fers, attitude control, drag compensation for low earthtettut also for interplanetary and deep space
missions. In this paper, the homing phase of a rendezvolibevachieved by means of a continuous
signal thrust.

The rendezvous problem, as one of the most fundamentalgan®ih control of spacecraft trajectories,
has been extensively studied as an optimal control probBoth impulsive thrust and the continuous
thrust assumptions have been exploited through the Pamtrgamaximum principle respectively in
[11] and [9] and the references therein. Unfortunately,sadering possible visibility or safety con-
straints in the frame developed in these works, increasstida#ly the complexity and may lead to an
untractable problem.

On the opposite to the so-called Pontryagin’s maximum pwlaanethods, direct methods may easily
handle linear and non linear path constraints. These msfladed on the discretization of the original
optimal control problem have been successful in solvingulsige thrust rendezvous problem under
path constraints as demonstrated in [1] and the refereheesih. Nevertheless, some computed trajec-
tories may be observed violating the safety/visibility swaints between grid points as in [1]. In fact,
there is no guarantee between discretization points.

We propose, in this paper, a new methodology based on difiatdélatness that is able to ensure con-
straints satisfaction all along the path on the contrarydesical direct methods.

Flat systems, first introduced in [6], are characterizedHwyfact that there exists a minimal set of
particular outputs (the so-called flat outputs) that charae all the state space motions and the corre-
sponding input history. Indeed, general optimal controlggms could be solved by means of geomet-
ric techniques using the flat trajectory parametrizationiging integration of the dynamics. In other
words, the above optimal control problem boils down to finel ltlest flat output motion that lies into
the subspace and passes through a given set of points.



In the differential flatness context, a classical and ttaetanethodology relies on B-splines based col-
location [17, 5, 16]. However, as in classical direct methddis technique involves time sampling:
No guarantee on constraints satisfaction between coltwtabints may be ensured. This may lead to
critical issues that need to be detected by an appropriategmalysis. Thus, both B-splines collocation
and direct shooting techniques require an interactivegaore between the trajectory synthesis and a
specific post-analysis.

In this paper, our goal is to design flat system trajectoussig the convenient B-splines parametriza-
tion, that guarantee continuous constraints satisfaatitime and without the need for a post-analysis.
Henrion and Lasserre tackled this problem in the case o&tisgstems in [10]. They proved that
motion planning under constraints can be recast as thesiociwf a univariate polynomial in a linear
semi-algebraic subset. By using results on positive patyats [18] (based on conic duality), [19]
(based on sums of squares decomposition), the last problasadut to be a Linear Matrix Inequalities
(LMTI) optimization problem. Using the results from [14] ongtive piecewise polynomials, the main
result of this paper is to provide a new motion planning methogy that allows to design a trajectory
fulfilling the constraints continuously in time.

In section 2, we briefly present the relative motion model#wedconcept of differential flatness. Then,
the optimal path planning problem for flat systems is desckil®ur contribution is detailed in section
3 in two steps. First, in subsection 3.1, the results on pesgolynomials from [14] is presented.
Subsequently, in subsection 3.2, the constrained B-spbpémization is formulated as a convex opti-
mization problem over linear matrix inequalities (LMI) fahich efficient programming (SDP) solvers
are available. In section 4, an example of the resolutiomadrdital homing problem illustrates the
methodology.

2 Problem statement

2.1 Relative motion model

In this paper, the Rendezvous mission consists of two spaiteone chaser satellite with full 3-axis
capability and one passive target spacecraft on an anpithptic orbit. The relative motion between

the two satellites in close space was firstly described insfface context in [22] and [21]. In the
following, we describe briefly the developement of the emumast of motions in order to obtain a state
model of the relative dynamics. Lgtbe the relative vector between spacecrafts. Under the tkaple

assumption, the dynamic equationob:
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where B;,, is the inertial earth frame)\g = §(Mcpaser) — §(Miarger) is the differential gravity force
With Flpqser @aNdmepqser are respectively the propulsion force and the mass of theeclrspacecratt.
Therefore, the equations will be expressed in the Gaudddihe (O, R, S, W) where Oy is the
center of mass of the target satellite (see figure 1).

In this framework, the relative position between spacécsaguch that:

j=xR+yS+ W 2)

After the expansion of%ﬁ and the linearization of the differential gravity teryy;, equation (1) leads

to the so-called Tshauner-Hempel equations:
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Figure 1: Hill frame

wherev is the true anomaly; the mean motion and the input vecig) is defined by:
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Simplified Tschauner-Hempel equations can be obtaineddgcimg time as the independent variable
by the true anomalyz
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We can now define the state vectsi(v) = [ § z @ g Z] and the associated input vector
U= [aR Ug &W} and deduce the linear time-periodic state space model:

dX(v) ~ o -
di ) = Ary X(v) + Bruu(v) (8)
with: ) ) ) )
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2.2 Differential flatness

Differential flatness, or flatness in short, has been inttedwby Fliess et al. [7] in 1992. Consider a
nonlinear system: .
X = f(X,u), (10)

where X is then-component state vector amdhe m-component control assuming that< n.

Definition 1 The nonlinear systerfi0) is differentially flat if there exists am-dimensional vectox,
whose elements are differentially independent, such that:

X(t) = @ (X(v), u(), a(v), ..., d! (@), (11)
and:
X0) = ¥ (x(#).X(#). .. X)) 12)
u) = ¥, (x@),x(),-.. . X)),
whereV¥ yand ¥, are smooth functlonsgl ( ) denoting thek' order time derivative of thé" com-

ponent ofy(v), and the multi-index = (54, ..., 3,,) contains the characteristic numbers associated
to the flat outputs and is defined by::

dei
dtk

ﬁi:min{kEN*:ﬁ( )/3uj7é0,j€{1,...,m}}, (13)

withi = 1,...,m. The elements of € R™ are called flat outputs.
Since we focus attention on linear systems, we recall frgrth@following result:
Proposition 1 A linear sytem is flat if and only if it is controllable

In our case, system (8) is fully controllable since the chaséully actuated. One can easily check
that the controllability matrix of the paitAry, Bry) is full-row rank fore < 1. Consequently, system
(8) is differentially flat. Moreover, an elligible flat outpis the position vectox = [z ¢ z]* (see [12,
footnote 2] for complementary explanations). Indeed, bgiging system (7), we can express the input
vectoru in terms ofy:
R:XY—Tiw,Xl—QX/Q
Us = X5+ 2X) (14)
Uw = X3 + X3
The real interest of flatness for optimal control probleninet it also defined a Lie-Backlund equiv-

alence between a nonlinear system and a trivial system [8}. rRpresent the state of the trivial system,



them-components of are differentially independent. Indeedyespace of dimension,, can be con-
sidered with the coordinateg = {x, X', x",...,x®} with p € N where any curve of this space is
equivalent to the system trajectories.

As it will be described in the next paragraph, the solutiothi optimal control problem can be de-
scribed as a particular curve of tiyespace.

2.3 Optimal path planning for flat systems

The generation of constrained trajectory consists in déténg a finite-time trajectory — (X (v), a(v))
with t € [t;;ts], satisfying the set of constraints related to the dynamidh® underlying system,
boundary conditions, path and actuators constraints. Tdt@gm can be formulated as follows:

ming J(X, @) X(vi) = Xo, a(ws) = o, (15)
subject to: X(vp) = X;,  alyy) =y,

where J(X @) represents a particular objective function an@d\ (v), @(v)) the path and actuators
constraints. The path and actuators constraints are sath th

HUiSX S Km's (16)
_amax S ’&z S ’&ma:c (17)

Equation (16) represents the visibility constraint: Thasdr’s trajectory must lie in a visibility cone
defined by a polytope characterized by its cartesian coate(H.;s, K,;s). Equation (17) gives satu-
ration bounds on the actuators.

Using the specific flatness properties, the optimal controblem 15 is transformed into the fol-
lowing problem:

Problem 1 Considering the flat syste(t0), the optimal path planning problem can be formulated as
the following optimization problem:

miny, J(X(v)) X e
subject to: é((tyf)) e_gff’ (18)
X

wherey are flat space coordinates and the subSgtthe so-called feasible region, is such that:

Sz = {xXIn(x(v)) = 0}, (19)
with v, (X(v)) describing the path and actuators constraints in terms gf.of

Since the considered relative motion and constraints iomaky are assumed to be lineasy is a
polytopic subset 0Dy J(X) is assumed to be convex in terms pf

Then, by virtue of (18), it turns out that the optimal contpobblem for a flat system consists in
determining a finite time trajectory — x(v) that connects two points of thg-space and belongs
to the subset5;. Since all curves ofy-space verify the nonlinear system dynamics, problem (15)
is equivalent to the geometric and integration-free pnob(@8). One of the advantages of problem
1 is that it can be solved by all algorithms able to determuneve&s belonging to a well-determined
subspace. Among eligible algorithms, B-splines collaratnethods have been popular and largely
investigated [17, 15, 16]. However, the drawback of thishmodtis that it does not guarantee the



constraints satisfaction on the time continuum [16]. N#&waless, the B-splines formalism offers a
convenient framework to define piecewise polynomial tri@jees offering high flexibility with a low
number of parameters. Indeed, in this paper, the trajestaf the flat outpu components and their
derivatives are represented with a B-splines basis:

Xz(l/) = Z;Lfl Ci,j'Bj,k(V)a L= 1, oo, (20)
X)) = Y1 Gy B W), i=1,...,m.

Here{B,} is ak' order B-splines basis built on a given knot sequefi¢see appendix A for defini-
tions and [3, chap. VIII] for more details). The control ptsin; ; are the coordinates of the piecewise
polynomialsy;(v) in the B-splines basis.

LetC = (Cy1,...,C1np, Cox,. .., Canp, Cs1, ..., Cs,,,,) be the vector of the control points defining
the trajectories(v). Using a B-splines parameterization of the flat output, @l pointsC' become
the decision variables of the flat optimal control probler®)(1

Problem 2 Consider flat systerfi0), the optimal path planning problem using B-splines parainat
tion can be formulated as follows:

. _ X(t:, C) =X;
ming J(X(C)) { i(( ’ o
. ’ ,C) =Xy, - (21)
subject to: X(_tf !
) X(C) € Ss.

The constrainf(C) € Sy can be seen as an inclusiongfv) trajectories within the intersection
of several half-spaces. In fact, it will be shown that positng the trajectory(v) in a half-space is
equivalent to evaluate the sign of the piecewise polynogaal function(v), betweerg(v) and the
hyper-plane boundary.Thus, this positioning problem is\eent to a positivity problem of piecewise
polynomials. By using the concept of positive B-splinesaleped through LMI approach in [14], the
problem 2 will be recast as a semidefinite programming probléose solution will effectively verify
the constraing(C) € Sy all along the path.

3 Path planning as a B-splines positivity problem

3.1 Elements of piecewise polynomial positivity

In [14], the sums of squares representation of piecewisepatials function has been developed. This
representation is convenient since its positiveness ogpedds on the semi definite positiveness of a
weighting matrixY". Through the linear operatdr*, the set of the coefficienys may be described on

a B-spline basis(t) that define a positive piecewise polynomial function. Irtfélais set is shown to
be a linear image of the cone of the positive semidefinite icesr

Theorem 1 Let be an element of the closed, pointed and convex Botefined by:
K={peR™ :p=A"(Y),Y =0} (22)
Each element of K describes a positive semidefinite polynomial on the bagisso that

P(t) = ium(t) > 0. (23)

In sake of conciseness, definitions/of and proof of the theorem 1 are detailed in [14].



3.2 Motion planning as an LMI problem

This result, mainly based on theorem 1, is the descriptidh@piecewise polynomial trajectory inclu-
sion into a polytope as a B-spline positivity problem andsemjuently as an LMI problem.
Le Oy be the finite dimensional flat output space with the followsogrdinates:

Y: (Xl;"'7Xm>X1>'"aXﬂ%XY)?"'aXS;))
Recall that the flat trajectorigs,, v;|] — R"%, v — x(v) are parametrized okrorder B-splines basis
{Bs} (see equation (20)).
Let the feasible regiors;, be an intersection of.. half-spaces of),, and H; be thei’" half-space
described by its Cartesian coordinates:

H; = {X € R™[aj X < bi}, (24)
wherea; € R"* andb; € R withi = 1,...,n.. We note thaf(») belong to the half-spacH; if and
only if:

a; X(v) < b; (25)

Theorem 2 Solving the path planning problem defined(B{), is equivalent to solving the following
SDP problem:

min J(%(C))
subjectto:< Y; = 0 Vi=1,...,ne.
eoC =14

with the objective function assumed to be lineaxiand in the control points
C - (01,17 R Cl,rm 02,17 R CZ,TM CV3,17 ety C3,n)

as well.

A* is the dual operator defined in [14}; € R™>*Nc are linear matrix functions of;, with a; andb;
associated to thé” half-spacel; (cf. equation(24)). The equality constrair®C = ¢ represents the
initial and final conditions. The proof is detailed in app@nB.

4  Orbital homing example

In this section we detailed the rendezvous problem and geBosolution using the methodology
presented in section 3. The studied case is inspired by thvemBsion. The Keplerian parameters of
the target orbit are given in table 4: The Rendez-vous isgnyethe initial and final relative state:

Excentricitye 0.0052
Inclinaison: 52°
RAAN € 0
Perigee argument 0
Initial homing anomaly/, 0
Final homing anomaly; | 5rad

Table 1: Keplerian parameters of the target orbit



X, = [=800, 300, 0, 0, 0, 0] (27)
X;=[-1,0,0,0,0,0] (28)
(29)

The homing problem is formally described by the optimal colftroblem (15). Using flatness and
B-spline parametrization as explained in subsections 2d22a3, the problem to be solved is now the
following:

ming J(X(C)) i o

: / tr,C) =Xy, . (30)
subject to: X(_f’ P

: X(C) € Sx.
The cost to be minimized is the fuel consumption defined byﬁy’.;é |a(v)|dv. The feasible regioy
is given by the constraints on system (8).
The first constraint comes from the saturation on the actsiato the sequel of the paper, saturation
bound in each directiofy,,,. is 2 N such that:

_Umax S ’&R S Uma:c
_Umaa: S aS S Umaa: (31)
—Ymaz S aW S max

Indeed, from equation (14), the saturation constraints beagxpressed in terms §f

U < X 1+e?::oqu1 B 2X/2 < Umaa:
U + 2X1 S Umaa: (32)
_Uma:c S X3 + X3 S Umax

Since only the second derivative pfs involved in system (32), we will consider tiye-space0y such
that:

Oz = {0 X X"} (33)

Note that the dimension a@y, is 9. Alternatively, the saturation contraint can be definedhe mem-
bership of the trajectory(t) to polytope ofO5 described by its cartesian coordinates:

HsatY(V) S Ksat- (34)

In order to have a constant matrik, we replace the variant ter% by its upper and lower bound
— and - such that:

[ % 0O -10 2 0 0 0 0]
—1—?;6 0 1 0 -2 0 0 0 O
0 -2 0 0 0 -1 0 0 O ~
Hsat - O 2 O O O 1 O 0 0 ) Ksat - Uma:c' (35)
0 o o0 o0 o0 0 -1 0 -1
0 0 0 0 0 0 1 0 1]

The visibility constraint will be defined as: The chaser mkestp its position in an open polytope
behind the target satellite (see figure 2). The visibilityeas defined by the anglé such that the
polytope is given by its cartesian coordinatés, and K,;; such that:

X1
Hvis X2 S Kvis (36)

X3



Visibility cone

o

Chaser

Figure 2: Visibility cone

with:
1 0 0
1 0 tan(§ — ()
Hm's = |1 0 —tan(% — ﬁ) s Km's =0. (37)
1 tan(§ — f) 0
1 —tan(3 — ) 0

Here,3 = 20°. Thus,n., the number of linear constraintsinis 11 (6 for the saturation contraints and
5 for the visibility one).

The trajectoryt — x(v) is a5 order piecewise polynomial function defined on the sequefice
equidistant knotg = {i, ..., &0} Indeedy(v) as element oP; ¢, admitsB(v) as B-splines basis.
The continuity parameter vectorare given in table 1. The dimension of the ba8ig) isn = 14.

In order to define\*, we need to characterize the gap functidn). Since the higher derivation order
involved in Oy is two, x(v) belongs taPy ¢ o2 (see appendix B) and thus it admits a B-splines basis
v(v) of dimensiom, = 32. Then, the corresponding basi$v) is computed. Its dimensionis, = 12.

The operaton\* is deduced fromv(v), w(v) and definitions given in [14].

Coefficient matricesy; of problem (26) are then calculated for each half-space bftpoe S, (see
(45)). The problem equivalent to (30) is finally set as:

aC—b=A(Y), Y1 =0,
ming J(C)
subjectto: |, ,C — b, = A*(Y11), Y11 =0,
oC =14

(38)

whereC' € R*", o; € R™*3", The equality constrai®C' = 0 represents the initial and final conditions
of the rendezvous. The cost need to be lineaf’ito be handle by the semidefinite programming:
J(C) = X(ts,C). Problem (38) is solved using Yalmip [13] and Sedumi 1.03.[20

The obtained trajectory is given in figure 1. Figure 3 showat the in-plane trajectory is clearly
included in the visibility cone.

For sake of comparison, we solve problem (21) by means oeftatand collocation methods described
in[16, 17, 5]. Recall that the constraints are checked inigefrumber of time called collocation points.
The problem is solved with the quadratic solvestMAB quadpr og considering 20 collocation points
that are equidistant in anomaly. Although an admissibletgm for the collocation problem is quickly



B-splines basig| order Vi

i=1,10]i=2-9
B(t) 5 0 4
o(t) 5 0 2
wi(t) 3 0 2

Table 2: B-splines basis parameters

obtained, the trajectory violates the constraints betwkercollocation points(see figures 3 and 4) on
several intervals. Moreover, we can observe on figure 4ativahethodology can produce trajectories
very close to the bounds without violating them. On the amytrwhen collocation points get closed
to the boundaries, the situation could lead to constraimdmton (see figures 4). With the above
collocation methods, an iterative process is needed testakilite the sequence or increase the number
the collocation points. This is to be compared to the oné-stahod exposed in this paper.

300
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Figure 3: Trajectoriex/(¢) obtained by SDP (blue) and by collocation (black), the a@t@®n points
are the black point, red lines give visibility constraints

5 Concluding remarks

In this paper, the orbital rendezvous planning problemgisontinuous thrust is solved by means of a
new approach based on the differential flathess and popigeewise polynomials results. As opposed
to most works on direct methods for optimal control probleparted in the literature, the developed
methodology provides a new framework for satisfying caxists all along the path.

A Piecewise polynomial function spaces and B-splines badisc-
tions

This appendix summarizes some results on B-splines bastidns on which the main contribution of
this paper is built. The interested reader can refer to [Biddher details.

Definition 2 (piecewise polynomial function space) et k be a positive integert = {¢}.! be a
strictly increasing sequence of points called breakpoartd v = {v;}'*! be a non negative integer
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Figure 4: (a) Focus between tB& and 9" collocation points, (b) focus around ti& collocation
point, (c) focus on the vicinity of the RdV

sequencelP, « denote the linear space of all piecewise polynomial fumstidenoted (=) of order &

with breakpoint sequence= {&}.11 and {P,, ..., P} a sequence df polynomials of orde# such
that:
Pl(ZL’) if§1<$<§2,
f@y=9" (39)
Pz) & <x <&y,
0 ifoe <& oré <.

Then,P, ¢, is a linear subspace defined by the collection of the pie@pasynomial functions d;, .
whose first; derivatives are continuous g (i.e. that areC" at¢;).

Now let us describe a set éforder B-splines functions as a basidhgf; ,

Definition 3 (B-splines) Let T" be a non decreasing sequence of points called knot sequéngs.
defined on the sequengesuch that:

T={t,....t,}
= {517"' 761)627"'7527"'>§l+1a"' >€l+1}- (40)
—_—— —— —_———
p1 times p2 times pl+1 times

In this formulation,p = ij piandp = [p1,..., 41" is the vector of thg¢} breakpoints multi-

plicity in the knot sequencE. The setS of k£ order B-splines for the knot sequeritas defined by the
iterative Cox-de Boor algorithm [3]:

1 t,<x<t
Bio(z) = { ==t

0 otherwise 41
Biy(x) = ti+k—f*ti Bik—1(x) + 7ti+:iti+l Bii1g-1(x).

By virtue of the Curry-Schoenberg theorem [2], the set arder B-splines defined on the knot se-
quencel’ is a basis of the subspafg, , if and only if the knot sequencg is structured such that the
p; involved in (40) satisfy the following property:

The interested reader can refer to [3] and [4] for an exhaeistescription and detailed proof of the
Curry-Schoenberg theorem.



B Proof of theorem 2

To apply the positivity theorem, the inequalityz(v) > b; must be expressed in a B-splines basis (we
flipped the inequality (25) without loss of generality). Bhaby using (20), equation (25) is equivalent
to:

np

Z(ailej,k(V) + -t ai,(rfl)erlBj('Tk)(V))Cl,j Ce

7j=1
+ (@i Bin (V) + -+ @i ey BY) (1) Co + . .
+ (ai,mBng(l/) + -+ &i,TmBj('le(V))Cm,j > b;.

(43)

In inequality (43), the piecewise polynomial function isngoosed of aPj ¢, piecewise poly-
nomial and itsr first derivatives. Considering that for a B-splifi®, € Pj.,, one hasB;, ¢
Pi1evots-- - BJ(T,E € Py_,¢..or Where the operatap is defined by or = (max{v;—r, 0}, ..., max{v; 11—
r,0}), withr <y, fori = 2,...,l. Then the sum (43), representing the gap, belon@s tq.o, and, by
virtue of the Curry-Schoenberg theorem [2], admits the Bnasp representation basi$v) such that:
(43) becomes:

Uz

ng Ny
Z (Z Oél,i,jcl,j + -t am,i,ij,j> ’UZ'J{;(I/) Z .. .b= vai,k(V). (44)
=1 \j=1 =1

witha,; e R™ p=1,...,mandj = 1,...,n. Vectorse ; ; are identified using the following system
of equalities:

(E\(C7 avigvin(v) = Ei((aiBjx(v) + ...
+ai - B (1)),
: (45)
E,(> 22 aniuie(v) = Ep((ainBjr(v) + ...
\ +ai r—ym+1Bj) (1)),
withi=1,...,mandj=1,... n.
E,(f) = fotf 2P f(x) dz denotes the!™ order moment of the functiof. The indexp is chosen such that

equation (45) leads to a square linear matrix equality taialat; ; ;. Thus, inequality (25) is equivalent
to the following positivity problem:

k(v) = Z Kivi (V) >0 (46)

wherek,; = Z?ﬁl (al,mCLj + -+ Oém7i7jcm7j) —b.

Then, determining the operatatsand A* is needed to recast the positivity problem (46) into an LMI
problem by using theorem 1. These operators are built withsésh () satisfying the following in-
equality:vor < % if £ is odd. So, theorem 1 gives conditions on theoefficients so that inequality

(B) holds:
k= A*
{H = aCE):);) Tt (“47)

Hence,
aC—b=A(Y), Y =0. (48)



Finally, the inclusion of a trajectoryy — Z(v) into the intersection of,. half-spaces is written as the
conjunction of the:. membership problem defined in the theorem 2 i.e.

a;C —b = A (Y1), Y1=0,

. (49)
n,C — by, = AN (Yy.), Y, = 0.

c —

which concludes the proof.
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