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Abstract: The study presented in this paper deals with G#os@ry Transfer Orbits (GTO) for
which new French regulations (defined in the contdxthe French Space Act) will fully apply at
the end of 2011Geostationary Transfer Orbits are characterizedabjow perigee (altitude of a
few hundreds of kilometres) and a high apogeetyalé typically identical to that of geostationary
satellites) among other features. The objectivthefstudy is to analyze the dynamics of objects in
geostationary transfer orbits in order to betterdenstand what the lifetime (time during which the
object remains in orbit) most depends on. Becaudsde high eccentricity, the orbit is strongly
affected by the gravitational effects of the Sud lslmon. But because the perigee is low, drag has a
strong impact too. The coupling of the two pertaidoas combined with the effects of the Earth
potential (secular drifts mainly) makes the orbitwvolution particularly sensitive to initial
conditions and modelling errors. One key elemetibésinitial position of the Sun (and to a lesser
extent the Moon) which changes the mean altitudeeoperigee, which translates into more or less
drag, hence more or less decrease rate of the s&jof axis at the beginning of the lifetime. But
when the semi-major axis reaches a value of ardls@@00km, the perigee altitude may increase or
decrease strongly because the angle between thar@ltie line of apsides is then nearly constant.
The paper attempts to explain all these aspectsdismlisses the possibility of limiting the lifetime
of objects in Geostationary Transfer Orbits.
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1 Introduction

The amount of debris in orbit is a growing threabperational satellites, as seen by the increasing
number of avoidance manoeuvres performed each Vhare is therefore a need for measures that
will prevent this situation from becoming even wargrance has decided to take on an active role
by implementing regulations (French Space Act)jne with IADC recommendations, in order to
protect the most populated orbital regions (LEOQGH.

The study presented in this paper deals with Geostay Transfer Orbits (GTO) for which French
regulations will fully apply at the end of 2011. @éationary Transfer Orbits are mainly
characterized by a low perigee (altitude of a famdreds of kilometres), a high apogee (altitude
typically identical to that of geostationary sateB), and a low inclination.

At the end of their mission, objects in Geostatigniransfer Orbits will neither be allowed to cross
the GEO region within one year nor to stay in otbitger than 25 years if they cross the LEO
region. No one will wait for that long to confirrhat the actual lifetime has been less than 25 years
An reliable enough orbit prediction is of courseessary.

It had been noticed in previous studies conductedCMES that the selection of potentially
hazardous objects in elliptical orbits (for instarabjects that may pose a risk to populations) was
not obvious and that no simple rule seemed to &xisasily select the objects that would re-emter i
the coming months or years.

Other analyses also conducted at CNES on GTOntg&efil] have illustrated the complexity of the
problem. Figure 1 shows the lifetime computed uddAS (Debris Assessment Softwpras a
function of day of year (x-axis) and time of dayalis). The red areas correspond to durations
longer than 25 years, and the blue areas to dasasiborter than 25 years.
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Figure 1: Lifetime results obtained with DAS

The objective of the study is therefore to analymedynamics of geostationary transfer orbits. The
main goal is to better understand what GTO lifetimest depends on, and how it is sensitive to
various factors.

In the first part of the paper, the main hypothesethe study will be presented (model considered,
initial orbital elements.).

The second part will be devoted to the effecthefrhain perturbations.

Finally we’ll show a few lifetime results, analyseeir sensitivity and their predictability, and
discuss the possibility of reducing the lifetimeobfects in Geostationary Transfer Orbits.

1 Hypotheses

In this part we’ll give the main hypotheses usethistudy, and detail a few elements regarding the
perturbations and models used.

As the objective of the study is more focussedasiivity than prediction accuracy, the model has
been chosen as simple as possible.

1.1 Orbit considered

The orbit is described by its Keplerian orbitalneénts. Unless otherwise mentioned, the initial
parameters considered are the following:

Perigee altitude = 200 km (sometimes 250 km)

Apogee altitude = 36000 km

Inclination = 7 degrees

Argument of perigee = 180 degrees

1.2 Dynamics and perturbations

1.2.1 Third body perturbation and models used
The averaged effects (over one orbit) of the dy perturbation can be approximated by the
following equations (see [2]) :




da

_=O

dt

de 15 u >
—=-——">-XVYevl-e
dt 2 nd?®

d_3 u Z

—==_F = [(cosw(+4e*) X -sinw@l-¢e*)Y
dt 2nd? 1-e2( ( ) =€) )

dw_ 3 u Z : 2 2 [1_a2 (v2 2

— == Sinw (1+4e”) X+cosw(@-€e°)Y J+vl-e" (Y -4 X" +1
dt  2nd®|ani \/1—e2( ( ) =€) ) ( )
dQ 3 u Z . ) )

— == sinw (1+4e”) X +cosw (l-e°)Y

dt  2nd® ginj+1-¢’ ( )

dM 1 u 2 2 2\ \/2 2

=—= 6(3+2e°) X°+3(1-€)Y " -3e -7

& zng (8GR X r30-€) )
With:
- a: semi-major axis, e: eccentricity, i: incliratj w: argument of perige€: RAAN, M: mean
anomaly

- X,Y,Z: components of the unit vector directednfrthe centre of the Earth to the celestial body, in
the (P,Q,W) frame, where: P=direction from the ceof the Earth to the perigee, Q=W"P,
W=orbit angular momentum.

- d: distance between the centre of the Earth la@dbody.

- 1 : gravitational constant of the body.

- n: orbit mean motion.

2
dx/dt actually means:i j% dM , with x=a, e, i, etc...
2T | dt

The assumption here is that body and orbit arestfixduring the time of one revolution of the
satellite in its orbit, which is acceptable in case.

From these equations, we can deduce the directibtize celestial body (with respect to the orbit
plane) that make the perigee altitude increaseeoredse. The result, shown in Figure 2, is not very
intuitive.
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Figure 2: Mean gravitational effect of a celestiabody on the perigee altitude

The decrease or increase rate also depends oretragi@n of the body with respect to the orbit
plane (function of cdgelevation)). The decrease or increase rate isehigihen the body is in the
plane.



1.2.2 Atmospheric drag

Drag is an essential factor as it makes the serjomaais decrease until it becomes small enough
for the satellite to burn in the atmosphere. Buatydis also hardly predictable because of the effect
of solar activity on atmospheric density (particly@ver long periods of time).

In this paper we’ll use a simple enough model teortto avoid part of that complexity. We'll care
about the most important effects: change of density altitude only.

The following hypotheses are assumed:

- Atmospheric modelus76

- Aerodynamic coefficient: 2.2

- Area to Mass ratio (A/M): I&m?/kg

We’ll compute the mean effect of drag over onetdsgiaveraging the derivatives da/dt and de/dt as

given by the Gauss equations:
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is any orbital element.

In practice, the integral is evaluated using spfumections and a limited number of points in the

orbit equally distributed in true anomaly.

dv, where M is the mean anomaly, v is the true angnaald x

Figure 3 shows the mean effect of drag over ondé ad a function of altitude of apogee for
different choices of the altitude of the perigee.
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Figure 3: Drag effect on the semi-major axis

We note that there is nearly a factor 10 betweerptrigee altitudes 200 km and 300 km (drift of

semi-major axis around 3 km/day and 0.3 km/dayeetbyely).
The decrease rate of the altitude of the perigeelagively small, about 10 times smaller than that
of the altitude of the apogee. The main resultssamemarized in the table below:

hp/ha (km) da/dt (km/day) dhp/dt (km/day dha/dh(H#ay)
200/36000 -3.7 -0.6 -7.4
300/36000 -0.33 -0.08 -0.67

(hp: altitude of perigee, ha: altitude of apogee)

1.2.3 Earth potential
We’'ll consider the secular effects due to the zaeahs of the potential only. As we are interested

in explaining the phenomena rather than predidivegorbit accurately, we’ll limit the number of
zonal terms to 1 (J2).



For a GTO orbit, the terms?Jand J can generate a drift on the line of apsides of abdiidegree
per year. It means that these terms should be takemccount in accurate comparisons with other
results.

Resonances originating in tesseral harmonics arsidered to have negligible impacts as the long-
term oscillations induced on the orbital elemeptsnsvanish as the semi-major decreases.

Another point that is neglected is the effect & #ort term perturbations (mainly caused by J2) on
the orbit. Their amplitude is small enough (~4 kmtbe perigee altitude for a GTO) but increases
as the semi-major decreases. The result is an estdeation of drag which is considered
acceptable.

1.2.4 Other forces
Solar pressure has little impact (compared to therdorces) and will be neglected.

1.3 Integration of the motion

The motion of the satellite is obtained by inteiq@gtthe averaged derivatives of the orbital
elements.

The integration method is a bit original as it isrative (this had initially been designed for
efficiency reasons, given the software used: Sgilab

To compute the solution (i.e. the state vedtgrover a given time range (say one year), the

algorithm iterates over:X,,,(T) = X(T1)+j:1X(t,Xn(t)) dt, TO[T,,T,] starting from an initial

guess (effect of J2 only), untX ,,is close enough toX,. Once the process has converged, the
solution at the last instant is used to initiakize process for the next time range.

2 Analysis of the effects of the main perturbations
2.1 Sun/Moon perturbation (effect on the mean perigeelatude)
In this part, we’ll analyze the orbit’s evolutiom absence of drag.

2.1.1 Simulation results of the influence of the RAAN &d¢ime and day of year

When integrating the equations defined in 1.2, wasg the Sun, Moon and the secular effects
due to J2 only, varying the initial ascending naodean local time (MLT), we obtain the graph
shown in Figure 4.
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Figure 4: Evolution of the perigee altitude withoutdrag

The large amplitude oscillations are related to timion of the perigee with respect to the Sun
(w+Q-w,,, =-0.6deg/day), with a modulation mostly related to teelihation of the Sun.



Note The initial mean local time of the ascending naeonsidered even if the “real” (and better
defined) quantity that matters is the mean locaétof the perigee (= RAAN mean local time + 12h
as the argument of the perigee is (initially) 1@gmrtes).

Eccentricity appears to be stable, as is inclimat&s shown in Figure 5 (simulation over 100 years)
Also note that the mean semi-major axis is notcadie by the perturbations.
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Figure 5: Evolution of inclination without drag

If the altitude of the perigee is averaged oveorgglperiod of time, we obtain a mean value that
depends on the initial mean local time of the adcgnnode and the day of year.

Figure 6 shows the result for a particular periddime. There may be some variations between
years because of the orbit of the Moon that chasliygistly from one year to the next.
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Figure 6: Mean altitude of perigee as function of RAN local time and day of year

Even if drag in not included in the propagation ®lodt is still possible to evaluate its potential
effect on the orbit.

Figure 7 shows the (virtual) mean drift of the senaijor axis as evaluated from the trajectory

computed without drag.
Higher values of the mean altitude of the periged-igure 6 correspond to lower values of the

decrease rate of the semi-major axis in Figure@ pssibly to shorter lifetimes).
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Figure 7: Evaluation of semi-major axis mean drift

The most favourable conditions for a short lifetifoe at least a strong initial decrease rate of the
semi-major axis) are at the solstices with thetorbarly perpendicular to the Sun direction (RAAN
local time = 6h or 18h).
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Figure 8: Evaluation of semi-major axis mean drift

In the RAAN local time range [10h-14h] (see FigBjethe equinoxes are more favourable, and the
autumn equinox is a little more. This conclusiogassistent with the results shown in Figure 1.

2.1.2 Explanations through simple modelling
If we assume that inclination and drifts of arguin&nperigee and ascending node are constant over
time, the equation describing the evolution of etgeity can be integrated analytically.

For simplification reasons, we’ll consider heretttiee orbits of the celestial body and the saeellit
are in the equatorial plane.

We can then write:

9o _ oimer S0

dt

where K = —1—25 ;(;3 (supposed constanty. is the angle between the direction of the perigek a
n

the body. It can be writterp=wt + ¢ (& constant).
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The exact solution is then given bg=

_ _ a2
with: z=z, exp(—%(cos@a)t +2¢) - cos@gy))) and:z, e

The expression can be simplified?g is small (see values below).
w

This enables the calculation of the mean (over &mit@ period of time) valuee (first order
.. K _ K & -2
expansionin— ):e-e, =g, — — COS
p o ) =&, . ea)

Numerically, we have:

‘%}‘ = 3.8e-3 for the Sun, and 4.2e-4 for the Moon (alOuimes smaller).

& (&~ %)
z,
Sun and 5.1 km for the Moon.

is about 0.5, so that the maximum values foundaf(e — e,) are close to: 46km for the

Figure 9 shows the average value of the perigéeddt (as computed by the formula above) as a
function of the initial phaseg,) for the Sun.
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Figure 9: Mean altitude of perigee as function ofriitial phase (simplified model)

Similarly, the initial position of the Moon changtd®e mean value of the altitude of the perigee.
Under the same simplified hypotheses as above, amederive the impacts the Sun and Moon

simultaneously have on the perigee altitude depgnain their initial positions. This is illustrated
Figure 10.

The maximum effect coming from the Moon on the makitude of the perigee is nearly the same
whatever the initial phase of the Sun: around 5 km.

The maximum altitude is obtained when the 2 bodresaligned and for the initial phases = 0 or
180 degrees (dark read areas).

The minimum altitude is obtained when the 2 bodiesaligned and for the initial phases = 90 or
270 degrees (dark blue areas).
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Figure 10: Impact of initial positions of Sun and Moon (simplified model)

The equations are now made slightly more complezdmgidering a celestial body (the Sun) in a 30
degree, circular, inclined orbit. The satelliterbio is still in the equator.

The mean altitude of the perigee that is obtaisquatted in Figure 11.
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Figure 11: Impact of the Sun declination (simplifiel model)

We observe that these results are similar to tisbsavn in Figure 6, except for a shift along the
y-axis due to different choices for the origin bétaxes: day of year in Figure 6 and Spring equinox
in Figure 11.

The same kind of effect would be obtained for theol| with variations from year to year coming
from the changes in the Moon’s orbital elements.

2.2 Influence of drag and coupled J2 / Sun perturbation effects

The effect of the atmosphere on the orbit causesémi-major axis to decrease, with a decrease
rate depending on the perigee altitude (the peadfdade decreases too, but more gently). We have
seen in 2.1 (Figure 6 and Figure 7) how the meduevaf the perigee altitude changes because of
the effect of the Sun and Moon, which impacts drag.

As the semi-major axis decreases (the eccentriBtyreasing too), the mean local time of the
perigee varies toaw+ Q - @, starts at-0.6 deg/day, increases to 0 and changes sign.

un



Figure 12 showsw+ Q - w,,, computed using J2 onlgs a function of altitude of perigee and
semi-major axis.
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Figure 12: Mean drift of the angle between the Suand the perigee

When w+Q - w,,, approaches 0 (the semi-major is then about 15000km)gravitational effect

of the Sun intensifies because the Sun is theryn@eed with respect to the orbit plane. We have a
situation close to that illustrated in Figure 2thwihe perigee increasing or decreasing at a nearly
constant rate.

We will illustrate the effect of the Sun on eccemty with a simple (theoretical) example.

Here the inclination is 0 and the Sun’s orbit istie equator. The orbit's semi-major axis is
supposed to decrease at a constant rate, andtifuelealof the perigee is constant (in order to
simplify the problem). The gravitational effecttbe Sun is then evaluated on this “reference” orbit
(but the Sun has no effect on the orbit).
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Various initial conditions (angles between the geei and the Sun) are chosen. We see the
cumulative effect on eccentricity (upper curveg teriod of the oscillations increases until thé dr
of the perigee-Sun angle changes sign.

The “worst” case (that makes eccentricity vary thest) is obtained for a situation where the
derivative of eccentricity remains nearly constanits maximum elongation (see arrow in middle
graph). This corresponds to the perigee-Sun arfglerémaining close to the middle of a quadrant
(45 degrees in the example, see lower graph).
Thus, what particularly (but not only) matters e tvalue of the perigee-Sun angle when its
derivative changes sign.
For a given value of the perigee altitude, the geiSun angle changes sign for a well defined
value of the semi-major axis. But the value of pegigee-Sun angle at that moment depends on
many factors and particularly drag. A roughaluation (based on a constant decrease rdte of
semi-major axis and a constant perigee altitudedggihe following rule:

AD, ~-13 (%)%

degrees™ Tyears

where A® . error in degrees on the perigee-Sun angi&ea})%: relative error (%) ora(or on
a

degrees

the drag coefficient), T, . .. duration (years) between initial time and time ewhthe Sun-

years*

synchronism condition is met (. = 0). For example onl¥5% error on drag for 10 years gives
an error on the angle of abat0 degrees. The Sun gravitational effect is thenpietely changed.

The previous example is very theoretical as the @awitational effect doesn’t affect the orbit: the
semi-major axis decreases at the same rate whdlevehanges in eccentricity.

In reality, these changes will make the drag suljdercrease or decrease, so that the orbit’'s
evolution from that moment will be completely maed. This will be shown later.

3 GTO Lifetime

3.1 Simulation of lifetime

The effect described in 2.2 is clearly visible lue following simulation results.

The simulations include the gravitation effectstted Sun and Moon, the secular effect of J2 and
drag.

The initial time of the simulation varies by steslO days.
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Figure 14: Simulated evolution of semi-major axis

We note that the lifetime is, in most cases, reldtethe initial mean drift rate of the semi-major
axis. There are however a few exceptions for wthehsemi-major axis remains constant at a value
close to 15000km for a considerable amount of {ipee arrow).



The evolutions of the perigee altitude and meaalltme corresponding to the “exotic” case are
shown below.
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Figure 15: Evolution of perigee altitude and meandcal time

The altitude of the perigee jumps from 200 km td #m, much more than in Figure 13
(corresponding to a semi-major axis decreasingcahatant rate).

Here is what is happening (see also 4 for moraldeta
- The semi-major axis decreases for about 4 yeaiksisintaches a value of about 150000km (we

can see in Figure 15 that the perigee altitudesdsers too but moderatelyp+ Q — ., is then

close to 0 and is about to become positive (sear&itj2).

- As the angle between the perigee and the Sun msrbkarly constant (local time of perigee
between 18 and 24h), the eccentricity decreasessémi-major axis being approximately
constant (as drag vanishes). This causes the paltide to increase. This situation is close to
that represented in Figure 2, the Sun being in iGued.

- The increase of eccentricity impacts the driftlef angle between the perigee and the Sun. The

value of w+Q -, becomes negative again (see Figure 12). This esttraimpact of the

sun
Sun as the angle remains nearly constant for aelotigive. Eccentricity then continues to
decrease (and the perigee altitude to increase).

- As the angle between the perigee and the Sun sréivelugh quadrant 3 and enters quadrant 4,
the drift on eccentricity decreases in intensitg di@comes positive. This causes the perigee
altitude to start decreasing.

un

This “resonant” case is also very sensitive to daagcould be anticipated.
The results below show how small variations in theg coefficient (which can also reflect
variations in solar activity that could be encouatkin practice) impact the lifetime.

Sma for varying solar activity levels
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Figure 16: Sensitivity of lifetime to drag



A 4% change in the drag coefficient can make tle¢itne change from 7 years to 32 years.
Even a 0.2% change has an noticeable influencethButpact may originate in the computation of
drag itself (averaging over one orbit), which i goaranteed more precise than a few 0.1%.

But the conclusion holds whatever the reason: ¢lvermost accurate model would fail to predict
the lifetime accurately (in some particular case¢east), for the main reason that solar activity
cannot be predicted with a sufficient accuracy.

3.2 Comparison with other results

We now use the same propagation model as in Zdnpute lifetime as a function of RAAN mean

local time (in the range [10h-13h] and day of year.

These results can be compared with those obtaisegw) DAS (see introduction), although the

hypotheses are not exactly the same (not mentiaghagropagation model).

We note that some similarities exist between tlyggaphs: the shortest lifetime is obtained for the
Autumn equinox in both cases.
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Figure 17: Lifetime as function of day of year andRAAN mean local time

4  Lifetime predictability

The previous paragraphs have shown that the lieetian be very sensitive to modelling errors and
initial conditions.
In this paragraph we’ll try to be a bit more precis

We'll assume again a simple model (“plane” modeina2.1.2) whereg is the angle between the
perigee and the Sun.

If we neglect the effect of drag (which can beijiet because we’re interested in situations where
the perigee increases, so that drag vanishesgvtiiation of eccentricity is mainly governed by th
combined effects of the Sun and J2 which can beritbes! by the following equations:

6= K eyi-e? 2N
2

2
. . n
¢:C{)sun_a)_Q:wsun_§ Rezq J22 2
2 a (l-e9

In the above equationk, is constant, as & (semi-major axis) and (mean motion).



We simulate (i.e. integrate) the system above usiRginge-Kutta method, starting from initial
conditions defined by:
- altitude of perigee = 300km

- @ =0 (Sun-synchronism condition)

The two above conditions are equivalent to defirtimg initial values for the eccentricity and the
semi-major axis. The value @f at initial time (g,) can be chosen arbitrarily.

The evolution of eccentricity obtained for variaadues ofg, is shown in Figure 18.
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Figure 18: Simulation of resonance

We note that the perigee altitude can go up toratatD0km, which is consistent which previous
results (see Figure 15). We also note that it cdmaek to the initial value after a few years.

The values of the perigee-Sun angle in the rangd [20] degrees nearly give the same maximum
value for the perigee altitude. But one major dédfece between the cases is the time at which the
maximum value is reached : at initial time + 19rgefor 0.01, at initial time + 15 years for 0.1,
etc...

A initial value of O would keep the perigee altidudonstant. A slightly negative value would invert
the evolution (the perigee would start by decregsin

Thus this situation is very instable (and therefeasitive to initial conditions). Very little chges

in the angle between the perigee and the Sun cée tha altitude of the perigee remain constant,
increase by several hundreds of km, or decreaieebgame amount.

This simple demonstration proves that it may beassible predict GTO lifetime accurately, at
least in some particular cases. The key paramaterg, and the uncertainty og. If gis well

chosen (so that it is in the right quadrant) areluhcertainty ong small enough, it's possible to

guarantee a fast re-entry by avoiding the perigaadrease as in Figure 18. Another key parameter
is the perigee altitude: if the perigee is low eglgudrag will finally succeed in making the semi-
major axis decrease; the effect of the Sun can dellgy the re-entry by 10-20 (or so) years in the
worst cases.

A sufficient (although strict) condition to limibé lifetime would be to guarantee that the effdct o
drag on the perigee altitude would always be grahtan the maximum gravitational effect due to
the Sun.

The evaluation is done for orbits such that thegeer does not drift with respect to the Sun (Sun-
synchronism condition).



The maximum effect on the perigee altitude duehtodravitational effect of the Sun is given by

dh, 15 pa . .
—— =—-—— and the effect due to drag is computeanerically.
dt 4 nd
max
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Figure 19: Drag compared to Sun gravitational effec

Thus, the perigee altitude has to be very low (tkas ~100 km) for drag to be stronger than the
Sun gravitational effect when the Sun-synchronismddion is met (i.e. when the semi major axis
is around 15000 km). The condition on initial aitie is not obvious at this point and should be
finely analysed (effect of drag on the perigee, /Bloon perturbations causing oscillations...).
However, the initial altitude is likely to be veiow too.

Less strict conditions may exist though to guarantieat the lifetime will not exceed some

predefined threshold.
The graph below gives the lifetime distribution f8rdifferent initial perigee altitudes (160km,

180km, 200km).
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Figure 20: Lifetime distribution

The probability to have the lifetime smaller thaam® threshold increases as the initial perigee
altitude decreases, as shown in the table below.



Initial perigee altitude (km) 160 km 180 km 200 km
Probability (lifetime < 25 years) 0.995 0.99 0.94
Probability (lifetime < 35 years) ~1 0.995 0.99

But an error of only 5% was taken into accounttendrag coefficient. The dispersion for real cases
(considering a variable solar activity) could beaim bigger.

5 Conclusion

Thus, the paper has shown different results redatoy geostationary transfer orbits long term
evolution and lifetime.

The models used in the study were simple enoughntgresting results have been obtained.

First, it was shown how some initial conditionso@sding node mean local time, day of year) affect
the decrease rate of the semi-major axis througtaage in the mean altitude of the perigee.

But the lifetime is also strongly dependent onghevitational effects due to the Sun at the tinee th
Sun becomes nearly fixed with respect to the arbitie of apsides. This situation may lead to a
rapid increase of the perigee altitude (by sevewaldreds of kilometres), thus reducing the drag and
increasing the lifetime. The sensitivity to init@nditions and perturbations (and drag in pariqul

is high: a change in atmospheric density of onlgva percent can lead to variations in the lifetime
of tens of years.

This has led to the conclusion that GTO long-texol@ion may be hard to predict in practice, at
least in some particular situations, as solar #gtiwill never be predictable with sufficient
accuracy. It is possible to find strategies thanimize the uncertainty on lifetime, but the
uncertainty on drag has to be small enough, prgbsbhkller than can be achieved in practice. An
evaluation of a "safe" altitude has been done éenphiper but leads to a very low value. However,
less strict conditions may exist on the perigeualé to guarantee that lifetime won't exceed some
threshold; more remains to be done on this point.

Statistical analyses as done in [3] for LEO arebphdy worthwhile for GTO as well. They have led
to defining a “constant equivalent” solar activigwel such that, if considered in calculations, the
satellite has a 50% chance of re-entering the gihes in less than 25 years. This was considered
acceptable because the dispersion on lifetime (wheying solar activity) is not excessive for LEO.
For GTO, a low solar activity level would possildgad to big lifetime values. So that the exact
conditions that should be satisfied in order to inthe French Space Act regulations have to be
defined adequately.
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