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Abstract:  This  paper  describes  an  automated  method  for  global  optimization  of  spacecraft  
trajectories with an arbitrary thrust, which is therefore suitable for spacecrafts with low or high  
thrust propulsion. It finds optimal trajectory by finding the best connections between the points or 
small areas in the state-time-space. Trajectory consists of smaller pieces of trajectory connecting  
the points in the state-space. Points or small areas in space can be considered as nodes and pieces  
of trajectory can be considered as edges, therefore this method is related to graph theory. It is  
useful for optimizing trajectories that  may include gravity assists, perturbations caused by other 
bodies  and irregularities  in  gravity  field,as  well  as  aerodynamic  forces,  and other  conditions.  
Constraints like minimum distance to central body, space and velocity constraints are simple to  
implement.  Applications:  ion  drive,  solar  sails,  launch  vehicles,  landers,  mission  design,  
optimization and modification of existing trajectories, formation flying, station-keeping, (real-time)  
trajectory correction due discrepancies of thrust from desired, refueling, etc. It can be used for  
trajectories with an arbitrary number of revolutions around the central body. It is the second and 
heavily modified version of my CASTRO algorithm – Computational Automated Space Trajectory 
Revolution Optimizer. Innovations were added to reduce the amount of computational resources  
required by some orders of magnitude.
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1. Introduction

CASTRO is the method for global trajectory optimization for the spacecrafts with an  arbitrary (low 
or high) thrust, that I developed. More broadly speaking it works for any object with any kind of 
propulsion, taking into the account the changing environment and the environmental influences. It 
is  based on the robotics algorithms I  developed.  Due to  the special  nature of the problem and 
enormous amount of information these algorithms have been heavily modified and some additional 
approaches were introduced. Most of techniques described in this paper can also be used on other 
problems or systems. It is useful for most astrodynamical tasks requiring finding and optimizing 
trajectories for spacecraft with arbitrary strong propulsion and can be parallelized to a high degree 
to run on a high number of computational machines. It  is automated and doesn't require human 
assistance. CASTRO addresses the issue of lack of automated methods and is especially suited for 
optimizing trajectories in a time changing environment and where various constraints need to be 
implemented,  techniques  were  introduced  to  deal  even  with  trajectories  with  high  number  of 
revolutions.

Rather than a single monolithic method it can be seen as an algorithm, where central theme are 
states that can be represented by nodes and pieces of trajectories, that can be represented by edges. 
The task of finding the optimal trajectory is to find the best connection between the possible states, 
where connections(edges) represent the way(information) how two states are connected. There are 
several ways in which this can be done and a number of algorithms and modifications can be used 
to achieve that, which way is the most suitable depends on the thrust to mass ratio of the spacecraft, 
environmental  influences,  mission  objectives,  available  time  and  computational  and  memory 
resources available and their tradeoffs.  

The basic concepts behind CASTRO are quite simple, it basically rests on idea, that at different 
times spacecraft can be in different states, and that it's possible to connect those states i.e. how to 
stear the spacecraft from one to the other state,since those states can be connected, it's possible to 
apply  fast  i.e.  polynomial  time  algorithms  to  search  how  to  get  from states  representing  the 



spacecraft at start to those representing the spacecraft at the mission's end in a most efficient way. 
By efficient it's most often meant by lowest propellant consumption. Because time, propellant and 
environmental conditions for the goal states that can be reached from the start states are known, 
these can be used to calculate or determine how good a particular goal point satisfies optimality 
criteria,  for  example  mass  to  time  ratio,  state  that  best  meets  this  criteria  is  selected  and  the 
path/trajectory leading to it is determined including in which starting point it has it's beginning. 
Environmental and other constraints are easy implementable by not allowing any connections to 
states pertaining to them, this also eliminates the need for storing non-reachable states. Because of 
large number of states, connections requiring vast computational resources, methods are introduced 
to reduce the number of states, while still retain accuracy, and also the methods to deal with more 
states that can fit into the memory. The idea that states represent states of an actual spacecraft can 
be dropped in some cases  for performance reasons. 

2. Premises and nomenclature

Working of the algorithm is best described, if concept of state-time-space is introduced. State-time 
space  is  a  state-space  with  additional  dimension  time(sometimes  instead  of  time  it  can  be  a 
sequence), where state space is a space where each designated point in it represent a state that a 
spacecraft might have at a specific time. State-space is a space, where each point represents state of 
a  spacecraft.  State  of  a  spacecraft  is  simply  a  collection  of  parameters  that  are  needed  for 
completing the task of trajectory optimization. In a typical case these are position, velocity, time 
and mass or Kepler's parameters the spacecraft would have at some time had the thrust been turned 
off for an infinitesimally small amount of time, or some other parameters that provide sufficient 
information needed for the process of spacecraft trajectory optimization. Since spacecraft can be in 
different states at different time, additional dimension time is added to the state space thus forming 
a state-time -space.

Because complete information on each trajectory contains informations of all parameters of state 
time space, each trajectory  has its equivalent trajectory(curve) in a state time space.  Therefore 
trajectory optimization can be seen as a task of finding the curve in as state-time-space, such that 
spacecraft “flying on that path” would best satisfy the optimality criteria.

CASTRO  relies  on  the  fact  that  trajectory  or  curve  in  state-time-space  can  be  seen  as 
interconnection of states. CASTRO thus finds the optimal trajectory by finding the “best possible-
available”  connections  between  the  possible  states,  thus  trajectory  consists  of  smaller 
trajectory(curve) segments joined together in the states. In one view connection(represented by an 
edge) is a set of points forming the curve connecting the two points, but equivalently it can also be 
seen  as  the  necessary  information  on  how  to  “drive”  a  spacecraft  from one  state  to  another. 
Example:  If  two states  are  (x1,y1,z1,vx1,vy1,vz1,m1,t1)  and (x2,y2,z2,vx2,vy2,vz2,m2,t2),  than 
that information would be how to apply the thrust(magnitude and direction) with respect to time to 
get from the first to the second state.

Since points or sometimes small areas of the state-time space can be seen as nodes and connections 
can be seen as edges to whom weights can be assigned CASTRO algorithm may be seen as closely 
related to graph theory and graph theory algorithms can be applied. A graph is formed in as state-
time space in which paths(weighted or unweighted) exists,  that  connect starting points to other 
points that  can be reached across the connections(edges).  Another important feature that  makes 
search for the optimal trajectory feasible is the existence of the fast - polynomial time algorithms 
for searching the path in the graph.

Edges of the graph are directed,  they're pointing from states with lesser value of time parameter 
towards the states with higher values of time parameter. Situation(edge direction) is reversed, when 
techniques that search graph by going/propagating backward in time are used. Directed edges are 
necessary  since  any cycle  in  that  graph would also  represent  traveling back  in  time.  However 



cycling in the state-space are possible, their corresponding analogue in the state-time space would 
be a spiral. Edges are weighted and usually relate to mass, except in the case of solar sail or some 
other currently more exotic propulsions, where they can be unweighted.

When we search the optimal trajectory, we assume, that whatever trajectory it might be it has to 
start in one state and it has to end in one state. Since except specifically defined, the beginning/start 
of the trajectory is not known(launch window), and likewise except specifically defined the end of 
the trajectory in not known.

2.1 Nomenclature of points in space-time

Node. State, point: these terms can be used interchangeably, node represent state of the spacecraft, 
that was chosen as a point to and from which connections represented by edges can lead.

Initial nodes (also initial states or initial points) represent those states that are among the candidates 
for  the  beginning of  the  optimal  trajectory.  They may  be  isolated  points  or  form areas.(when 
propagating forward in time each point in graph has its start in at least one starting point). They 
typically  represent  states  permitted  at  a  mission  start(launch  window),  for  example  at  a  time 
belonging  to  a  launch  window,  there  exist  at  least  one,  but  usually  many  points(nodes)  that 
represent spacecraft at the beginning of the mission. In a launch-window time-interval, spacecraft 
can start  at  different times, from different location at  different velocities and sometimes with a 
different amount of propellant, parameters describing such state of a spacecraft in state-time space 
are refered to as the starting points, initial states or the initial nodes. Every complete(not a trajectory 
piece) trajectory in a graph has its beginning in a state from the set of the initial states.

Goal nodes (also goal states or goal points) are the end points of the trajectory, representing those 
points that are among the candidates for being the end of the optimal trajectory. It's possible that 
some goal points are not reachable at all, because it's theoretically impossible for a spacecraft to 
reach them.

Edge is a graph theory equivalent of a trajectory connecting two nodes.

Weights are typically related to mass, but can also partially depend on other factors. 

To search for optimal trajectory, we first need to designate the starting points or the area formed by 
the starting points and then find the least(or most) weighted path across the edges leading from that 
points to (every) point that may be the goal point, due to the nature of (most) search algorithms the 
least(or most) weighted path to every reachable node is determined in the process.

2.2 Cost, weighted path and optimality criteria

At least in general cost(the sum of weights on the path) assigned to a node and optimum are not the 
same thing. Most often we'll be interested how to get to a specific state belonging to a specific time 
with  a  minimum consumption  of  propellant.  Optimality  criteria  for  node  is  then  computed  or 
determined and can be a function of mass, time, state parameters, environment and its influences, 
sometimes it may include information of other reached nodes. It is assumed that nearly always more 
mass satisfies criteria better than less mass, when all other parameters are the same.  It makes sense 
to determine optimality only to nodes reached in the process that are the candidates for goal nodes. 
Cost of the path through an incoming edge to a specific node in conjunction with costs of other 
paths leading to that node determine which of these paths are “allowed” to go through that node, in 
the search for the trajectory. Sometimes other factors may also influence that decision.

3. Basics



Though the  idea  that  the  trajectory  consists  of  connected states  is  common to  all  versions  of 
CASTRO it does differ in respects of how nodes(states) are designated and how connections are 
made, what the state parameters and weights of the edges are, and what search algorithm is used. 
Structure of the graph can also differ and can be either a net, tree or a collection of trees. 
In  this  paper,  though  it's  possible  otherwise,  it's  assumed  that  state  parameters  are  position 
components, velocity components, mass and time. Other will be briefly discussed (ratio mass to 
thrust,  Keplers's  parameters,  logarithms  of  (inverse)  values),  but  because  nearly  everything  is 
analogous for other representations it's sufficient to base description mainly on one representation.

For beginning it's convenient to think that at least in general that to “every”  node(state/point) many 
(i.e. enough) connections are leading from other nodes having other values of time parameter(lesser 
by forward propagation) and that from every point many outgoing connections connected to points 
having other values of time parameter than this point(higher by forward propagation). Such graph 
consists of large number of interconnected points and forms a net. If this net is dense enough, then 
it's possible to find a very similar trajectory to any other trajectory (that might exist) by connecting 
the states that lie very close to that trajectory(edges are close too) , thus if there exists an optimal 
trajectory(true optimum), than it is possible to find a trajectory running very close to it, since such a 
trajectory is very similar to the most optimal, it satisfies optimality criteria almost as good as true 
optimal  trajectory.  It  might  happen  that  the  algorithm finds  a  trajectory  with  a  very  different 
characteristics, but this is not a problem, because it satisfies the optimality criteria nearly as well as 
true optimal trajectory, had that not been the case it would be possible to find a better trajectory 
running close to a truly optimal one (or possibly many most optimal).

Full state-time space have 8 dimensions. Though in principle it's possible to search in such a space, 
there are problems regarding feasibility of implementation of an algorithm that would search in 
such a space, because the amount of states and connections grows exponentially with the number of 
dimensions. To mitigate this, dimension representing mass is removed from state-time, that is done 
under the assumption, that of states with all parameters except mass being the same, the state with 
the  highest  mass(representing  most  propellant)  is  the  most  perspective,  and  that  trajectories 
emanating from it are more favorably weighted than from those states with lower mass. By usually 
it's meant, that it might be that the “same state” with the lower mass can lead to a trajectory with 
“more favorable cost”, but we may assume that  in general  this is not an issue.  An example of 
advantage of otherwise equal state having lower mass over that with higher would be a case where 
an opportunity of significant gain using gravity assist would be lost due to insufficient acceleration 
of spacecraft to “catch the opportunity”. In such cases this would mean that it's meaningful to have 
less propellant in the tank at start, since any propellant that should be later be used in uneconomic 
manner, would justify having less propellant at the start, since it usually makes little sense to propel 
the  propellant that would latter be dropped or sacrificed by being spent in uneconomic manner.

Reference frame is not specifically  defined by the algorithm itself,  and can be arbitrary,  but in 
general the “inertial reference frame” with its center in the body that most dominantly affects the 
motion of spacecraft could be considered as the most appropriate.

Since we have removed mass-dimension from the state-time-space, it's not possible to determine in 
advance how two states are connected and if they can be connected at all – because mass of the 
spacecraft  is  unknown(actually  there  is  a  way  to  do  it).  Therefore  connections  will  be  made 
dynamically  in  the  process  of  search.  For  a  classical  case(not  used in  the  standard  version  of 
CASTRO) of a graph search algorithm, a  node that  is not a state  would be designated(just  for 
convenience),  only  from that  node  edges  that  do  not  represent  pieces  of  trajectories  would be 
connected to all the starting states(nodes) having weight values corresponding to the mass of the 
spacecraft at the initial state. Since search algorithms in the process of search determine the cost, (a 
sum of edge weights on the path leading to that node) to the nodes they reach, and since that cost 
determines mass, it's possible to find the edges(connections) and their weights to other states from 
that state, and use that connections to continue the search process to reach other states(nodes) etc...



For further  discussion  in  the  paper  an  algorithm closely related  to  Bellman-Ford shortest  path 
algorithm will be used. Since graph is directed and does not have a cycles, longest path algorithm 
can be used equally well and it's slightly preferred as it “directly favors higher mass”. Example of 
the shortest  path would be to  find the path with least  consumption of propellant  to nodes, and 
example  of  the  longest  path  algorithm  would  be  to  find  the  path  with  highest  mass(negative 
weights, except that of edges from the first - non-state node). Because both types of algorithm are 
useful  for CASTRO the term “more favorable  cost”  will  be  used instead  of  “smaller  than” or 
“higher than”.

Since  connecting  the  two  predetermined  states  is  most  likely  non-trivial  and  time(processor) 
consuming process and it's probably even more slow to find the connection with close to lowest 
propellant consumption. Therefore it's convenient to designate small areas of state-space or state-
time space instead of points, this is done because, if instead of trying to connect two predetermined 
states we start from one state and propagate(with some level of propulsion – variable or not) several 
trajectories from from one state for some time, than at least some end states of those trajectories will 
quite  likely  be  the  points  belonging to  some small  areas.  Likelihood of  a  particular  trajectory 
“hitting” the small area (when areas don't intersect) is roughly proportional to the percentage of 
space(state/state-time) being occupied by this small areas. Since parameter values of such a small 
area are very similar, such area can be to a good approximation considered as a single point and due 
to its bigger than infinitesimally small size it has a “real chance” to be hit by several trajectory end 
states”. Most of search algorithms assign the cost to a node during the search process therefore the 
end-state of the edge belonging to the most favorably weighted path leading to that node can be 
assigned to  the  node,  and  that  state  whose  parameter  values  are  more   precisely  defined than 
parameter values of the small area representing that state, these parameter values than become the 
state(node) from which further search continues. It makes sense to keep only the edge (and its end 
state) leading to a particular node/state that belongs to the path with the most favorable cost, other 
can be discarded, that saves memory and in case when we assign precise state values  to small areas 
during the  search  produces  the  graph  in  which  each  possible  path  represents  trajectory  whose 
accuracy  is  limited  only  by  the  accuracy  of  the  propagation  method,  because  all  outgoing 
connections  are  propagated  from  a  precisely  defined  state.  If  all  but  the  one  incoming  edge 
belonging to the path with most favorable cost of all incoming edges leading to each particular node 
are discarded during the progression of search process, then there is only one  path leading to each 
particular state, therefore the information about the whole “history” of path  leading to each reached 
state can be carried and updated as search progresses. Graph in such case is a tree or a collection of 
trees.

4. Standard algorithm

Is a version of CASTRO based on the principles already described, is based on the search algorithm 
that may be considered as closely related to Bellman-Ford, is simple, intuitive, easy to implement 
and can be easily modified in such a way that only a small part of graph needs to be stored in 
memory at any given time.(longest path modification is preferred)
In standard version state-time-space is “sliced” in such a way that each slice represents a state-time 
space at some moment in time (or alternatively some time interval). Slices are densely populated 
with nodes i.e. states or small areas - that can be due to similar parameter values of their points (that 
is a consequence of their small size) sometimes treated as points.

Algorithm runs in steps, it starts at from the initial(starting) state/s,  of the “slice” belonging to the 
lowest time. Connections are computed between initial(start) states and the states of the some other 
slice with higher time. Although connection may jump over the subsequent slices, the description 
will first concentrate on progression between adjacent slices. Algorithm starts by connecting the 
initial-state(s) with the lowest time to the states of the next “slice”, typically several connections are 
made,  but it's  also possible  that  no connection can be made.  Initial  states of the next slice  are 



overridden, if there exists a connection(s) whose end state is the same as that state, but have more 
favorite cost Alternatively, if not overridden, then that initial state is not assigned in the next step, 
i.e. no connection is made if in the second “slice”, if  there exists an initial state representing the 
spacecraft with more propellant(higher mass) with other parameters being the same as the state 
representing the end of connection or  alternatively connection can be made, but is deleted in the 
next step, because it can be substituted by the initial-state with lower cost.

In the second slice we have the states, that were via connections reached from the first slice and the 
remaining initial-states,  that  were not overridden by the end states of the incoming connections 
from the previous slice. In the next step - from these states connections are made to the states of the 
next “slice”, again initial states of the next slice are overridden by the states , that are end-states of 
the connections with the same parameters but more favorable cost. This process of connecting the 
slices (in steps) continues, until the slice denoting the end of the time interval in which algorithm 
searches is reached. 

In the process cost is assigned to each state to which connection leads. Because parameters of the 
states,  most notable  time, and cost  are known, these can be used to  determine how well  these 
states/nodes meets optimality criteria, it makes sense to determine this only for those points that are 
among for goal-states. The one(theoretically there can be more) that best satisfies the optimality 
criteria is picked. (Optimality can be computed “on the fly”, only the best result so far needs to be 
stored.) Then the trajectory leading to that state is obtained by tracing the path back to the origin, 
which is one of the initial-states, that were not overridden(by other states). Tracing the path back is 
easy,  the  connection  across  which  the  path  leads  to  the  last-state(last  st.=goal)  is  known,  that 
connection leads to its preceding state which now becomes known. Since every state, except the 
first, have its preceding state, there is a connection leading to its preceding state, that is known, in 
such a way by following connections(backtracking) from the goal-state, across other connections 
trajectory can be obtained.

4.1 Modifications for performance

When there are more than one incoming connections to some node only the connection arriving at 
the path  of a  more favorite  cost  is  left,  others are  discarded.  That  saves memory and is   also 
advantageous in improving the accuracy, when instead of points nodes are represented by small 
areas. Other important aspect of this approach is that only one path, the one with most favorable 
cost leads to every node, that as a consequence means that history of the whole path can be known, 
by storing the path “on the fly” i.e. as the algorithm progresses from “slice to slice”, in this way the 
process of backtracking can be made redundant, as well there is no need to to explicitly store “slices 
” and connections between them, because the necessary information how to reach reached/reachable 
states of the “current-slice” was carried along “on the fly” and is in every step assigned to the 
corresponding states.  Sufficient information on how to  reach particular  state,  does not  have  to 
include the whole sequence of states, but can be for example due to the fact that the reached state is 
known just the information, how the thrust was changing with time, knowing that information its 
possible to reconstruct the whole trajectory. For example: When time interval between “slices” is 
constant and thrust in that interval is tangential and constant for the duration of interval, then only 
the thrust  magnitude and direction needs to be stored and carried along, that  saves much more 
memory,  than  in  case  of  storing  the  complete  information.  In  cases  when  the  thrust  vary 
“complexly” in time and storing this information would require a lot of memory, then its possible to 
store just the sequence of states and reconstruct their connections later. If in such case we want to 
store a whole graph, than just information on which nodes are connected(may contain weights) is 
sufficient, since to obtain trajectory the process of connecting can be repeated.

Since connecting(with low propellant consumptions) two predefined states is likely nontrivial and 
slow process, approach that uses small areas of state-space (or state-time) instead of nodes is used. 
There are two varieties of this approach:



The first  is that  end-states  of those trajectory-pieces propagated from initial-states,  whose end-
points lands in a small-area-nodes of the next “slice” and have least cost in that node(s) becomes 
the  beginning-states  of  the  trajectory  pieces  propagated  from that  small-are-node,  that  ensures 
continuity of the trajectory and produce highly accurate trajectories.

The second is that in the process, connections are made from one point that we designate in small-
area-node(for example center), from that point connection is propagated and if its end-point “falls” 
in  some  small-area-node  of  the  next  “slice”,  than  we  treat  this  trajectory-piece  as  connection 
between the two nodes, where we treat connection as connection between first designated point in 
small-area-node and a designated point in second small-area-node, although the connection almost 
newer ends in the designated point of the second small-area-node. By this approach trajectories are 
always  propagated  from  designated  points,  this  reduces  the  accuracy,  because  there  are 
discontinuities, however these are small  and reducing the size of small-area-nodes improves the 
accuracy,  and  repeating  the  search,  this  time  with  nodes  only  in  the  vicinity  of  the  obtained 
trajectory in state-time-space, that way similar, slightly modified and more accurate trajectory is 
obtained, since the density of nodes in that part of the s.t.-space is higher. While this approach does 
not seem to have advantage over the first, it is useful for some techniques of trajectory search where 
either backward or forward and backward propagation(algorithm and/or trajectory) in time are used, 
this is due to the fact that  when nodes are of finite size the first approach does not necessarily 
produce the same path(due to size of areas) when applied backward in time. Another case is when 
for (real time) application of correcting the trajectories using precomputed graph.

4. Memory management

Especially when many steps of algorithm are required, for example like when optimizing the low 
thrust trajectory around the massive central  body, then storing the information about(related to) 
graph becomes difficult due to the large amount of information that needs to be stored. To mitigate 
this approaches that stores only a small amount of information at any given time can be used. This 
is achieved at a cost of somewhat larger search time, but that is heavily outweighted by reduced 
memory consumption.  However end state  of  the  optimal  trajectory,  its  cost  and optimality  are 
already determined in the first pass of the algorithm, if the desired trajectory exists. Most notable 
methods especially useful for standard version are described below.

4.1 Memory management method 1

By this method only some “slices are stored” while leaving many slices between them not stored. 
The approach works by storing the selected slices in the first pass of the algorithm. In the second 
pass algorithm is propagated many times between the nearest(time) stored slices, starting at  the 
states of the stored slice before the “slice” with the end-state of the most optimal trajectory and that 
slice, rebuilding the graph(or its information), its now possible to backtrack(or read) the piece of the 
most optimal trajectory running between these two “slices”, thus also obtaining the beginning-state 
of that trajectory piece of optimal trajectory. In this way the process of propagating the algorithm 
between pairs of slices is repeated, starting search for the piece of the optimal-trajectory between 
the last two relevant stored slices from the set of the stored slices, then continue the search between 
the one before the last  relevant  and the  one before it,  so  gradually  piecewise  discovering the 
optimal trajectory, search is done when the piece with its beginning-state being the initial state is 
obtained, that initial state is the beginning-state of the optimal-trajectory, which doesn't necessary 
belong to the stored slice and usually don't. 

Speeding-the second pass: Second pass of the algorithm does not have to be “a piecewise repeating 
of the first”, since the end-state of the optimal trajectory,which is also the end state of the last piece 
of trajectory, is known from the first pass, and when the time interval between stored-”slices” is not 
very large, than it's possible to estimate the set of states(or area) in which beginning state of some 



particular piece might be. This is possible due to the fact that in short time some parameters that can 
be assigned to the trajectory – like orbital energy, semi-major axis, etc... can not change very much, 
therefore it's possible to locate the area from where it is originating, and perform the search from 
only these states of the stored-“slice”, others can be discarded. This way only a small part of the 
state-time-space is searched.

Another way of speeding-up the second pass is by exploiting the fact that the same optimal-path 
can  be  obtained when applying the  algorithm forward in  time,  and  when algorithm is  applied 
backward in time from the end state of the optimal trajectory. Due to the short time interval graph 
search can not expand to a wide area, if time interval is relatively short, that means low load on 
computational  resources.  To which state  of the stored-”slice”(the on with lower time) the  path 
obtained by going back  in time connects is determined by the cost,  cost  are  the same.  This is 
possible when states in the process of search are treated as points, whereas when the process include 
states that are represented as small areas(small-area-nodes), this is not necessarily the case, however 
while the trajectory most likely won't be exactly the same, it's possible to quite accurately locate the 
area where the optimal-trajectory goes through, thus that  leaves only a narrow “channel” in the 
state-time-space in which forward search needs to be applied.

4.2 Memory management method 2

This approach exploits the fact that if graph is such(or made such) only one path leads to each 
state(otherwise there may be very many paths), than its possible to carry the history of that path 
further with the path as the search(paths) continues. In that way it's possible to assign information 
on where the path were ”somewhere” on the path like where it was at some specific time. That way 
states that optimal trajectory goes through are obtained in some pass of the algorithm. On further 
passes only the search for trajectory joining these states needs to be searched, like in the first pass 
information on states where trajectory goes through on these smaller intervals is obtained. In this 
way more and more smaller and smaller intervals, which are passed by the algorithm faster and 
faster(due to shorter length), passes of the algorithm are applied until interval is so short that state 
on the beginning is directly connected via a single edge to the states on the end of that interval. 
Some intervals  might be longer than others, so algorithm might find some parts  of the optimal 
trajectory sooner than other. Since the number of intervals grow exponentially,  there is a small 
number of passes needed, and since the in the first pass the largest number of edges needs to be 
traversed and that number goes smaller in subsequent pases, this increases the search time only for a 
relatively small factor. There is a tradeoff  between search time and the required memory - more 
points  where  trajectory  goes  through  per  interval  shortens  the  search  time while  increases  the 
required memory. Time needed to find the trajectory grows only logarithmically with the number of 
steps, when using algorithm that progresses in steps.

When  it's  possible  to  apply  the  algorithm  backward  in  time,  it's  not  necessary  to  have  the 
information on where the trajectory goes  through at  some time, instead first pass is needed to 
determine the end-state of the most-optimal trajectory, while in the later passes algorithm is applied 
forward in time and backward in time, at some time the two progressions meet, thus obtaining the 
state on the path the optimal-trajectory goes through. This process is than repeated until all parts of 
the optimal-trajectory are known. 

4.3 Memory management method 3

This approach is still  under investigation,  but  it  seems that  it  should be possible  to  obtain the 
trajectory  path  in  a  graph,  by  starting  at  the  “slice”  containing  the  end  point  of  the  optimal 
trajectory, obtained in the pass of the algorithm running forward, since the paths connecting the 
end-points to the initial states are the same if the graph is searched from the end to beginning, and 
also use the other reached states in the slice for building edges leading to previous “slices” and use 
information on those edges to isolate those belonging to the optimal-trajectory-path.  It's possible to 



work the path back, since the cost was determined in the first pass of the algorithm. We try to 
connect  reached nodes,  that  have cost  assigned,  to  the nodes,  of the  previous layer and assign 
possible costs to them. Of all the possible costs(due to many possible connecting edges) we chose 
the most favorable one, because if this node is reachable from initial  node, than it was reached 
across most favorably weighted path, therefore the only candidate is the edge “producing” most 
favorable cost when going backward. In such a way it's possible to obtain path to the initial node, 
other paths going backward (not to initial nodes) and starting in the “optimal node” may exist, but if 
there is a lot of other reached nodes in that plane, this represent relatively little information due to 
overwhelming number of other paths starting from other nodes. Though this approach might pose 
some problems when nodes are small-areas, since there(due to non-infinitesimal size of node) path 
back might not be exactly the same as the path forward in time. This approach -  reconstructing the 
graph backward using the information about reached nodes, and reconstructing the graph, and the 
same least weighted path backward may also be used for other graph search algorithms, but it's due 
to memory management requiring storing information pertaining to algorithm step most useful for 
“standard-algorithm”.

4.4 Memory management method 4

It's possible to search for trajectory by propagating  the algorithm, and not storing the past slices, to 
the “slice” where the end-state of the optimal trajectory is, look for its incoming edge,  store it, 
rerun the algorithm to find the incoming edge to the beginning-node of that edge and so on, running 
it for shorter and shorter intervals, until the initial-state is reached. This is possible, but relationship 
is between time of search and number of slices is highly nonlinear, relationship between the number 
of slices in the time interval  and total  number of steps performed is quadratic,  that  makes this 
approach hardly useful.

4.5 Memory management method 5

This approach is usefull for searching the trajectory using mostly the fast memory(like RAM). For 
this  such  group  of  nodes  is  stored  into  RAM  whose  great  majority  of  propagated  “forked” 
trajectories will “land” on nodes of the next slice having equal or similar parameter values, these 
reached states together with cost  are then stored in “slower memory”, and those states reached 
belonging to minority whose parameters lies outside that group are also stored. Then another group 
of nodes of the same slice is selected and stored in RAM, the same procedure as mentioned before 
is then applied to them. This group of nodes selection, trajectory “forking” and propagation and 
storing reached nodes is done until there are no more nodes in the current slice. Before algorithm 
moves to work from the next slice, those states reached belonging to next slice need to be updated 
by the information of “minority nodes” when this results in more favorable cost of particular node. 
“Minority nodes” are actually  “regular” nodes of some group reached from another, sometimes 
edge  from another  group arrive  at  the  path  having  more  favorable  cost.  Depending on  space, 
information pertaining to “minority nodes” can be stored exclusively in RAM or they can be stored 
on disk.  When procedure on one slice is done, the algorithm moves on to the next slice applying 
the same procedure and so on.

Another approach somewhat related to this one is, where in order  to conserve memory group of 
nodes  whose  edges  again  like  before  in  great  majority  lead  to  group  of  nodes  with  the  same 
parameter values in the next slice. Every n-th(n-th time interval) slice edges that leads to nodes 
outside or almost outside this group are stored and can be even stored with reduced density of 
nodes. This for example in case of group nodes belonging to some interval of orbital energy  means 
that we have stored the information for different times when at what cost the nodes corresponding 
to area around border of that interval were reached. The same procedure is then applied for other 
groups corresponding to other intervals,  when slice corresponding to previously stored nodes is 
reached, these are used to update the nodes, if previously stored information have more favorable 
cost. In that way only one group of nodes is stored at the same time, while information pertaining to 



reached nodes around intervals border takes relatively small amount of memory. Instead of orbital 
energy reached height is also useful parameter. This approach works under the assumption that the 
chosen parameter of the trajectory is predominantly increasing or decreasing. For example to leave 
Earth's orbit the height of trajectory is predominantly increasing.

5. Additional 

5.1 Time tags

Sometimes state due to its somewhat different time-parameter does not belong to ”some slice”, but 
it's still  desirable to be treated as if it does belong to it, in this case time-tag is assigned to the 
nodes/edges  when algorithm is  such  that  information  of  the  path  can  be  carried along,  this  is 
important for example when precise time is needed for other reasons that depends on precise time – 
like perturbations, events like position of other objects, …, tagging in this cases enables precise 
propagation of trajectory. Time tagging can be used for example when dealing with highly elliptical 
trajectories, when most of the time one time step is appropriate, but due to higher speeds closer to 
the central  body we may still  assume that time step, although trajectory propagation is done in 
shorter steps, that introduces the time-error, but the impact of relatively few such steps on time 
accuracy is relatively small. Since time tags were used the accurate time parameters of states are 
known, in time time discrepancies may get quite large but are still relatively small compared to 
mission duration. Tags can also improve accuracy by slightly variating propagation time so that 
trajectory that otherwise wouldn't hit the small area node hits it at the expense of time accuracy. 
Time tagging is also very useful at the next approach, where revolutions of similar trajectories takes 
similar but still slightly different amounts of time, using time-tags, accurate time can be assigned to 
states.

5.2 States no longer representing the spacecraft

In order to reduce the necessary computational resources(number of calculations and amount of 
memory), both the number  of states and edges can be reduced(state-space is much more spares 
with  states),  by  assuming that  the  states  and connections/edges  no  longer  represent  the  actual 
spacecraft. This approach is useful when when trajectory around the central body requiring  large 
number of revolutions is optimized. It exploits the fact that, if some trajectory can be considered a 
low-thrust trajectory having various amounts and directions of thrust applied on different parts of 
revolution around the central  body,  and if  there are  k revolutions observed(analysed)  and each 
revolution may have different thrust on the “same part” of the revolution, then the state with almost 
the same parameter values would be reached, if from the same beginning-state another trajectory 
would be propagated, whose thrust on the same parts of all k revolutions is the average of thrusts 
applied on the corresponding parts of the all k parts of the original trajectory. Under the assumption 
that these are low-thrust trajectories, where thrust applied on some part of revolution causes only 
small changes in orbit, it's nearly the same end-state with almost the same cost is reached upon k 
revolution, if edges now represent transitions i.e. changes in state-parameters on the k passes of 
trajectory on the same part of revolution. One edge now represents k times the change in parameters 
on that part of revolution in one single orbit.
Alternatively it's also possible to assume that spacecraft is capable o k times higher thrust, that also 
produce k times higher parameter changes on corresponding parts of the revolution.

Trajectory for “real spacecraft” can be obtained from this trajectories, either by propagating the 
trajectory using k times smaller thrust at corresponding parts of revolutions for k times number of 
revolutions (lasting in reality approximately k times more time), or use the data on the obtained 
trajectory, to determine where in the state-time-space the optimal trajectory may  go through, and 
than search that relatively small area of the state-time to find the optimal trajectory.
 



Since the “history” of how states belonging to end of the revolution were reached from the states of 
belonging the beginning of the revolution can be known(or vice versa),its also possible to obtain 
accurate trajectory “on the fly” - as the algorithm runs, by propagating “real trajectories” using that 
history, to obtain states belonging to a “real trajectory”, these have almost the same parameters as 
their equivalents obtained before, but since they represents the states of real trajectory they're most 
appropriate  as  the beginning points  from which the algorithm further propagates,  thus accurate 
states of “real trajectory” can be obtained in the first pass/run of the algorithm. Perturbations by this 
approach can be represented by the superposition of forces from different trajectories acting on the 
“same” part of them.

5.3 Jumping over more “slices”

In addition to connection running between only the adjacent “slices”, there can also be connections 
“jumping  over”  the  “slices”,  these  are  connections  that  represent  trajectory-pieces  with  longer 
“flight”. They differ from others only by the fact that they need to be stored for more steps, and 
when the step of the algorithm reaches the “slice”, whose time matches the time parameter of that 
trajectory piece, then connection to a state/node in the slice can be made. However allowing many 
connections to jump from each slice quickly leads to large amount of information needing to be 
stored, mainly because as the time-length of the “longest” trajectory-piece increases, so does the 
number of edges from that “slice” and at the same time the number of “slicer” with “longer edges” 
also increases, (that has multiplicative nature). This can be somewhat mitigated by allowing longer 
edges to “jump” only from every n-th “slice” or so .

5.4 Interpolation

It might be possible to estimate the cost of states in the “slice” that were not selected as nodes in 
that  “slice”,  by  interpolating  between reached states,  thus  in  principle  it  would be  possible  to 
calculate the way back to initial state. 

5.5 Space instances

It is possibly to have several instances of algorithm running and allow the connections to “jump” 
from one instance of algorithm to another. For this it's usually convenient that time of both instance 
is synchronized. For example: One instance deals with the edges in the Earth's sphere of influence, 
while the other deals with edges in the Moons sphere of influence. When there is a piece running 
from Earth's sphere of influence to that of the Moon the end-state(edge) is passed to the algorithm 
instance that  operates on the edges in Moon's sphere of influence, where it might connect to a 
node/state there and make further connections there.

5.6 Evolution of ellipses

To speed up the process of search and first find approximatively the characteristics of the optimal 
trajectory, an approach could be used, where there are nodes/states relatively sparsely populated in 
space time. Since these nodes on unpowered flight belong to elliptical trajectories , we can find how 
to optimally change parameters of ellipse in various ways in one(or more) revolutions, then it's 
possible to scale it by multiplying the changes by some whole(might be slightly off due to some 
correction) number k,  indicating k revolutions to  bring about  k times that  original  change.  It's 
further possible to divide the changes by some whole number, indicating scaled-reduced thrust, to 
further  scale  the  changes.  Such  scaling  and  ellipse  parameter  modifications  allows  to  roughly 
connect  one  node  to  another,  since  now  modified  ellipse  have  parameters  at  least  roughly 
corresponding to that of the other node. That connection is represented by edge, its “time-duration” 
for low-thrust trajectories in strong gravity field is roughly a product of time duration of original 
ellipse and the number of revolutions. Using such techniques it should be  possible to narrow the 
search space to a small region, and than apply some other approach to find the precise optimal-



trajectory.  If  time  discrepancies  are  not  too  large  such  an  approach  allows  the  inclusion  of 
perturbations. It  might be possible to obtain how to change the ellipses, not by just  scaling the 
“vector whose components are changes”, but to obtain such a “vector”, which is still useful from 
smaller number of vectors.

5.7 Reduced dimensions method

Reduce the number of dimensions: In some cases it's possible to reduce the number of dimensions, 
solve  related  instance  of  problem  for  that  space,  to  obtain  approximative  solution,  use  that 
information  to  obtain  information  where  the  trajectory  will  be  in  the  space  with  non-reduced 
number of dimension, and using that information to obtain a smaller part of the space with non-
reduced dimensions where the search for solution is done. - Examples: use of rotational simetry to 
remove  dimension,  solving  problem  for  planar  case  and  then  use  the  results  to  find  similar 
trajectory for slightly inclined case(modifying the trajectory), ... 
For example: Instead of “full -  planar trajectory” whose states have parameters (x,y,vx,vy,t) it's 
possible  to  reduce the  case  by  one dimension by  considering rotational  symmetry thus  having 
parameters (r,vr-tangential,vr-radial,t), one example of its use is the optimization of trajectory from 
starting from circular trajectory, that have to reach some other trajectory, for this case it's enough to 
search how to get to the goal trajectory and not care about its orientation. When the solution to this 
problem is found, it's possible to offset the time of departure of spacecraft at initial circular orbit to 
shift the whole trajectory for a desired angle. If there are perturbations acting then it's useful to 
calculate connections using full set of parameters, and then assign them corresponding r,vrtan,vrrad 
parameters in the reduced-space, thus connections pointing to very different nodes in the full-space 
can point to the same node in the reduced space. If the orbit in the reduced space is perturbed and if 
rotation  is  needed,  then  that  information can  be  used to  narrow the  search  to  reduced part  of 
original(full dimension) state-time-space and then to search for the optimal-trajectory there, this is 
done under the assumption,  that  these two trajectories have similar  properties,  that  reduces the 
search only between connections that are among the candidates candidates.

5.8 Parallelization

Parallelization  is  another  approach  to  reduce  the  search  time.  Even though  the  search  process 
depends on the solutions obtained previously, it's possible to parallelize the algorithm to a large 
degree. The simplest case is to parallelize the computation of connections(or possible connections) 
since this takes much more time than the graph search  and weight assighnemt itself,  thus one 
machine perform graph search operations and leaves the calculation of edges to other machines. 
Another approach is to see each computational device as a group of nodes, that are able to make 
connections(i.e. communicate) to other computational devices. To improve performance and ensure 
that majority of computation is done between the nodes of the same group we can exploit the fact 
that(at least at low-thrust) that there are parameters like orbital energy, semi-major axis, …, which 
are changing only gradually in time, for high thrust spatial location can be criteria. That enables to 
distribute the algorithm on many machines in such a way that each machine s responsible only for 
calculations between the states belonging to say some interval of these parameters,  when some 
connections-end state  leaves  that  interval,  it  is  linked(transfered)  to  another  machine  which  is 
responsible for states belonging to that parameters.  Parallelization is also useful, in cases, when 
some states are known and reconstruction of the graph between them is required..

5.9 Corrections due to discrepancies of thrust from desired thrust

Fidelity with which real spacecraft follows the CASTRO computed trajectory is affected to some 
extent, since thrust of the spacecraft have discrepancies from desired magnitude and direction, mass 
is also slightly affected. This is could an issue in real time scenarios, where recomputation, or some 
kind of control might take too much time or result too big propellant looses.  To deal with that 
algorithm is  propagated  backward  in  time from the  end-state  of  the  optimal  trajectory,  where 



search-space in state-time-space is a relatively narrow channel around the optimal-trajectory. This 
process creates connections to states/nodes around the trajectory, that are linked to end-state of the 
optimal-trajectory, thus if spacecraft gets slightly of course, it finds itself at or in the vicinity of 
some of those states, since graph(or information about paths) is stored, it's possible to quickly read 
the path leading to end-state-node, so every time it gets of course it lands at some state for which 
path to end-node is known. It is desirable to generate only such edges in the process, that direct the 
spacecraft towards the trajectory. Even though spacecraft almost never hits the precomputed state, 
the state is near enough, and if its flown the way graph suggests the discrepancy will be very small. 
If  it  happens  that  mass  is  to  large,  than  some propellant  might  be  sacrificed  by  spending it 
“uneconomically”,  dropping it,  if  possible  or compute  the  original  optimal-trajectory(reference) 
using thrust that is always slightly smaller  than it's actually possible to achieve, in that way there is 
some thrust reserve on real “flight”.

5.10 Trajectory optimization for more missions, using stored graphs

It's sometimes possible to reuse the stored graphs for other missions that don't have lower thrust to 
mass ratio, than the one for which it was computed.

5.11 Another view - “How to occupy the space with states”

Alternatively to approach with small-area-nodes, it  can also be considered how to populate the 
state-time-space densely enough but not too dense, since then too many almost the same states 
exists  on  the  same  place,  which  isn't  necessary.  In  this  view small-area-nodes  are  one of  the 
convenient ways to do this. Example of this alternative view would be building a graph that is a tree 
or collections of trees, for not to get too dense, they're pruned according to cost and parameter 
values of reached states in such a way that only states with enough distinct parameter values may be 
connected, i.e. not many connected states, that are part of the tree or collection of trees, with similar 
parameters and cost may exist. 

5.12 Method  - “forking the trajectory, when it reaches the ray”

There is another search algorithm possible,  that  propagates  trajectories from nodes for such an 
amount of time until they reach the nodes, from there trajectory is forked to several “forks”, that 
propagate until they reach the nodes, and then they're forked, etc... Nodes store information about 
incoming trajectories in some time interval and the one having most favorable cost is “forked”, 
other forks are canceled, if already in existence, in that way number of trajectory pieces doesn't 
grow exponentially.

5.13 Search method that operates with infinite number of edges

Since a state in one instance(time) of state-space can be mapped to infinite number of states in 
some of the next instance of state-space and those mappings represent some(small) area, and those 
states also maps to areas which mostly overlaps, however boundaries of that larger area are 
changing it seems possible to determine or infer, how boundaries are changing in time with 
sufficient accuracy. After some time the most optimal state is reached, and since each state(except 
starting states) is mapping of at least one state of the previous instance of state-space, they are 
across several mappings connected to some initial state. Path to it can be obtained in a way similar 
to back tracing.

5.14 Optimizing the trajectories with respect to angle of revolution

It's possible to optimize the trajectory with respect to angle of revolution around central body, for 
this(projection to ordinary space) states are placed on rays emanating radially from central body, 
and  trajectories  are  propagated  from states  of  one  ray  to  that  of  another.  It's  also  possible  to 



categorize “time duration of edges” to a different time categories and use that for optimization, 
whose optimality criteria depends on time, that can give still satisfactory results.

6. Some applications

6.1 Interplanetary mission design

CASTRO is also useful for interplanetary mission design, since it's also the problem of finding the 
trajectory in state-time-space. It's desirable to increase the density of nodes around planets, since 
precision there matters more than in “empty space”, or alternatively, Sun, planets and other bodies 
can be represented by their own instances(running synchronously) of algorithm operating on their 
part of space, when edges leaves state-time-space of particular instance they're passed to another 
instance. Since all that optimization process is about is finding the right sequence of edges, and 
because trajectories represented by them are beside thrust influenced by environmental influences 
like gravity and aerodynamic forces, (radiation pressure), gravity assist maneuvers and aerobraking 
are  automatically  included in  the  process.  Technique where particular  edges  represent  multiple 
revolutions are generally not useful for trajectories around the Sun, due to low number of different 
“looking” revolutions, or often even less than one revolution, however they're useful, if mission 
requires  many orbits around the planets.

6.2 Solar sails

When optimizing trajectories for solar sails things are a bit simpler in that sense, that there are no 
weights  representing  propellant  necessary,  since  the  mass  of  the  spacecraft  remains  constant, 
consequentially  one  edge  leading  to  a  particular  state  at  some  time  is  all  that  is  needed,  no 
“competition”  between  the  paths  arriving  across  different   edges  is  needed  due  to  no  cost. 
Alternatively weights and cost can be used for something else , for example radiation dose received. 
When the goal is to find the trajectory leading from one orbit to another in the least time, things can 
be further simplified, by the process that somewhat resembles the “slice operating” on itself i.e. in 
each step representing time, edges are connected from states reached in previous step,  to those 
states that can be reached in this step, that were not reached in some of the previous steps, search is 
done when the  connection reaches  the  desired state  or states,  trajectory  is  obtained simply  by 
tracing the edges back to  the origin.  Similarly  other graph search algorithms can be used,  like 
Dijkstra's, but then weights representing time would need to be introduced, and they couldn't be 
used for something else, - some compromise could be made by having weights being representing 
as a function of two or more quantities, but that would affect optimality of solution.
Preliminary computational results shows that for transfers between orbits roughly corresponding to 
that of Earth and Mars computation takes few minutes(in Java programming language running on 
average computer), when we care only for time, radial distance from the Sun, radial and tangential 
velocities.

If the spacecraft is of a hybrid design  i.e. one type of its propulsion is solar and other is of “a 
propellant consuming” type, than search is done like the search for solely “propellant consuming” 
type, with that  distinction that edge might represent “purely solar” propulsion its corresponding 
trajectory piece, purely propellant consuming propulsion, or both types on the same piece(at the 
same time or not). Since the sun is free, the only cost affecting factor is propellant consumption, 
thus optimization process is virtually the same as in the “normal case”.

Since there may be no cost(and mass change) in solar sail trajectory optimization, the search can 
begin  forward  in  time  and  backward  in  time  concurrently,  and  trajectories  belonging to  paths 
connecting start states to goal states will met somewhere.

Concept similar to “slice operating on itself” might be used for propellant consuming propulsions, 
where forked trajectories would update nodes, if new cost is more favorable or even only when it's 



significantly more favorable. This would be useful for spacecrafts, with low propellant to total mass 
ratio, with some amount of thrust reserved to always assure the same maximal thrust to mass ratio, 
regardless of the amount of propellant. This would reduce amount of computation and memory, and 
probably still produce satisfactory trajectories, assuming that perturbations are not to strong. For not 
having to deal with discontinuities that may arise due to updates, memory management method 2 is 
applicable.

6.3 Station keeping

For station keeping, where an orbiting body must have a trajectory whose orbit must be keep within 
some narrow boundaries, search is done only on that part of state-time-space that corresponds to 
that limitations(boundaries). Algorithm is then propagated from initial state and performed until 
there are no more states reached whose masses would indicate that there is any spare propellant left. 
Usually the best trajectory is that, that connects the initial-state to the the last(last in time) reached 
state, since this is the trajectory with longest duration.

6.4 Formation flying

Formation flying is from optimization perspective similar to station keeping, spacecraft have to 
follow some reference spacecraft, or some reference trajectory, and have to stay at some distance or 
perform  some  specified  maneuvers,  that  depend  on  time  and  have  to  stay  in  some  defined 
boundaries. Narrow channel for each of the spacecrafts is “formed” in the state space and the search 
is done primarily on finding the trajectory that retains propellant for the longest possible time while 
flying in that channel.

6.5 Rendezvouses, flybys, landings, liftoffs 

To rendezvous with some object, nodes representing that object at permitted times and locations for 
rendezvous are sufficiently densely placed in the state-time-space, algorithm then finds the path. 
To improve precision states  around object  can  be  much denser than  elsewhere.  That  improves 
precision in position and velocity. Flybys are obtained in a similar way only that these nodes are 
some distance  away from the  object  and denote non zero  velocities relative  to  the object.  For 
landings state on the surface representing place of touchdown is designated. For a liftoff a state is 
designated on the surface, which is an initial state.

6.6 High thrust propulsion, launch vehicles, landers

Optimizing the trajectories with high thrust propulsion is done in basically the same way, except 
maybe that edges often represent impulsive maneuvers, or maneuvers where thrust is applied for 
short time compared to the whole time interval belonging to particular edge, and that unless thrust is 
applied in such a way(like firing in small impulses) that it causes very small “delta-v” changes in 
relatively long time, techniques where edges represent several revolutions on some small part of 
space are not useful. Another issue relating to high-thrust is that rocket motors often have limited 
number of restarts, this can be solved by having several graphs, each representing states after some 
number n firings of motor, after motor is fired edges are linked to states of the graph representing 
higher  number of  preformed firings.  alternatively  to  that  a  compromise  solution  can  be  made, 
where propellant and number of firings on some path determine the cost or the decision criteria that 
is used to determine across which incoming edges outgoing edges will be “forked”.
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