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Abstract

Abstract: The minimum- fuel optimal control problem for powered descent is formulated for the case of

motion in a uniform gravity field. The problem is considered as part of the development of an optimal tra-

jectory design for Mars powered descent and pin-point landing at a desired landing site. Analytical solutions

for powered descent trajectory are presented. The algorithms used in the simulations have no iterative proce-

dures nor approximations except for the assumption on the uniformity of the gravity field. These algorithms

were designed to incorporate the solution of the minimum landing error problem by appropriate selection of

the integration constants, maneuver time and the control parameter. The simulation results show that the

analytical solutions obtained in this work can be implemented to generate feasible and extremal or optimal

powered descent and landing trajectories with minimum landing error. The results were comparable to those

of the studies that use convex optimization. Due to explicitness, these solutions can be used to determine

manifolds of initial conditions for powered descent, to generate powered descent trajectory envelops, and to

design integrated trajectory and attitude guidance.

Keywords: Extremal control, real-time guidance, analytical solutions, pow-

ered descent.

1 Introduction

This paper presents the results of the studies of the minimum- fuel optimal

control and guidance problems for a planetary powered descent and landing at

a specified landing site [1], [2]. Spacecraft is considered as a point mass with

variable mass moving in a uniform and drag-free gravity field with gravitational



and thrust accelerations from a given initial manifold in the state space to a

given landing point. Although the general theory of optimal trajectories is com-

plete in the case of motion in the uniform gravity field, the number of studies on

optimal analytical trajectory control and guidance design solutions is very lim-

ited [3]. In this work, the analytical solutions for three-dimensional, extremal

and optimal powered descent and landing trajectories are presented. It is shown

that the optimality conditions and the analysis of canonical equations reveal five

different optimal control regimes and corresponding behavior of the switching

function and the cost function for each control regime. These regimes deter-

mine the control sequence and consequently, the 14-th- order canonical system

of equations are integrated completely analytically in terms of time, thereby

providing 14 new arbitrary integration constants. It is shown that the inte-

grals represent highly nonlinear relationships between the integration constants

and the state and co-state variables. The studies presented in this paper de-

scribe the first attempt to demonstrate that the integration constants play an

important role in the design of an envelope of the descent trajectories and in

the real-time targeting and guidance design for precision landing. Qualitative

analysis can be conducted without any specific numerical results to construct

the envelope of descent and landing trajectories, thereby accounting for the

uncertainties, such as atmospheric conditions, wind turbulences and etc. In

particular, the proposed solutions can be used to determine a manifold of the

initial conditions from which the lander can be guided to prescribed landing

site or to its vicinity determined by a terminal manifold in the state space.

One of the new utilities of the analytical solutions is that the landing site can

be re-designated on-board as many times as needed by redefining the integra-

tion constants, thereby solving the real-time re-targeting problem to allow for

a hazard detection and avoidance and to provide a safe pin-point landing.

A series of simulations have been conducted to demonstrate the utility of the
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proposed trajectory control, targeting and guidance solutions to achieve safe

and precision landing on Mars [4]. The algorithms used in the simulations do

not have iterative procedure or approximations except for the numerical com-

putation of some constants. These algorithms were designed to incorporate the

solution of the minimum landing error problem by appropriate selection of the

integration constants, maneuver time and the control parameters. The simu-

lation results show that the analytical solutions obtained in this work can be

implemented to generate feasible and extremal or optimal powered descent and

landing trajectories with minimum landing error [5]. Feasibility of the trajec-

tories is understood in the sense of connecting the initial and final conditions

with some nonzero landing errors in the final position and velocity vectors, and

satisfying the mass, control and time constraints. The results were compara-

ble to those of the studies that use convex optimization and other numerical-

analytical methods [4], [6]. Due to their explicitness, the proposed solutions

can be used to determine manifolds of the initial and final conditions for at-

mospheric entry and powered descent, to generate the trajectory envelopes, to

provide re-targeting design aimed to achieve the pin- point landing and to in-

corporate attitude guidance. Integration of the trajectory control, targeting

and guidance solutions with attitude guidance is subject of further studies.

2 Optimal Control Problem for Powered Descent

2.1 Optimal Control Problem Statement

The minimum- fuel optimal control problem is considered as part of the optimal

trajectory design problem for Mars powered descent and pin-point landing at

a desired landing site [2]. Consider a spacecraft as a point with variable mass

moving in a uniform gravity field with the gravity and thrust accelerations. The
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equations of motion of the point are [3], [4]

r̈ = u + g, ṁ = −αT (1)

where r ∈ R3 is the state vector, u ∈ R3 is the control vector, and g = g0

is the constant gravitational acceleration vector. Let us introduce an inertial

coordinate system, OXY Z with the origin, O at the Mars center of mass, m

is the mass, α = 1/(Ispge) is the given positive constant, Isp is the specific

impulse, ge is the sea level gravitational acceleration on Earth, T is the thrust.

The X-axis of this system is directed towards the point of interest, the Z-

axis is directed parallel to the velocity at initial time of the powered descent

maneuvers. The Y -axis completes a right-handed triad. The magnitude of the

control vector, ||u|| is limited by the following constraint [4]:

0 < a ≤ ||u|| ≤ b, (2)

where a and b are the given constants. As these constants are non-zero, the

descent trajectory does not include zero thrust or ballistic arcs, and consists of

only thrusting arcs. The initial and final conditions are given as follows:

r(ti) = r0,

ṙ(ti) = ṙ0,

r(tf) = rf = 0, (3)

ṙ(tf) = ṙf = 0,

m(ti) = m0.

Here ti and tf are the initial and final instants of time. ti is assumed known, but

tf is to be determined in the solution process. The components of the control

vector can be given in the form: ui = uei, i = 1, 2, 3, where u = ||u||, and ei

are the components of e, the unit vector of u. All these components are given

in the system OXY Z. Consequently, utilizing Eq.(2), the control vector, that
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is the thrust acceleration vector is to satisfy the following constraints [5]:

Φ1 = e21 + e22 + e23 − 1 = 0, Φ2 = (u− a)(b− u)− η2 = 0, (4)

where η2 is the unknown slack variable. In this case, the control vector-function

is extended to have the following components: u, ei (i = 1, 2, 3), η. The perfor-

mance index of the problem is given as

J =
∫ tf

ti
||u||dt. (5)

Now the problem under consideration can be stated as follows: it is required

to find the state vector, x(r, ṙ,m), and u that can satisfy Eqs.(1)- (4) and

minimize the performance index, J , given in Eq.(5).

2.2 First - Order Optimality Conditions

By defining r = r(x1, x2, x3), v = v(v1, v2, v3) and g = g(g1, g2, g3), where

the components of the vectors are given in the OXY Z coordinate system, and

accepting that T = mu, Eqs.(1) can be rewritten in the following first-order

form (i = 1, 2, 3):

ṙi = vi,

v̇i = uei + gi, (6)

ṁ = −αmu.

The corresponding boundary conditions, Eqs.(3) are

r(ti) = r0,

v(ti) = v0,

r(tf) = rf = 0, (7)

v(tf) = vf = 0,

m(ti) = m0.
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If

x = x(r,v,m), λ = λ(λv,λr, λm),

then the extremality conditions for the problem Eqs.(1) - (5) can be written in

the form [6]:

ẋ =

[
∂H

∂λ

]T
, λ̇ = −

[
∂H

∂x

]T
(8)

where the Pontryagin function, H is given as

H =
∑
λi(uei+gi)−λmαmu+µ1[e

2
1+e

2
2+e

2
3−1]+µ2[(u−a)(b−u)−η2]+λ0u. (9)

Here µ1 and µ2 are additional slack variables, and λ0 is assumed to be a non-

zero Lagrange multiplier associated with the integrand function of Eq.(5). The

second half of Eq.(9) can be re-written in the form:

λ̇i = −∂H
∂vi

= −λi+3,

λ̇i+3 = −∂H
∂xi

= −
∑
j

λj
∂gj
∂xi

, (10)

λ̇m = λmαu.

In addition to Eqs.(10), the extremality of H with respect to the control vari-

ables can be expressed with the following conditions:

∂H

∂ei
= λiu+ 2µ1ei = 0,

∂H

∂u
=

∑
λiei − λmαm+ µ2(a+ b− 2u) + λ0 = 0, (11)

∂H

∂η
= −2µ2η = 0.

Eqs.(6) and (10) can be used to find all 14 components of x and λ, and Eqs.(11)

can serve to determine the control variables, ei, u and η by employing the

Weierstrass condition. Note that without loss of generality, one can choose λ0

to be λ0 = 1.
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3 Lagrange Multipliers and Optimal Control Regimes

Note that g = g(g1, g2, g3) is a constant vector, which can be determined as

g = g(−g0, 0, 0), where g0 = ||g|| = const. Consequently, taking into account

that α is also a constant parameter, the equations of Eqs.(10) can be integrated

as

λi = ait+ bi, i = 1, 2, 3;

λi+3 = ai, i = 1, 2, 3; (12)

λm = λm0 exp[α
∫
udt],

where ai, bi (i = 1, 2, 3) and λm0 are the integration constants. The first group

of formulas of Eqs.(12) show that

λv = at+ b, (13)

the p-trajectory or the hodograph of the primer vector, λv(λ1, λ2, λ3) is a

straight line, which passes through zero if all constants bi (i = 1, 2, 3) are zeros.

λ is the distance from the origin of the coordinate system with axes λ1, λ2, λ3

to the hodograph. At the same time, not all ai and bi (i=1,2,3) can be zeros.

In general, the magnitude

λ =
√
λ21 + λ22 + λ23 = ||λv||

is a monotonic, and either increasing or decreasing function of time.

As is known, the Weierstrass condition can be given in the form:

λiẋi ≥ λiẋ
∗
i ,

where ẋi are computed on the optimal trajectory, and ẋ∗i are computed on the

admissible trajectory. For the problem Eqs.(1)- (5) this condition has the form:

u(
∑
λiei − λmαm) ≥ u∗(

∑
λie
∗
i − λmαm). (14)

If η = 0 and u = a (see Eqs.(4)), then Eq.(14) can only be satisfied if (
∑
λiei−

λmαm) ≤ 0. In the same manner, if η = 0 and u = b, then Eq.(14) can be
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satisfied if (
∑
λiei − λmαm) ≥ 0. If η 6= 0 and a < u < b, then Eq.(14) can

be satisfied if (
∑
λiei − λmαm) = 0 over a non-zero interval of time, on which

u takes intermediate values: a < u < b. Based on these analysis, one can

determine

χ =
∑
λiei − λmαm

as a switching function. Consequently, there may exist three options for the

control regimes:

(1) u = a if χ ≤ 0; (2) u = b if χ ≥ 0; (3) a < u < b if χ ≡ 0.

(15)

From the last equation of Eqs.(11), one can find that there may exist three

cases:

1. If µ2 = 0, η 6= 0, then there may exist a variable u, such that a < u < b.

In this case, from the second equation of Eqs.(11) and from Eqs.(15) it can be

see that λ0 = 0 which contradicts to the assumption made above that λ0 6= 0.

2. If µ2 6= 0, η = 0, then from Eqs.(4) it can be seen that u takes boundary

values: u = a or u = b.

3. If µ2 = 0, η = 0, then one can obtain the same contradiction as described

in the case 1.

Consequently, an optimal trajectory of the problem Eqs.(1)- (5) includes on

the the thrust arcs with boundary values of the control function: u = a or

u = b. The intermediate values of the control are not optimal.

From the first group of equations of Eqs.(11), it can be seen that µ1 can be

chosen to show that λ||e, or simply,

ei = λi/λ, i = 1, 2, 3. (16)

In this case one can find that χ = λ − λmαm and χ̇ = λ̇. Consequently,

from Eq.(13) it follows that, in general, there may exist the following cases (see

Fig.1):
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(a) λ decreases ∀t ∈ [ti, tf ], and it may or may not reach its minimum value.

This case means that λ decreases from ti until tf , and tf ≤ t∗, where t∗ is

the time instant at which λ reaches its minimum value. In this case, λ̇ ≤ 0

and χ̇ ≤ 0 ∀t ∈ [ti, tf ] and correspondingly, χ is decreasing function of time

and may cross zero only at once. So, either χ > 0 or χ < 0 or χ > 0, χ < 0

∀t ∈ [ti, tf ]. Correspondingly, the control regime is either u = b or u = a or

u = b, u = a ∀t ∈ [ti, tf ] respectively. If tf = t∗, then λ̇(tf) = χ̇(tf) = 0.

(b) λ increases ∀t ∈ [ti, tf ], and it may or may not start from its minimum

value. This case means that λ increases from ti ≥ t∗ until tf . In this case,

λ̇ ≥ 0 and χ̇ ≥ 0 ∀t ∈ [ti, tf ], and so χ is increasing function of time and

may cross zero only at once. As in the previous case, either χ > 0 or χ < 0

or χ < 0, χ > 0 ∀t ∈ [ti, tf ]. Correspondingly, the control regime is either

u = b or u = a or u = a, u = b ∀t ∈ [ti, tf ] respectively. If ti = t∗, then

λ̇(ti) = χ̇(ti) = 0.

(c) λ decreases from ti to t∗, reaches its minimum value at t∗, then increases

from t∗ to tf . So, λ̇ = χ̇ < 0 ∀t ∈ [ti, t
∗], then λ̇(t∗) = χ̇(t∗) = 0, and then

λ̇ = χ̇ > 0 ∀t ∈ [t∗, tf ]. So, χ can cross zero once (cases c1 and c2 below)

or twice (case c3) with following sequences:

(c1) χ(t) > 0 ∀t ∈ [ti, t
∗
1]; χ(t∗1) = 0; χ(t) < 0 ∀t ∈ [t∗1, t

∗]; χ̇(t∗) =

0; χ(t) < 0 ∀t ∈ [t∗, tf ]. The corresponding control regime has the

following sequence: u = b, u = a.

(c2) χ(t) < 0 ∀t ∈ [ti, t
∗]; χ̇(t∗) = 0; χ(t) < 0 ∀t ∈ [t∗, t∗1]; χ(t∗1) =

0; χ(t) > 0 ∀t ∈ [t∗1, tf ]. The corresponding control regime has the

following sequence: u = a, u = b.

(c3) χ(t) > 0 ∀t ∈ [ti, t
∗
1]; χ(t∗1) = 0; χ(t) < 0 ∀t ∈ [t∗1, t

∗]; χ̇(t∗) = 0;

χ(t) < 0 ∀t ∈ [t∗, t∗2]; χ(t∗2) = 0; χ(t) > 0 ∀t ∈ [t∗2, tf ]. Corresponding

control regime has the following sequence: u = b, u = a, u = b.
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To summarize, an optimal trajectory in the problem Eqs.(1)- (5) may have one

of the following regimes for control:

Case 1: u = a ∀t ∈ [ti, tf ].

Case 2: u = b ∀t ∈ [ti, tf ].

Case 3: u = b ∀t ∈ [ti, t
∗
1]; u = a ∀t ∈ [t∗1, tf ]

Case 4: u = a ∀t ∈ [ti, t
∗
1]; u = b ∀t ∈ [t∗1, tf ]

Case 5: u = b ∀t ∈ [ti, t
∗
1], u = a ∀t ∈ [t∗1, t

∗
2], and u = b ∀t ∈ [t∗2, tf ].

4 Optimal Trajectory Arcs

First, let us re-write the boundary conditions, Eqs.(7) in the form:

r0 = r0(x10, x20, x30),

v0 = v0(v10, v20, v30),

rf = rf(x11, x21, x31), (17)

vf = vf(v11, v21, v31),

m(ti) = m0.

Using Eqs.(16) and (12), one can rewrite the second group of Eqs.(6) in the

form:

v̇1 =
(a1t+ b1)u

λ
− g0,

v̇2 =
(a2t+ b2)u

λ
, (18)

v̇3 =
(a3t+ b3)u

λ
,

where

λ =
√
k1t2 + k2t+ k3,

k1 = a21 + a22 + a23, k2 = 2(a1b1 + a2b2 + a3b3), k3 = b21 + b22 + b23.
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Taking into account that the control variable takes the boundary values, that

is either u = a or u = b or u = b, u = a and u = b, one can integrate Eqs.(18)

in the following form:

v1 = A1u− g0t+ v10,

v2 = A2u+ v20, (19)

v3 = A3u+ v30,

where

Ai = Āi + Ai0, i = 1, 2, 3. (20)

with

Āi =
ai
k1
λ+

 bi√
k1
− aik2

2
√
k31

 ln(2λ
√
k1 + 2k1t+ k2),

Ai0 = −Āi(t0)

By substituting Eqs.(19 into the first group of Eqs.(6), the latter can be inte-

grated in the form:

x1 = B1u−
g0
2
t2 + v10t+ x10,

x2 = B2u+ v20t+ x20, (21)

x3 = B3u+ v30t+ x30,

where

Bi = B̄i +Bi0, i = 1, 2, 3.

with

B̄i =
ai
k1

2k1t+ k2
4k1

λ+
4k1k3 − k22

8
√
k31

ln(τ)

 +

 bi√
k1
− aik2

2
√
k31

 τ(ln τ − 1)

4k1
+
k22 − 4k1k3

4k1

ln τ + 1

τ

 . (22)

Bi0 = −B̄i(t0).

Here

τ = 2λ
√
k1 + 2k1t+ k2.
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As u is constant (u = a or u = b), the last equations of Eqs.(6) and (12) can be

integrated to obtain the mass and corresponding Lagrange multiplier:

m = m0 exp[−αut], (23)

λm = λm0 exp[αut], (24)

where λm0 is the integration constant. The performance index in Eq.(5) of the

problem can now be computed in a form depending on which case among the

cases (1-5) is under consideration (see Fig.1):

Case 1: u = a ∀t ∈ [ti, tf ]:

J = a(tf − ti). (25)

Case 2: u = b ∀t ∈ [ti, tf ]:

J = b(tf − ti). (26)

Case 3: u = b ∀t ∈ [ti, t
∗
1]; u = a ∀t ∈ [t∗1, tf ]

J = b(t∗1 − ti) + a(tf − t∗1). (27)

Case 4: u = a ∀t ∈ [ti, t
∗
1]; u = b ∀t ∈ [t∗1, tf ]

J = a(t∗1 − ti) + b(tf − t∗1). (28)

Case 5: u = b ∀t ∈ [ti, t
∗
1], u = a ∀t ∈ [t∗1, t

∗
2], and u = b ∀t ∈ [t∗2, tf ]:

J = b(t∗1 − ti) + a(t∗2 − t∗1) + b(tf − t∗2). (29)

The constants ai and bi, (i = 1, 2, 3) can be determined from Eq.(19) and (21)

using Eqs.(17). Note that due to presence of λi, i = 1, 2, 3, Eq.(9) explicitly

depends on time, and therefore Eqs.(8) do not possess an integral for Pontryagin

function:

H =
∑
λi(uei + gi)− λmαmu+ λ0u. (30)

It can be seen that the procedure of determining the constants and tf described

above is valid for each thrust arc with corresponding value of u. In the cases (3-

5), the time instants, t∗1 and/or t∗2 can be found from the continuity conditions
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for position, velocity and Lagrange multipliers at junction points. The analyti-

cal solutions obtained above allow us to make further progress in the complete

design of powered descent. In particular, these solutions can be used to deter-

mine a manifold of the initial conditions from which the lander can be guided

to prescribed landing site or to its vicinity in the case of landing errors. Quali-

tative analysis can be conducted to generate an envelope of descent and landing

trajectories which can be formulated explicitly. Another important aspect of

this topic is the design of attitude guidance, and as the lagrange multipliers

and corresponding trajectory solutions are determined explicitly, the trajectory

guidance design can easily facilitate or incorporate the attitude guidance.

5 Extremal Guidance Solutions

5.1 Guidance Problem Statement

The guidance problem can be formulated as follows: assume that at current

instant, tc the optimal state is given by x(tc), where c is an arbitrary index.

Then it is required to find a new optimal control at each sample time that

would guide the spacecraft from its current position at instant tc to the desired

position, x(td) at instant td by satisfying all conditions of the optimal control

problem. Obviously, td can be considered as the final time, tf .

5.2 Guidance solutions

The extremal guidance solutions are based on the closed-form solutions pre-

sented in Eqs.(19) - (24). Using Eqs.(30) and the transversality condition

H(tf) =

∑ aivi +
∑

(ait+ bi)(u
(ait+ bi)

λ
+ gi)− λmαmu+ λ0u


t=tf

=
∂J

∂tf
,

(31)
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where without loss of generality it is accepted that λ0 = 1, one can find λmf :

λmf =
1

αmfu

∑ aivi +
∑

(aitf + bi)

u(aitf + bi)

λ(tf)
+ gi

− u
 (32)

Let us assume that at an arbitrarily given instant, tc the position and velocity

vector components are given by xic and vic, i = 1, 2, 3. Then the desired (final)

position and velocity vectors at instant td can be computed using Eqs.(19) and

(21) in the form:

v1d = A1(td)u− g0td + v1c,

v2d = A2(td)u+ v2c, (33)

v3d = A3(td)u+ v3c,

x1d = B1(td)u−
g0
2
t2 + v1ct+ x1c,

x2d = B2(td)u+ v20t+ x2c, (34)

x3d = B3(td)u+ v30t+ x3c,

These equations allow us to find the coefficient functions Ai and Bi, i = 1, 2, 3:

A1(td) =
1

u
(v1d − v1c + g0td),

A2(td) =
1

u
(v2d − v2c),

A3(td) =
1

u
(v3d − v3c),

B1(td) =
1

u
(x1d − x1c − v1ctd + g0t

2
d2), (35)

B2(td) =
1

u
(x2d − x2c − v2ctd),

B3(td) =
1

u
(x3d − x3c − v3ctd).

(36)

Also, by equating Eqs.(24) evaluated at td = tf and (32), one can obtain

1

αmfu

∑ aivi +
∑

(aitd + bi)

u(aitd + bi)

λ(td)
+ gi

− u
 = λm0 exp[αutd], (37)

14



wher it can be assumed that td = tf . Eqs.(35) and (39) allow as to find un-

knowns ai, bi (i = 1, 2, 3) and td in the form, which is generally represented

as

td = td(x1c, x2c, x3c, v1c, v2c, v3c, x1d, x2d, x3d, v1d, v2d, v3d, u, tc),

ai = ai(x1c, x2c, x3c, v1c, v2c, v3c, x1d, x2d, x3d, v1d, v2d, v3d, u, td, tc),

bi = bi(x1c, x2c, x3c, v1c, v2c, v3c, x1d, x2d, x3d, v1d, v2d, v3d, u, td, tc) (38)

Then the commanded thrust acceleration, aci, i = 1, 2, 3 at instant tc can be

formulated as follows:

aci =
aitc + bi
λ(tc)

u, i = 1, 2, 3. (39)

6 Simulations

The analytical solutions trajectories presented above have been used to simulate

a Mars EDL descent and landing trajectory using the initial conditions used in

Ref.[4]. The results for position, velocity and mass obtained here are comparable

to those of Ref.[4], especially the results of case 1 considered in this reference.

All simulations have been conducted in Matlab. As the solutions show, the

main procedure is the search for the constants a1, b1, a2, b2, a3 and b3 for

given simulation time, t1 and control parameter, u. Assuming that the control

parameter is the thrust acceleration, the following inequality is used [4]:

ρ1
m
≤ σ ≤ ρ2

m

with

mdry ≤ m1 ≤ m < m0 = mwet, m1 = m(t1).

where ρ1 and ρ2 are the boundary values of thrust. So practically,

u ≤ umax = σmax =
ρ2
mwet

.
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As the mass changes exponentially, the simulation time was computed according

to the condition:

[t1]min =
1

αumax
ln
m0

m1
.

The following values of the parameters and terminal conditions are used:

g0 = 3.7114, mdry = 1505, mwet = 1905, α = 4.5× 10−4,

ρ1 = 4972, ρ2 = 13260, σmax =
ρ2
mdry

, σmin =
ρ1
mwet

,

umax = σmax, umin = σmin.

x10 = 1500.0, x20 = 500.0, x30 = −2000.0,

v10 = −75.0, v20 = 0, v30 = 100.0

x11 = 0, x21 = 0, x31 = 0, v11 = 0, v21 = 0, v31 = 0,

15 ≤ a1 ≤ 35, 1 ≤ b1 ≤ 10,

a2 = 0, b2 = 0,

−13 ≤ a3 ≤ −11, −10 ≤ b3 ≤ −1,

umin ≤ u ≤ umax,

0 ≤ t ≤ 55.

In particular, the following values have been used:

a1 = 35, b1 = 4, a2 = 0, b2 = 0,

a3 = −13, b3 = −5, u = 5.69, 0 ≤ t ≤ 50

Here, the position, velocity, accelerations and mass are measured in meters,

meters/sec, meters/sec2 and kg respectively, and these units will be omitted

for simplicity. Only elementary algebraic functions and a very simple search

algorithm were used to simulate the descent trajectories. The algorithms used

in the simulations do not use any iterations, function calls or approximations

except for the uniform gravity field, which is a reasonable approximation for
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maneuvers in the vicinity of the Mars surface. The preliminary results of the

simulations are presented in figures 2-5. Figures 2 and 3 demonstrate that

the analytical solutions can generate feasible and extremal descent and landing

trajectory envelops and the parameter domains. This means that any of the

values of the coefficients from the given domains can provide an extremal or

optimal trajectory. The extremality is understood in the sense of satisfying

the necessary conditions of optimality with performance index given as J =

u(tf − ti), where u = const. In this sense, these descent trajectories considered

can be optimal if the final conditions are met exactly with appropriate selection

of the control, u. Feasibility of the trajectories is understood in the sense of

connecting the initial and final conditions with some nonzero landing errors

in the final position and velocity vectors, and satisfying the mass, control and

time constraints as well as an engineering intuition. Although the purpose

of the optimal control problem was to minimize J , the algorithms were also

designed to minimize the landing errors in position and velocity. This is done

by searching for not only the constants a1, b1, a2, b2, a3 and b3, but also for

the appropriate simulation time, t1 and the control parameter, u to achieve the

minimum landing errors. The visual analysis of the boundaries of the trajectory

envelops expose the largest landing errors of 1200 m in position and as high as

20 m/s in velocity. But it can be easily seen that by appropriate selection of

the coefficients and the control parameter and the final time, these errors can

be minimized to a some degree of satisfaction of the final conditions. Indeed,

figures 4 and 5 show that both position and velocity errors at landing can be

decreased or in some cases, eliminated using a local search of some parameters.

For Fig.4, the final values of the parameters are:

r1(−384.3, 500.0, − 34.5), v1(5.0, 0, − 1.7), m1 = 1676.1, t1 = 50.0
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For Fig.5, the final values of the parameters are:

r1(0.0, 500.0, 661.2), v1(−7.6, 0, 0.9), m1 = 1699.8, t1 = 44.4

More detailed search resulted in more accurate landing parameters which are

given in the Table 1 below. The last lane of the table shows that the safe

landing with almost zero velocity, |v1| = 0.0024 m/s can be provided with the

positional error of |r1| = 465.34 m at landing. The final mass is computed to be

less than 1676 kg, which means that less than 229 kg of fuel is used to perform

the descent and landing maneuver. The total maneuver time was found to be

49.60 s. The studies show that more narrow and a wider local (or even global)

search for the coefficients, the maneuver time and the control parameter will

yield more accurate and safe landings.

Table 1: One set of selected coefficients and landing parameters

a1 a3 b1 b3 u t1 |r1| |v1|
37.70 4.90 -14.40 -4.10 5.600 49.60 464.8702 0.6984

37.79 4.90 -14.40 -4.10 5.600 49.60 464.8361 0.4789

37.00 4.70 -14.00 -4.20 5.600 49.59 463.9562 0.0290

38.00 4.80 -14.40 -4.10 5.600 49.60 465.3398 0.0024
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Figure 2: Descent trajectory envelops and the parameter domains: 15 ≤ a1 ≤ 35, 5 ≤ b1 ≤ 10, a2 =

0, b2 = 0, −12 ≤ a3 ≤ −8, −7 ≤ b3 ≤ 0, 5.7 ≤ u ≤ 6.2
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Figure 3: Descent trajectory envelops and the parameter domains: 15 ≤ a1 ≤ 35, 5 ≤ b1 ≤ 10, a2 =

0, b2 = 0, −13 ≤ a3 ≤ −11, −10 ≤ b3 ≤ −1, 5.6 ≤ u ≤ 5.9
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Figure 4: Descent trajectory parameters: a1 = 35, b1 = 4, a2 = 0, b2 = 0, a3 = −13, b3 = −5, u =

5.69.
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Figure 5: Descent trajectory parameters: a1 = 35, b1 = 21, a2 = 5, b2 = 10, a3 = −14.5, b3 =
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