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Abstract: Incident radiation within the Van Allen belt causes significant degradation of the solar
arrays of a satellite and a major challenge is to reduce the total radiation exposure of the satellites
during the orbit-raising maneuver. In this paper, we consider the problem of time-constrained elec-
tric orbit-raising problem that seeks to minimize the totalradiation fluence incurred by a satellite
during its transit through the Van Allen belts. We use a direct optimization based methodology and
incorporate radiation flux information during the optimization process in order to determine the
optimal trajectories. Considering orbit-raising scenarios from the Low-Earth Orbit to the Geosta-
tionary Orbit (GEO), we present minimum fluence solutions and provide a comparison with the
minimum time solutions.
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1. Introduction

Traditionally, the space industry has relied upon chemicalpropulsion systems for supporting the
primary propulsive activities of a satellite like orbit-raising to the Geostationary Earth orbit (GEO).
High power requirements of electric propulsion (EP) devices and associated long orbit-raising
time have limited their use for secondary propulsive activities that include in-orbit operations like
station-keeping and attitude control. Hence, the mass savings provided by EP devices owing to
their superior propellant management is not completely realized for current satellites that employ
a hybrid chemical and electric propulsion systems. The ability of satellites to perform electric
orbit-raising will potentially lead to significant mass savings that will allow additional payload
capabilities for the existing satellite or the developmentof lighter satellites. Furthermore, ability
of satellites to perform all propulsive tasks using EP devices can potentially reduce complexity
of design compared to satellites with hybrid propulsion system. In recent times, there has been
an increased interest among telecommunication satellite operators around the world in using all-
electric propulsion in their future satellites [1,2].

In this paper, we focus on the electric orbit-raising problem. One of the major concerns about
electric orbit-raising is the damage caused by incident radiation during the long transit through
the Van Allen belts surrounding the Earth. Electric orbit-raising, being a slow process due to the
low thrust provided by electric engines, exposes the satellite to Van Allen radiation that causes
considerable degradation of satellite solar arrays duringthe long transit [3,4,5]. This degradation
not only reduces the power availability during the orbit-raising maneuver, but also reduces the
Beginning-of-Lifetime (BOL) power of a satellite, therebyaffecting all future operations of the
satellite once it is deployed in its orbit. In the last coupleof decades, many studies have captured
the trade-offs among transfer time, mass savings and radiation exposure for a variety of mission
scenarios [6,7,8,9,10]. However, all these studies have considered minimum time trajectories to the



GEO [7,9,11,10,12,13,14]. A minimum-time trajectory would correspond to minimum solar cell
damage only if the intensity of the radiation is uniform throughout the Van Allen belt. Obviously,
this is not the case because the radiation flux varies with altitude and latitude and a minimum-time
trajectory will likely traverse the regions of higher radiation flux causing more damage to the solar
arrays (and possibly other electronics too).

Our aim is to determine electric orbit-raising trajectories that minimize radiation fluence incurred
by a satellite as it transfers from an arbitrary starting orbit to the Geostationary orbit (GEO). This
will help to deliver the satellite to GEO with maximum BOL power for the solar arrays and will also
limit the impact of radiation damage on other electronic components as well. So that avoidance
of radiation damage does not come at the cost of unusually long transfer time, we impose an
upper bound on the time of orbit-raising. In other words, we develop a new formulation for the
orbit-raising problem that incorporates flux information for geomagnetically trapped radiation and
determines the minimum fluence trajectories with constraint on the total time of transfer. In this
paper, we describe this formulation and illustrate how the minimum fluence solutions differ from
those minimizing time. Providing numerical examples for orbit-raising from the Low-Earth Orbit
(LEO) to the GEO, we study the difference in the minimum-timeand minimum-fluence solutions
for planar and non-planar orbt-raising maneuvers. The impact of the time constraint on the amount
of radiation exposure experienced by the satellite during the orbit-raising maneuver.

The primary contribution of this paper is to incorporate radiation flux information within an opti-
mization framework in order to determine minimum radiationfluence solution to low-thrust orbit-
raising problem. To this end, this paper is a first-step towards developing a generalized framework
capable of minimizing an arbitrary mission objective that is a complex function of fuel expenditure,
transfer time and radiation fluence. The paper is organized as follows: in section 2, we present the
mathematical formulation for the time-constrained minimum radiation optimal control problem.
The optimal control law, similar to the cases of minimum-time and minimum-fuel problems, is
bang-bang in nature and the decision to thrust or coast is based on the sign of a switching function.
We demonstrate that the case when the switching function is zero forces the thrust to be zero and
hence no singular solution exists. We complete the mathematical formulation of the problem in
section 3 by describing the satellite motion and the geomagnetic field using using spherical coordi-
nates. In section 4, we present a direct optimization based methodology for computing low-thrust
solutions that minimize radiation fluence. We use minimum time trajectories and a bang-bang
thrusting scheme as initial guess for our developed solver.In section 5, we illustrate by numerical
examples minimum fluence solutions as obtained using our methodology and provide a comparison
with minimum time solutions.

2. Minimum Radiation Optimal Control Problem

In this section, we formulate the minimum radiation orbit-raising problem as an optimal control
problem and derive the optimal control law from the Euler-Lagrange equations associated with
the problem. More specifically, we show that the optimal control is bang-bang and also prove the
non-existence of a singular case in which the thrust becomesindeterminate.



2.1. Mathematical Formulation

Let us denote byr (t) andv(t) the position and velocity of a satellite with respect to an inertial
frame attached to the center of the Earth at any given timet. Also, letm(t) denote the mass of the
satellite as a function of time. At any timet, we denote the state of the satellite by(r (t) ,v(t) ,m(t)).
Let us consider that the satellite moves from an initial state (r0,v0,m0) to a final state

(

r f ,v f ,mf
)

in time t f . The initial state is known a priori. For the final state, onlythe position and velocity are
known, that is,mf andt f are unknown. Note that we are considering a time constrainedproblem,
that is, there is an upper bound on the final transfer timet f ,max within which the transfer must be
completed. Now, let us denote byT (t) andu(t) the magnitude and direction of the thrust of the
propulsion system employed by the satellite. We represent by g(r) the gravitational acceleration
experienced by the satellite at a location described byr . Then, the equations of motion of the
satellite can be written as:

ṙ = v, (1)

v̇ = g(r)+
T
m

u, (2)

ṁ= −
T
c

, (3)

wherec is the specific impulse of the engine. Note thatu is an unit vector and must satisfyuTu = 1.
Also, considering that there is a maximum thrust that can be provided by a given electric propulsion
device, we have 0≤ T ≤ Tmax.

The damage caused by the Van Allen belt radiation during the orbit-raising maneuver depends on
the flux of particles in the regions of Van Allen belt traversed by the satellite, energy levels of the
impacting particles and the material properties of the electronics absorbing the radiation dose. To
minimize the damage or dose experienced by a solar array (or other relevant electronics) along an
orbit-raising trajectory, one needs to minimize an integral of the form

∫ t f

0
Ψm(Φ(r) ,E) dt

that represents the total damage or dose experienced along the trajectory for a certain materialm
for solar array or other electronics (say, GaAs). For a particular materialm, the dose is a function
of the flux of all particles of energy level greater than E [15, 16]. In the current paper, we use a
simplified form of the objective function by consideringΨm(Φ(r) ,E) = Φ(r) and minimize the
total radiation fluence from all particles encountered by the satellite within the Van Allen belts.
The motivation is to develop a mathematical framework (independent of any particular electronics)
that can be extended in future to minimize the total material-specific damage or dose. In other
words, we formulate the optimal control problem as:

min J =

∫ t f

0
Φ(r) dt (4)

subject to dynamic constraints given by Eq.1-3, boundary conditions given by

r (0) = r0, v(0) = v0, m(0) = m0, r
(

t f
)

= r f , v
(

t f
)

= v f , (5)



constraints on the engine thrust given by

0≤ T ≤ Tmax, uTu = 1, (6)

and constraint on the time of transfer
t f ≤ t f ,max. (7)

2.2. Necessary Conditions of Optimality

The Hamiltonian for the system can be expressed as

H = Φ(r)+λλλ T
r v+λλλ T

v

(

g(r)+
T
m

u
)

+λm

(

−
T
c

)

+η
(

uTu−1
)

, (8)

whereη ≥ 0. The first order necessary conditions for optimality (Euler-Lagrange equations [17])
can then be written as

λ̇λλ r = −

(

∂H
∂ r

)T

= −
∂Φ
∂ r

−
∂g(r) r

∂ r
, (9)

λ̇λλ v = −

(

∂H
∂v

)T

= −λλλ r , (10)

λ̇m = −

(

∂H
∂m

)

=
T
m2λλλ T

v u, (11)

0 =

(

∂H
∂u

)

=
T
m

λλλ v +2ηu. (12)

Since terminal cost is zero for the problem in considerationand Hamiltonian is not an explicit
function of time, we must have at any instant of time

H = 0. (13)

2.3. Optimal Control Law

From Eq.12, we have that

u = −
T

2ηm
,

which along withuTu = 1 yields

u = −
λλλ v

λv
. (14)

Hence, the thrust direction has to be directed opposite to the primer vector, a well-known result in
spacecraft trajectory optimization [18]. Using the direction of thrust in the definition of Hamilto-
nian in Eq.8, we have

H = Φ(r)+λλλ T
r v+λλλ T

v g(r)−
T
m

S, (15)



where the switching function [19] is defined by

S= λv +
m
c

λm. (16)

It can be easily seen that the Hamiltonian is minimized if

T =











Tmax, if S> 0,

0, if S< 0,

0≤ T ≤ Tmax, if S= 0.

(17)

The case when the switching function is 0 poses a challenge asthe thrust becomes indeterminate.
We however show that ifS is indeed 0 over a time interval, the thrust has to be zero at all times
within that interval.

t1 t2t' t'+δt
0

Tmax

T S

Engine 

Thrust
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Figure 1. Variation of thrust T and switching function S withtime (switching function S is zero for
all t1 ≤ t ≤ t2).

2.4. Singular Solution: S= 0

Let us assume that over an interval of time[t1, t2] ⊆
[

0, t f
]

, the switching functionS= 0 (see Fig.
1). This implies that

S= 0, Ṡ= 0, S̈= 0. . . (18)

Now, S= 0 implies

λv = −
m
c

λm. (19)

Also, note that Eq.11and Eq.14 imply

λ̇m = −
Tλv

m2 . (20)



Using Eq.3 and Eq.20, we have

Ṡ= λ̇v +
ṁ
c

λm+
m
c

λ̇m = λ̇v−
T
cm

S= λ̇v. (21)

In other words, Eq.18 implies
λ̇v = λ̈v = . . . = 0. (22)

This means that the magnitude of the primer vector must be constant for allt ∈ [t1, t2] whenever
S= 0. In other words, we can say from Eq.19 that

mλm = constant , for allt ∈ [t1, t2] , (23)

Let us now consider thatT > 0 (strictly greater than 0) over a time interval[t ′, t ′+δ t]⊆ [t1, t2]. We
therefore must have from Eq.23 the following relation

m
(

t ′
)

λm
(

t ′
)

= m
(

t ′+δ t ′
)

λm
(

t ′+δ t ′
)

. (24)

Now, note that mass of the satellite is a strictly monotonically decreasing function of time ifT > 0
(Eq.3). We therefore have

m
(

t ′
)

> m
(

t ′+δ t ′
)

. (25)

Considering Eq.20, we have thaṫλm is a strictly monotonically decreasing function of time (unless
λv = 0) sinceT > 0 for all t ∈ [t ′, t ′+δ t]. However, using (25), we have from (24),

λm
(

t ′
)

=
m(t ′+δ t ′)

m(t ′)
λm

(

t ′+δ t ′
)

< λm
(

t ′+δ t ′
)

, (26)

which contradicts the fact thatλm is a strictly monotonically decreasing function in the timeinterval
[t ′, t ′+δ t]. Hence, we have proved that we cannot haveT > 0 if S= 0 andλv 6= 0. If λv = 0, then
we have from Eq.19 that λm = 0. Also, from Eq.10, we haveλλλ r = 0, so that the Hamiltonian
becomesH = Φ(r) that is a function of Earth’s magnetic field and cannot be zero(as required by
Eq.13). Hence, we cannot haveλv = 0 and therefore must haveT = 0 for all t ∈ [t1, t2]. In other
words, we haveS= 0 impliesT = 0. We can therefore write the optimal control law as follows:

T =

{

Tmax, if S> 0,

0, if S≤ 0,
(27)

3. Mathematical Formulation

In this section, we explicitly outline the various functions used in the previous section and complete
the mathematical description of the minimum fluence low-thrust trajectory optimization problem.
To this end, we describe the dynamics of the satellite and theEarth’s magnetic field in the spheri-
cal reference frame and describe how we incorporate information about geomagnetically trapped
radiation within the optimization framework.



X

Y

Z

r

eθ

er

eφ

θ

φ

i
j

k

Spherical

Cartesian

Figure 2. Spherical reference system for describing equations of motion of satellite.

3.1. Problem Description and Notations

Let us consider a satellite in an arbitrary initial orbit, which can be circular or elliptical and may
have inclination with respect to Earth’s equatorial plane.Let x(t) denote the state of the satellite at
any timet. The state vector is comprised of the satellite’s position vectorr(t), the velocity vector
v(t) and the massm(t). At t = 0, the satellite is at its initial orbit into which the satellite has
been injected by an appropriate launcher. This initial orbit is henceforth referred to as an injection
orbit. The initial state of the satellitex(0) is defined by the position and velocity of the satellite
in the injection orbit and the initial massm(0). We consider that the satellite employs an electric
propulsion system that provides a maximum thrustTmax and a specific impulse ofIsp. We assume
that the satellite uses the electric engine to transfer fromthe injection orbit to the GEO (which is a
circular orbit of altitude 35,786 km with zero inclination). The GEO therefore provides constraints
for the positionr(t f ) and velocityv(t f ) at final time. The terminal timet f of the transfer is free, but
has an upper boundtmax

f within which the orbit-raising maneuver has to be completed. We wish to
minimize the radiation fluence experienced by the satelliteduring its transfer to GEO.

3.2. Equations of Motion

We use a spherical reference frame to describe the motion of the satellite. Figure 2 depicts this
spherical reference frame and its orientation with respectto the Cartesian reference frame fixed to
the Earth in terms of the azimuthal angleθ and the polar angleφ . Expressed in terms of the unit
vectorser , eθ andeφ , the kinematics of the satellite is given by the velocity vector[20]

v = r φ̇eφ + r θ̇ sinφeθ + ṙer , (28)

and the acceleration vector[20]

a =
(

r φ̈ +2ṙ φ̇ − r θ̇2sinφ cosφ
)

eφ

+
(

r sinφθ̈ +2ṙ θ̇ sinφ +2r φ̇ θ̇ sinφ
)

eθ +
(

r̈ − r θ̇2sin2 φ − r φ̇2)er .



Let the thrust provided by the satellite engine be denoted byT and the angle the thrust vector
makes with the plane defined by the unit vectorser andeθ be given byβ . Also, let us denote byα
the angle the projection of the thrust vector on the same plane makes with the unit vectorer . The
control vectoru representing the thrust of the electric engine employed by the satellite is therefore
given by:

u = T sinβeφ +T cosα sinβeθ +T cosα cosβer . (29)

The equations of motion of the satellite can be written as follows:

r̈ − r θ̇2 sin2φ − r φ̇2 =
T
m

cosα cosβ (30a)

r sinφθ̈ +2ṙ θ̇ sinφ +2r φ̇ θ̇ sinφ =
T
m

sinα cosβ (30b)

r φ̈ +2ṙ φ̇ − r θ̇2sinφ cosφ =
T
m

sinβ (30c)

Let us denote byu, v andw the components of velocity along the unit vectorser , eθ andeφ . Also,
let us now denote the state vector of the satellite byx(t) ≡ (r(t),θ(t),φ(t),u(t),v(t),w(t),m(t)).
The equations of motion can be written in the following state-space form:

ṙ = u, (31a)

θ̇ =
v

r sinφ
, (31b)

φ̇ =
w
r
, (31c)

u̇ = −
µ
r2 +

v2 +w2

r
+

T
m

cosα cosβ (31d)

v̇ = −
uv+vwcotφ

r
+

T
m

sinα cosβ (31e)

ẇ =
−uw+v2 cotφ

r
+

T
m

sinα (31f)

ṁ= −
T
c

(31g)

3.3. Geomagnetically Trapped Radiation

Let us consider the magnetic field (or flux density) of the Earth to be represented by the field of a
magnetic dipole centered with the Earth and with an axis parallel to the Earth’s spin axis that passes
through its center of mass. In spherical coordinates, the magnetic field can be written as[21]:

B = Brer +Bφ eφ +Bθ eθ , (32)



where the three components can be written as

Br = −
2B0

(r/R)3cosφ , Bφ = −
B0

(r/R)3sinφ , Bθ = 0, (33)

wherem is the magnetic dipole moment of Earth,R is the radius of the Earth,θ is the longitude,φ
is the colatitude andB0 is the equatorial value of geomagnetic flux density

B0 =
µ0m
4πR3 . (34)

The magnitude of the geomagnetic field for a spin axis aligneddipole can be written as

B =
B0m

(r/R)3

(

1+3cos2φ
)1/2

. (35)

In terms of a local vertical reference frame, the magnetic field vector has an angle of declinationD
and an angle of inclinationI . The declination of the field line is given by

tanD = −
Bθ
Bφ

, (36)

which is 0 for the spin axis aligned dipole. The inclination of the field line is given by

tanI = −
Br

Bφ
= −2cotφ . (37)

The geometry of the field line can be expressed as

tanI = −
dr

rdφ
. (38)

Substituting equation(37) and integrating, we obtain from equation(39) the following equation for
the magnetic field lines:

r = LRsin2 φ (39)

in terms of parameterL which is the distance to the field line atφ = π/2, that is, at the equator.
Substituting equation(39) in (35), we have the relationship betweenB andL:

B =
B0

(r/R)3

(

4−
3r
LR

)1/2

. (40)

McIlwain’s (B,L) coordinate system [22] is used to conveniently compute properties of the trapped
charged particles because it is a means of converting the three-dimensional space into a two-
dimensional space based on the fact that the dipole field is axially symmetric.

Charged particles, primarily electrons and protons, are trapped in the Earth’s magnetosphere orig-
inate from solar wind and the decay of neutrons produced by the interactions of galactic cosmic
rays with the Earth’s atmosphere. Typical models of the trapped radiation for the Earth are the AP
model for protons and AE model for electrons developed by NASA [23]. The model gives trapped
omnidirectional proton and electron fluxes (particles per unit area per unit time) of energies be-
tween 0.1 and 400 MeV between L-shell values of 1.15 and 6.5 asa function of geomagnetic
coordinates B and L. At any point on the satellite trajectory, we compute the geomagnetic coor-
dinates and use a look-up table with AP8 and AE8 models to obtain the proton and electron flux.
The total radiation fluence is the radiation flux integrated over time as given by Eq.4.



4. Solution Methodology

In this section, we discuss the methodology we follow for solving the optimal control problem. We
follow a direct optimization approach which is known to be more robust numerically in terms of
initial guesses and solution convergence [24]. We extend our developed solver in reference [14] by
incorporating radiation model within the optimization framework.

4.1. Direct Transcription and Collocation

In order to solve the optimization problem for each scenario, we use a direct optimization scheme.
The scheme converts the trajectory optimization problem toa parameter optimization problem us-
ing direct transcription and collocation, and then uses a Non-Linear Programming (NLP) problem
solver (IPOPT [25], LOQO [26]) to determine the solution. The time variable is discretized using
a non-dimensional time-like variableτ and final timet f is also a parameter in the problem:

0 = τ1 < τ2 < .. . < τn = 1, tk = t f τk. (41)

The statex and controlu variables of a continuous trajectory are also discretized based on the
selected time-grid:

xk = x(tk), uk = u(tk). (42)

Using a trapezoidal discretization scheme, we can approximate the dynamic constraints as follows:

ζζζ k = xk+1−xk−
hk

2
[f (xk+1,uk+1)+ f (xk,uk)] . (43)

Note that we have a set of defects corresponding to each of theequations of motion given in

(31), that is,ζζζ k ≡
(

ζζζ r
,ζζζ θ

,ζζζ φ
,ζζζ u

,ζζζ v
,ζζζ w

)

, where the superscript indicates the equation of motion

that the defect corresponds to. If these defects are driven to zero, then the dynamic constraints
(equations of motion) will hold approximately at each of thesegments created by the discretization
process. The set

(

x1,x2, . . . ,xn;u1,u2, . . . ,un; t f
)

represents the decision variables of the resulting
parameter optimization problem. During the optimization process (using a NLP solver), the defects
are driven to zero. Using the discretization scheme, we can also write down the objective function
(radiation fluence) as:

c =

n−1
∑

k=1

1
2

(Φ(rk,θk,φk)+Φ(rk+1,θk+1,φk+1))(tk+1− tk) (44)

Instead of using a trapezoidal discretization, we may use a more accurate (but computationally
more complex) Hermite-Simpson trapezoidal discretization to approximate the dynamic constraints.
To this end, we additionally consider the mid-point of the segmentsum and set up the defects as:

ζζζ k = xk+1−xk−
hk

6
[f (xk+1,uk+1)+4f (xmk,umk)+ f (xk,uk)] , (45)

where the values of the state variables at the mid-point of segments are given by

xmk =
1
2

[xk+1 +xk]+
hk

8
[f (xk,uk)− f (xk+1,uk+1)] . (46)



When we use the Hermite-Simpson discretization scheme, thecontrol variables evaluated at the
mid-point of the segments also become a part of the decision variables:

(

x1,x2, . . . ,xn;u1,u2, . . . ,un;um1,um2, . . . ,umn; t f
)

.

4.2. NLP Solvers

We have set up two independent methods of solving the NLP associated with the parametric opti-
mization problem. First, we set up the NLP using Matlab and use the solver IPOPT∗ (acronym
for “Interior Point Optimizer”) to obtain the optimal trajectory. Second, we set up the model of
the optimization problem in AMPL [28] (acronym for “A Mathematical Programming Language”)
and use LOQO to solve the problem. Both NLP solvers IPOPT and LOQO are interior-point based
methods and are therefore suitable for large-scale non-linear optimization. Also, both IPOPT and
LOQO can take advantage of the sparsity of the Jacobian and Hessian matrices to efficiently solve
the problem. For the Matlab-IPOPT interface we provide analytic expressions for the first-order
and second-order derivatives for the associated NLP; for the AMPL-LOQO interface, these are
computed numerically by the solvers. The lack of guaranteesof the global optimality of a gener-
ated solution of the NLP justifies the use of two numerical methods to compute solutions for the
same problem. Considering a Hermite-Simpson discretization, the first-order derivative informa-
tion includes the gradient of the objective function

∇c≡

(

∂c
∂xk

,
∂c

∂uk
,

∂c
∂umk

,
∂c
∂ t f

)

. (47)

and the Jacobian of the constraints:

∇ζk ≡

(

∂ζk

∂xk
,

∂ζk

∂uk
,

∂ζk

∂umk
,
∂ζk

∂ t f

)

. (48)

The second-order derivative information includes computation of the Hessian matrix:

H ≡ σ f ∇2c+
∑

k

λk∇2ζk, (49)

which usually is a sparse matrix. For a trapezoidal discretization scheme, for which control vari-
ables at the mid-points of the segments are not present in theformulation, we use the same equa-
tions without the terms forumk.

We illustrate the computation of Jacobian and Hessian with an example by considering the de-
fect corresponding to the first equation of motion (30a) evaluated at nodek. Using (45) for the
trapezoidal discretization, the defect can be written as:

ζ r
k = rk+1− rk−

hk

2
(uk +uk+1) .

∗IPOPT requires a sparse symmetric linear solver for its operation, we use the Harwell Subroutine Library (HSL)
functions [27] MA27 and MC19 for the purpose.



The non-zero partial derivatives for this defect can then bewritten as:

∂ζ r
k

∂ rk
= −1,

∂ζ r
k

∂ rk+1
= 1,

∂ζ r
k

∂uk
= −

hk

2
,

∂ζ r
k

∂uk+1
= −

hk

2
,

∂ζ r
k

∂ t f
= −

∆τ
2

(uk +uk+1) ,

where∆τ equals the difference between the values of the time-like variableτ at nodesk andk+1.
Note that for an uniform distribution of nodes,∆τ = 1/n. Also, note that partial derivatives of
ζ r

k with respect to all other decision variables is zero. The second-order partial derivatives can be
determined directly from the first-order derivatives. For the present case, the non-zero second-order
derivatives are given by:

∂ 2ζ r
k

∂ t f ∂uk
= −

∆τ
2

,
∂ 2ζ r

k

∂ t f ∂uk+1
= −

∆τ
2

.

As before, remaining second-order derivatives are zero forthe defectζ r
k . Similarly, all of the

first-order and second-order derivatives are computed for the remaining set of defects given by
ζζζ θ

,ζζζ φ
,ζζζ u

,ζζζ v
,ζζζ w. Note that in the absence of analytic expressions for the radiation fluence terms,

∇2c is evaluated numerically. The evaluation of the first-orderderivatives completes the compu-
tation of the Jacobian, while the evaluation of the second-order derivatives completes the Hessian
computation. The parametersσ f andλk are internally generated by IPOPT during the course of
executing the NLP.

5. Numerical Examples

In this section, we present solutions obtained using our methodology for low-thrust orbit-raising
from LEO to the GEO. We also compare the obtained solutions with the minimum-time solutions
for both planar and non-planar orbit-raising maneuvers. The minimum time solutions are derived
using the tool developed in Ref. [14].

To this end, let us first consider the orbit-raising problem for transferring a satellite from an equato-
rial circular LEO orbit of radius 500 km to the GEO. Using a range of values for the engine thrust
(0.3 N to 10 N) in order to cover a variety of thrusters from theBPT-4000 to the MPD thrusters,
we compute the minimum-time solutions and use our developedmodel to compute the radiation
fluence experienced by the satellite during the orbit-raising maneuver. The variation of radiation
fluence is depicted in Fig. 3. When restricted to motion within a plane, the satellite spirals through
similar radiation intensities while performing the orbit-raising maneuver and the radiation fluence
is directly correlated with the time that the satellite spends within the Van Allen belts. Since
thrusters offering lower thrust would mean a slower orbit-raising maneuver, the radiation fluence
experienced by the satellite increases as the engine thrustdecreases. Hence, it is fairly straightfor-
ward to see that the radiation effects would be the most pronounced for Hall and Ion thrusters, in
fact several times compared to say a MPD thruster.

Let us now consider an example of a three-dimensional transfer in order to illustrate the impact of
radiation as the satellite performs plane changes. We consider different inclinations of the initial
injection orbit of the satellite and compute minimum-time solutions from the injection orbit to
the GEO. We then compute the radiation fluence experienced bythe satellite during the transfer.
Figure 4 depicts the variation of the radiation fluence experienced by the satellite with the change
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Figure 3. Radiation fluence experienced by satellites during planar minimum-time orbit-raising.

in inclination of the injection orbit. As the inclination changes from 0 degree, the transfer time
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Figure 4. Radiation fluence experienced by satellites during minimum-time orbit-raising from
inclined LEO injection orbit to the GEO.

increases, but the satellite traverses regions of reduced intensities of the Van Allen belts. The
total radiation fluence captures the effect of both the competing factors of transfer time and the
radiaiton flux. Figure 4 shows that the net effect of the two factors decreases the radiation fluence
if we launch a satellite from a higher inclination orbit. Oneinteresting point to note in this variation
is that radiation fluence attains a maximum away from 0 degreebecause of the tilt in the Earth’s
magnetic axis with respect to its rotational axis.
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Let us now consider trajectories that incur minimum radiation fluence experienced by a satellite
during orbit-raising maneuver. For the case when the satellite starts from an equatorial LEO orbit,
we allow the solution to be non-planar and trade off time to traverse regions of lower radiation flux.
However, the optimal solution determined by the solver is essentially the minimum-time solution.
Performing plane changes may reduce the radiation flux experienced by the satellite; however, it
also increases the transfer time and trading off time does not prove to be beneficial for the planar
injection orbit case. The minimum radiation fluence can however be different from the minimum
time solution for an inclined injection orbit case, as we demonstrate with the following example.

Let the satellite initiates a transfer from a LEO circular orbit that is inclined at an angle on 15
degrees to the equatorial plane. We also consider that the satellite employs an electric thruster
with thrust 5 N and specific impulse of 2000 sec. We non-dimensionalize the different variables as
follows: 1 LU represents the radius of the initial orbit, initial mass is considered to be 1 MU,µ is 1
so that the orbital velocity in the injection orbit is 1 and the time period is 2π units. We provide the
minimum-time solution as an initial guess to our developed solver. Solving the minimum radiation
problem with this initial guess yields a trajectory that incurs 3.9% less radiation fluence than the
minimum-time trajectory, at the cost of a 10% increase in thetransfer time. The optimal trajectory
is depicted in Fig. 5 and the variation of the different states of the satellite corresponding to the
optimal trajectory is depicted in Fig. 6.

6. Conclusions

In this paper, we develop a formulation to determine the minimum radiation fluence incurred by a
satellite during electric orbit-raising to the Geostationary orbit. The optimal thrusting scheme for
this problem is a bang-bang control and we prove the non-existence of a singular solution for such
a problem. We use the bang-bang control scheme as a guess for the control variables in the direct
optimization solver that incorporates radiation flux information (based on NASA AP8 and AE8
models). We provide the minimum time solutions as initial guesses to our solver. We consider
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Figure 6. Minimum radiation fluence solution.

planar and non-planar orbit-raising examples from LEO to GEO. When the satellite starts from
an equatorial LEO orbit, we find that optimizing radiation fluence is the same as optimizing time.
However, when the satellite starts from an inclined LEO orbit, the minimum radiation solution
differs from the minimum time solution. In the future, we would use the developed tool to analyze a
variety of orbit-raising scenarios, inclusion of eclipse constraints and energy storage options within
the optimization framework in order to determine the trade-offs among mass, time and radiation
fluence during electric orbit-raising. Future work will also consider the extension of the tool to
determine trajectories to minimize material-specific radiation dose during electric orbit-raising.
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