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Abstract: Incident radiation within the Van Allen belt causes sigrifitdegradation of the solar
arrays of a satellite and a major challenge is to reduce thalt@diation exposure of the satellites
during the orbit-raising maneuver. In this paper, we coesithe problem of time-constrained elec-
tric orbit-raising problem that seeks to minimize the tatadiation fluence incurred by a satellite
during its transit through the Van Allen belts. We use a diggatimization based methodology and
incorporate radiation flux information during the optimtian process in order to determine the
optimal trajectories. Considering orbit-raising scenasifrom the Low-Earth Orbit to the Geosta-
tionary Orbit (GEO), we present minimum fluence solutiond provide a comparison with the
minimum time solutions.
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1. Introduction

Traditionally, the space industry has relied upon chenpecapulsion systems for supporting the
primary propulsive activities of a satellite like orbitisang to the Geostationary Earth orbit (GEO).
High power requirements of electric propulsion (EP) deviead associated long orbit-raising
time have limited their use for secondary propulsive atéigithat include in-orbit operations like
station-keeping and attitude control. Hence, the massigayrovided by EP devices owing to
their superior propellant management is not completelljze for current satellites that employ
a hybrid chemical and electric propulsion systems. Thetgtf satellites to perform electric
orbit-raising will potentially lead to significant mass says that will allow additional payload
capabilities for the existing satellite or the developmalighter satellites. Furthermore, ability
of satellites to perform all propulsive tasks using EP dewican potentially reduce complexity
of design compared to satellites with hybrid propulsiontesys In recent times, there has been
an increased interest among telecommunication satepigeadors around the world in using all-
electric propulsion in their future satellitek, P].

In this paper, we focus on the electric orbit-raising praileOne of the major concerns about
electric orbit-raising is the damage caused by incideniatenh during the long transit through
the Van Allen belts surrounding the Earth. Electric orlitsmg, being a slow process due to the
low thrust provided by electric engines, exposes the d&tetl Van Allen radiation that causes
considerable degradation of satellite solar arrays duhedong transit3, 4, 5]. This degradation
not only reduces the power availability during the orbisitag maneuver, but also reduces the
Beginning-of-Lifetime (BOL) power of a satellite, thereljfecting all future operations of the
satellite once it is deployed in its orbit. In the last couplelecades, many studies have captured
the trade-offs among transfer time, mass savings and radliexposure for a variety of mission
scenarios,7,8,9,10. However, all these studies have considered minimum tiajedtories to the



GEO [7,9,11,10,12,13,14]. A minimum-time trajectory would correspond to minimumasccell
damage only if the intensity of the radiation is uniform thgbout the Van Allen belt. Obviously,
this is not the case because the radiation flux varies witindé and latitude and a minimum-time
trajectory will likely traverse the regions of higher ratitia flux causing more damage to the solar
arrays (and possibly other electronics to0o).

Our aim is to determine electric orbit-raising trajecteribat minimize radiation fluence incurred
by a satellite as it transfers from an arbitrary startingtddothe Geostationary orbit (GEO). This
will help to deliver the satellite to GEO with maximum BOL pewfor the solar arrays and will also
limit the impact of radiation damage on other electronic poments as well. So that avoidance
of radiation damage does not come at the cost of unusually fiansfer time, we impose an
upper bound on the time of orbit-raising. In other words, wegalop a new formulation for the
orbit-raising problem that incorporates flux informatian §eomagnetically trapped radiation and
determines the minimum fluence trajectories with constramthe total time of transfer. In this
paper, we describe this formulation and illustrate how theimmum fluence solutions differ from
those minimizing time. Providing numerical examples fdribraising from the Low-Earth Orbit
(LEO) to the GEO, we study the difference in the minimum-tiamel minimum-fluence solutions
for planar and non-planar orbt-raising maneuvers. The ainplethe time constraint on the amount
of radiation exposure experienced by the satellite dutegotrbit-raising maneuver.

The primary contribution of this paper is to incorporateiasidn flux information within an opti-
mization framework in order to determine minimum radiatilarence solution to low-thrust orbit-
raising problem. To this end, this paper is a first-step towaeveloping a generalized framework
capable of minimizing an arbitrary mission objective tlsad complex function of fuel expenditure,
transfer time and radiation fluence. The paper is organigddl@ws: in section 2, we present the
mathematical formulation for the time-constrained minimeadiation optimal control problem.
The optimal control law, similar to the cases of minimumaiand minimum-fuel problems, is
bang-bang in nature and the decision to thrust or coast exo@sthe sign of a switching function.
We demonstrate that the case when the switching functioersforces the thrust to be zero and
hence no singular solution exists. We complete the matheahdrmulation of the problem in
section 3 by describing the satellite motion and the geomiagfield using using spherical coordi-
nates. In section 4, we present a direct optimization basstiodology for computing low-thrust
solutions that minimize radiation fluence. We use minimumetitrajectories and a bang-bang
thrusting scheme as initial guess for our developed solresection 5, we illustrate by numerical
examples minimum fluence solutions as obtained using ouradetogy and provide a comparison
with minimum time solutions.

2. Minimum Radiation Optimal Control Problem

In this section, we formulate the minimum radiation orlaitsing problem as an optimal control
problem and derive the optimal control law from the Eulegtamge equations associated with
the problem. More specifically, we show that the optimal oalns bang-bang and also prove the
non-existence of a singular case in which the thrust becamdeserminate.



2.1. Mathematical Formulation

Let us denote by (t) andv (t) the position and velocity of a satellite with respect to agrtiial
frame attached to the center of the Earth at any giventimdso, letm(t) denote the mass of the
satellite as a function of time. At any timewe denote the state of the satellite(byt), v (t) ,m(t)).
Let us consider that the satellite moves from an initialested, vo, mp) to a final state(r £, Vi, mf)

in timet;. The initial state is known a priori. For the final state, ottilg position and velocity are
known, that ism; andt; are unknown. Note that we are considering a time constrgnaaem,
that is, there is an upper bound on the final transfer tim#gx within which the transfer must be
completed. Now, let us denote By(t) andu (t) the magnitude and direction of the thrust of the
propulsion system employed by the satellite. We represgut(b) the gravitational acceleration
experienced by the satellite at a location described.byrhen, the equations of motion of the
satellite can be written as:

v, ()
=g+ u @
. T

wherec is the specific impulse of the engine. Note thas an unit vector and must satigiy u = 1.
Also, considering that there is a maximum thrust that carrbeiged by a given electric propulsion
device, we have & T < Thax

The damage caused by the Van Allen belt radiation during thig-taising maneuver depends on
the flux of particles in the regions of Van Allen belt travets®y the satellite, energy levels of the
impacting particles and the material properties of theted@ics absorbing the radiation dose. To
minimize the damage or dose experienced by a solar arrayl{er relevant electronics) along an
orbit-raising trajectory, one needs to minimize an integfahe form

/tf Wi (@ (1), E) dit
0

that represents the total damage or dose experienced dlerigajectory for a certain materiad
for solar array or other electronics (say, GaAs). For a paldr materialm, the dose is a function
of the flux of all particles of energy level greater than1b,[L6]. In the current paper, we use a
simplified form of the objective function by consideriig, (P (r),E) = ®(r) and minimize the
total radiation fluence from all particles encountered by $htellite within the Van Allen belts.
The motivation is to develop a mathematical framework (petelent of any particular electronics)
that can be extended in future to minimize the total matespaicific damage or dose. In other
words, we formulate the optimal control problem as:

tf
minJ:/ ®(r)dt 4)
0
subject to dynamic constraints given by HeB, boundary conditions given by

r(0)=ro, v(0) =vo, m(0) =my,r (tr) =r¢, v(t) = v, (5)



constraints on the engine thrust given by
O S T S -I-ma_)(7 UTU - :I.7 (6)

and constraint on the time of transfer
ty < tf,max- (7)

2.2. Necessary Conditions of Optimality

The Hamiltonian for the system can be expressed as

H=®(r)+A]v+A] <g(r)+%u)+/\m(—%)+n(uTu—1), (8)

wheren > 0. The first order necessary conditions for optimality (Edlagrange equationd}])
can then be written as

. JoH T_ od  Jdg(n)r
h-—(5) -5 -5 ©)
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b= (%) = (10)
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Am=— (a—m) = SAyU, (11)
JoH T

Since terminal cost is zero for the problem in consideraind Hamiltonian is not an explicit
function of time, we must have at any instant of time

H=0. (13)
2.3. Optimal Control Law
From EQ.12, we have that T
=~
which along withu™u = 1 yields
u= —})\\—\\/’. 14

Hence, the thrust direction has to be directed oppositegt@timer vector, a well-known result in
spacecraft trajectory optimizatiod§]. Using the direction of thrust in the definition of Hamilto-
nian in Eq.8, we have

H:(D(r)+/\rTv+/\$g(r)—:-—ns (15)



where the switching functioriLP)] is defined by

S:Aw+?Am (16)
It can be easily seen that the Hamiltonian is minimized if
Tmax: |f S> O7
T=1<0, if S<0, a7

OSTSTmax, |f S:O
The case when the switching function is O poses a challengeeabrust becomes indeterminate.
We however show that iBis indeed 0 over a time interval, the thrust has to be zerol anads
within that interval.
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Figure 1. Variation of thrust T and switching function S wiitme (switching function S is zero for

allt; <t <ty).

2.4. Singular Solution: S=0

Let us assume that over an interval of tiftet,] C [O,tf], the switching functior8 = 0 (see Fig.

1). This implies that _ )
S=0, S=0, S=0... (18)

Now, S= 0 implies m
Also, note that Eqll and Eqg.14imply

Am:—%%. (20)



Using Eqg.3 and Eq.20, we have

T

-S=A. (21)

v+ c m+ c/im v
In other words, Eql8implies _ )

This means that the magnitude of the primer vector must betannfor allt € [t;,t;] whenever
S=0. In other words, we can say from EIp that

mAm = constant, for alt € [t1,t], (23)

Let us now consider that > O (strictly greater than 0) over a time interf@lt’ + dt] C [ty,tp]. We
therefore must have from Eg3the following relation

m(t') Am (t') = m(t'+ ") Am (t' + t') . (24)

Now, note that mass of the satellite is a strictly monotdiyakecreasing function of time it > 0
(EQ.3). We therefore have
m(t') >m(t'+4t). (25)

Considering Eq20, we have thai\m is a strictly monotonically decreasing function of time l@ss
Ay = 0) sinceT > 0 for allt € [t’,t'+ dt]. However, usingZ5), we have from 24),

!/ /
Am () = %)\m (U4 0t) < Am(t + V). (26)
which contradicts the fact that, is a strictly monotonically decreasing function in the timierval
t’,t" 4 dt]. Hence, we have proved that we cannot have 0 if S= 0 andA, # 0. If A, =0, then
we have from Eql9thatA,, = 0. Also, from Eg.10, we haveA, = 0, so that the Hamiltonian
becomedd = @ (r) that is a function of Earth’s magnetic field and cannot be tasaequired by
Eg.13). Hence, we cannot have = 0 and therefore must hade= 0 for allt € [t1,t7]. In other
words, we havé& = 0 impliesT = 0. We can therefore write the optimal control law as follows:

(27)

T Tmax  ifS>0,
o, if S< 0,

3. Mathematical Formulation

In this section, we explicitly outline the various functsomsed in the previous section and complete
the mathematical description of the minimum fluence lowshtrajectory optimization problem.
To this end, we describe the dynamics of the satellite and#rth’'s magnetic field in the spheri-
cal reference frame and describe how we incorporate infiomabout geomagnetically trapped
radiation within the optimization framework.
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Figure 2. Spherical reference system for describing equains of motion of satellite.

3.1. Problem Description and Notations

Let us consider a satellite in an arbitrary initial orbit,ialihcan be circular or elliptical and may
have inclination with respect to Earth’s equatorial plaretx(t) denote the state of the satellite at
any timet. The state vector is comprised of the satellite’s positiecterr (t), the velocity vector
v(t) and the massn(t). Att = 0, the satellite is at its initial orbit into which the sattdlhas
been injected by an appropriate launcher. This initialtagohenceforth referred to as an injection
orbit. The initial state of the satellitg0) is defined by the position and velocity of the satellite
in the injection orbit and the initial mass(0). We consider that the satellite employs an electric
propulsion system that provides a maximum thiiygdx and a specific impulse af,. We assume
that the satellite uses the electric engine to transfer thamnjection orbit to the GEO (which is a
circular orbit of altitude 35,786 km with zero inclinatioljhe GEO therefore provides constraints
for the positiorr (t;) and velocityv(ts) at final time. The terminal timg of the transfer is free, but
has an upper bourtd® within which the orbit-raising maneuver has to be compleWd wish to
minimize the radiation fluence experienced by the satelliténg its transfer to GEO.

3.2. Equations of Motion

We use a spherical reference frame to describe the motidmeoatellite. Figure 2 depicts this
spherical reference frame and its orientation with resfuettie Cartesian reference frame fixed to
the Earth in terms of the azimuthal an@leand the polar angle. Expressed in terms of the unit
vectorse;, eg andey, the kinematics of the satellite is given by the velocitytoel@0Q]

V=rge,+rosingeg +fer, (28)
and the acceleration vectaf)]

a = (rg+2ip—ré2singcosy) ey
+ (rsing8 +2r@sing+ 2r pfsing) eg + (i —ro?sir’ o —r¢?) e



Let the thrust provided by the satellite engine be denoted land the angle the thrust vector
makes with the plane defined by the unit vectgrandeg be given byg. Also, let us denote by
the angle the projection of the thrust vector on the samesphaakes with the unit vecta. The
control vector representing the thrust of the electric engine employedhbsatellite is therefore
given by:

U= T sinBey+ T cosa sinfeg + T cosa cosBe. (29)
The equations of motion of the satellite can be written adev:
o . T
F—r6%sif@o—r¢? = - cosa cosp (30a)
rsingd +2r@sin@+ 2rosing = asma cosf (30b)
- - o T .
ro+2rp—ro-sinpcosyp = EsmB (30c)

Let us denote by, v andw the components of velocity along the unit vectersey andey. Also,
let us now denote the state vector of the satellitexiy = (r(t), 8(t), @(t),u(t), v(t),w(t), m(t)).
The equations of motion can be written in the following stspace form:

F=u, (31a)
%
"~ rsing’ (31b)
Q= V7V (31c)
2
. uooVHw T
- _r — 1
u r2+ . +mcosacosB (31d)
. t T .
V= _W+_S|nacosﬁ (316)
r m
_ 2
o “uwtvicotg T . (31)
r m
. T
=—— 31
m=—— (319)

3.3. Geomagnetically Trapped Radiation

Let us consider the magnetic field (or flux density) of the E#wtbe represented by the field of a
magnetic dipole centered with the Earth and with an axislighta the Earth’s spin axis that passes
through its center of mass. In spherical coordinates, thgnests field can be written a3]]:

B = Brer + Bgyeyp + Bgéy, (32)



where the three components can be written as

2B B
Br:— 0 COSIp, B(p:—io

(r/R? (r/R)?
wheremis the magnetic dipole moment of Earfis the radius of the Eartl§ is the longitudegp
is the colatitude an@ is the equatorial value of geomagnetic flux density

Hom

sing, Bg =0, (33)

The magnitude of the geomagnetic field for a spin axis alighipdle can be written as
Bom 1/2
B= 14 3cog : 35
IRY ( @) (35)

In terms of a local vertical reference frame, the magnetid frector has an angle of declinatién
and an angle of inclinatioh The declination of the field line is given by

Be

tanD = _B_(p’ (36)
which is 0 for the spin axis aligned dipole. The inclinatidritee field line is given by
tanl = 5 = —2cote. (37)
By
The geometry of the field line can be expressed as
dr
tanl = ———. 38
an e (38)

Substituting equatio({) and integrating, we obtain from equati@8) the following equation for
the magnetic field lines:
r=LRsirf @ (39)

in terms of parametdr which is the distance to the field line @t= 17/2, that is, at the equator.
Substituting equatioBQ) in (35), we have the relationship betweBrandL.:

Bo ( 3r ) 1/2
B=——(4-— : 40
(r/R? LR o)
Mcllwain’s (B,L) coordinate systen2p] is used to conveniently compute properties of the trapped

charged particles because it is a means of converting tlee-timensional space into a two-
dimensional space based on the fact that the dipole fieldasiyagymmetric.

Charged particles, primarily electrons and protons, ajeped in the Earth’s magnetosphere orig-
inate from solar wind and the decay of neutrons produced éyrteractions of galactic cosmic
rays with the Earth’s atmosphere. Typical models of thepteajradiation for the Earth are the AP
model for protons and AE model for electrons developed by NAZ3]. The model gives trapped
omnidirectional proton and electron fluxes (particles p@t area per unit time) of energies be-
tween 0.1 and 400 MeV between L-shell values of 1.15 and 6& famction of geomagnetic
coordinates B and L. At any point on the satellite trajectovg compute the geomagnetic coor-
dinates and use a look-up table with AP8 and AE8 models tarobta proton and electron flux.
The total radiation fluence is the radiation flux integratedrdgime as given by Ed¢l.



4. Solution Methodology

In this section, we discuss the methodology we follow fowsw) the optimal control problem. We
follow a direct optimization approach which is known to bersoobust numerically in terms of
initial guesses and solution convergen24][ We extend our developed solver in referentd by
incorporating radiation model within the optimizationrirawork.

4.1. Direct Transcription and Collocation

In order to solve the optimization problem for each scenavmuse a direct optimization scheme.
The scheme converts the trajectory optimization problemparameter optimization problem us-
ing direct transcription and collocation, and then uses a-Noear Programming (NLP) problem
solver (IPOPT 25], LOQO [26]) to determine the solution. The time variable is discredizising

a non-dimensional time-like variabteand final timet is also a parameter in the problem:

0=T1<T<...<Th=1, ty=ts1x. (41)

The statex and controlu variables of a continuous trajectory are also discretizasketd on the
selected time-grid:

Xk = X(t), Uk = U(tk). (42)
Using a trapezoidal discretization scheme, we can appteithe dynamic constraints as follows:
h
Q= X1 =X 7 [F (Xce 1, Uers) +F (5, U] (43)

Note that we have a set of defects corresponding to each oédhations of motion given in
(31), thatis,Z, = (", 2°,2%,2%,2",7"), where the superscript indicates the equation of motion

that the defect corresponds to. If these defects are driveero, then the dynamic constraints
(equations of motion) will hold approximately at each of segments created by the discretization
process. The se{kl,xz, ..., Xp;Ug, Uo, ..., Un;tf) represents the decision variables of the resulting
parameter optimization problem. During the optimizatiomgess (using a NLP solver), the defects
are driven to zero. Using the discretization scheme, we Isarverite down the objective function
(radiation fluence) as:

T
[EEY
NI -

c= (D (ri, B @) + P (et B 1, Ger1)) (e — t) (44)

=~
Il
[N

Instead of using a trapezoidal discretization, we may useveeraccurate (but computationally
more complex) Hermite-Simpson trapezoidal discretizetboapproximate the dynamic constraints.
To this end, we additionally consider the mid-point of thgreentsu,, and set up the defects as:

h
= Xur1 — Xk — gk [f (Xk4-1, Ukr1) + 4F (Xmks Umk) + T (Xk, Uk)] (45)

where the values of the state variables at the mid-pointgrheats are given by

1 h
Xk = 5 [Xkt1+XK] + §k [F (X, Uk) = F (X1, Uk 1)) (46)



When we use the Hermite-Simpson discretization schemegahtol variables evaluated at the
mid-point of the segments also become a part of the decisioables:

(X1,X2, - ., Xn; U1, U2, ..., Un; Umt, U, - - ., Umn; tf ) -

4.2. NLP Solvers

We have set up two independent methods of solving the NLRceded with the parametric opti-
mization problem. First, we set up the NLP using Matlab arelthe solver IPOPT (acronym
for “Interior Point Optimizer”) to obtain the optimal trajeory. Second, we set up the model of
the optimization problem in AMPLZ8] (acronym for “A Mathematical Programming Language”)
and use LOQO to solve the problem. Both NLP solvers IPOPT &QQ are interior-point based
methods and are therefore suitable for large-scale n@adliaptimization. Also, both IPOPT and
LOQO can take advantage of the sparsity of the Jacobian assidtematrices to efficiently solve
the problem. For the Matlab-IPOPT interface we provide @iakxpressions for the first-order
and second-order derivatives for the associated NLP; ®ARPL-LOQO interface, these are
computed numerically by the solvers. The lack of guarantédise global optimality of a gener-
ated solution of the NLP justifies the use of two numericallhmnds to compute solutions for the
same problem. Considering a Hermite-Simpson discretizathe first-order derivative informa-
tion includes the gradient of the objective function

Jc dc odc Odc
fOc= iy 47
¢ (dxk’duk’dumk’dtf) “47)

and the Jacobian of the constraints:

(04 94 94 9
k= (0xk’ ou’ AUy’ Ott ) ' (48)
The second-order derivative information includes comparteof the Hessian matrix:
H = o% DZC—l- ZAKDZZ;(, (49)
k

which usually is a sparse matrix. For a trapezoidal distagittn scheme, for which control vari-
ables at the mid-points of the segments are not present ifotinellation, we use the same equa-
tions without the terms fouy.

We illustrate the computation of Jacobian and Hessian witlexample by considering the de-
fect corresponding to the first equation of moti@®9 evaluated at nodk. Using @5) for the
trapezoidal discretization, the defect can be written as:

h
Ek (Uk+ Ukp1) -

“IPOPT requires a sparse symmetric linear solver for itsatfmer, we use the Harwell Subroutine Library (HSL)
functions 7] MA27 and MC19 for the purpose.

{g =Tp1—Tk—




The non-zero partial derivatives for this defect can thewbgen as:

o, . oy . 9L h 9L W 0L At
O U T du T 2 duer 20 ay 2 Ul

whereAt equals the difference between the values of the time-likiabke T at nodek andk + 1.
Note that for an uniform distribution of node&r = 1/n. Also, note that partial derivatives of
¢; with respect to all other decision variables is zero. Th@sderder partial derivatives can be
determined directly from the first-order derivatives. Ha present case, the non-zero second-order
derivatives are given by:
0%, ATt 0%, At

otsdu, 27 Otfdur 0 2
As before, remaining second-order derivatives are zerdherdefect{;. Similarly, all of the
first-order and second-order derivatives are computedh®mrémaining set of defects given by
29.2%.2",2",7". Note that in the absence of analytic expressions for thiatiad fluence terms,
O%c is evaluated numerically. The evaluation of the first-orderivatives completes the compu-
tation of the Jacobian, while the evaluation of the secomigoderivatives completes the Hessian
computation. The parameteog and Ay are internally generated by IPOPT during the course of
executing the NLP.

5. Numerical Examples

In this section, we present solutions obtained using ouhattlogy for low-thrust orbit-raising

from LEO to the GEO. We also compare the obtained solutiotis the minimum-time solutions

for both planar and non-planar orbit-raising maneuvers mimimum time solutions are derived
using the tool developed in Refl4].

To this end, let us first consider the orbit-raising problemtfansferring a satellite from an equato-
rial circular LEO orbit of radius 500 km to the GEO. Using agarof values for the engine thrust
(0.3 N to 10 N) in order to cover a variety of thrusters from B#T-4000 to the MPD thrusters,
we compute the minimum-time solutions and use our developedel to compute the radiation
fluence experienced by the satellite during the orbit-ngishaneuver. The variation of radiation
fluence is depicted in Fig. 3. When restricted to motion withplane, the satellite spirals through
similar radiation intensities while performing the orbgiising maneuver and the radiation fluence
is directly correlated with the time that the satellite sgeenvithin the Van Allen belts. Since
thrusters offering lower thrust would mean a slower orhising maneuver, the radiation fluence
experienced by the satellite increases as the engine theastases. Hence, it is fairly straightfor-
ward to see that the radiation effects would be the most pnoced for Hall and lon thrusters, in
fact several times compared to say a MPD thruster.

Let us now consider an example of a three-dimensional teamnsrder to illustrate the impact of
radiation as the satellite performs plane changes. We dendifferent inclinations of the initial
injection orbit of the satellite and compute minimum-tine@usions from the injection orbit to
the GEO. We then compute the radiation fluence experiencellebgatellite during the transfer.
Figure 4 depicts the variation of the radiation fluence eigopered by the satellite with the change
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Figure 3. Radiation fluence experienced by satellites dyslanar minimum-time orbit-raising.

in inclination of the injection orbit. As the inclination ahges from O degree, the transfer time
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Figure 4. Radiation fluence experienced by satellites dummimum-time orbit-raising from
inclined LEO injection orbit to the GEO.

increases, but the satellite traverses regions of redutedsities of the Van Allen belts. The
total radiation fluence captures the effect of both the camgdactors of transfer time and the
radiaiton flux. Figure 4 shows that the net effect of the tweides decreases the radiation fluence
if we launch a satellite from a higher inclination orbit. Gngeresting point to note in this variation
is that radiation fluence attains a maximum away from O degesause of the tilt in the Earth’s
magnetic axis with respect to its rotational axis.
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Figure 5. LEO-GEO minimum radiation fluence trajectory.

Let us now consider trajectories that incur minimum radiatiluence experienced by a satellite
during orbit-raising maneuver. For the case when the gatstarts from an equatorial LEO orbit,
we allow the solution to be non-planar and trade off time&wdrse regions of lower radiation flux.
However, the optimal solution determined by the solver seatially the minimum-time solution.
Performing plane changes may reduce the radiation flux eqped by the satellite; however, it
also increases the transfer time and trading off time doepnowe to be beneficial for the planar
injection orbit case. The minimum radiation fluence can harée different from the minimum
time solution for an inclined injection orbit case, as we destrate with the following example.

Let the satellite initiates a transfer from a LEO circulabiothat is inclined at an angle on 15
degrees to the equatorial plane. We also consider that teiteaemploys an electric thruster
with thrust 5 N and specific impulse of 2000 sec. We non-dinwgradize the different variables as
follows: 1 LU represents the radius of the initial orbit tial mass is considered to be 1 Mjs 1
so that the orbital velocity in the injection orbit is 1 aneé time period is 2Zrunits. We provide the
minimum-time solution as an initial guess to our develop#des. Solving the minimum radiation
problem with this initial guess yields a trajectory thatune 39% less radiation fluence than the
minimum-time trajectory, at the cost of a 10% increase intthesfer time. The optimal trajectory
is depicted in Fig. 5 and the variation of the different tatéthe satellite corresponding to the
optimal trajectory is depicted in Fig. 6.

6. Conclusions

In this paper, we develop a formulation to determine the mumn radiation fluence incurred by a
satellite during electric orbit-raising to the Geostatipnorbit. The optimal thrusting scheme for
this problem is a bang-bang control and we prove the norteaads of a singular solution for such
a problem. We use the bang-bang control scheme as a guebs fworitrol variables in the direct
optimization solver that incorporates radiation flux imf@tion (based on NASA AP8 and AES8
models). We provide the minimum time solutions as initiaégses to our solver. We consider
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Figure 6. Minimum radiation fluence solution.

planar and non-planar orbit-raising examples from LEO tdOGE/hen the satellite starts from
an equatorial LEO orbit, we find that optimizing radiationeihce is the same as optimizing time.
However, when the satellite starts from an inclined LEO tprihie minimum radiation solution
differs from the minimum time solution. In the future, we iduse the developed tool to analyze a
variety of orbit-raising scenarios, inclusion of eclipsastraints and energy storage options within
the optimization framework in order to determine the traffs-among mass, time and radiation
fluence during electric orbit-raising. Future work will alsonsider the extension of the tool to
determine trajectories to minimize material-specific aidn dose during electric orbit-raising.
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