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ABSTRACT 

 
The objective of this paper is to analyze the stability of the rotational motion of a symmetrical 
spacecraft (with two principal moments of inertia equal), in a circular orbit. The  equilibrium 
points and regions of stability are established when components of the gravity gradient torque 
acting on the spacecraft are included in the equations of rotational motion. Andoyer’s variables 
are used to describe the rotational motion of the satellite in order to facilitate the application of 
stability methods for Hamiltonian systems. The Andoyer’s canonical variables are represented by 
generalized moments ( , , ) and by generalized coordinates (, , ). The angular 
variables   are angles related to the satellite system Oxyz (with axes parallel to the 
spacecraft’s principal axes of inertia) and equatorial system OXYZ (with axes parallel to the axis 
of the Earth's equatorial system). The metrics variables , ,  are defined as:  is the 
magnitude of the  rotation angular momentum ,  and  are, respectively, the projection of 

  on the z-axis’s principal axis and projection  on the Z-equatorial axis. 
 
The nonlinear stability of the equilibrium points of the rotational motion is analyzed here by the 
Kovalev-Savchenko theorem, which ensures that the motion is Liapunov stable if the following 
conditions are satisfied: 

i. The eigenvalues of the reduced linear system are pure imaginary  e ; 
ii.   is valid for all  and  integer satisfying the inequality  

       

iii.  The Arnold determinant , where  are the 
coefficients of the normal 4th order Hamiltonian. 

Then it is necessary to reduce the Hamiltonian in its normal form up to the fourth order by means 
of canonical transformations around the equilibrium points.  
 



The equilibrium points are found from the equations of motion described by the Andoyer 
variables. With the application of the Kovalev-Savchenko theorem, it is possible to verify if they 
remain stable under the influence of the terms of higher order of the normal Hamiltonian. 
 
In this paper, numerical simulation were made for two hypothetical groups of artificial satellites, 
which ones have orbital data and physics characteristics similar to real satellites. In comparison 
with previous works, the results show a greater number of equilibrium points and an 
optimization in the algorithm to determine the normal form and stability analysis. 
 
Several stable equilibrium points were determined and regions around these points have been 
established by variations in the orbital inclination and in the spacecraft principal moment of 
inertia. There were found 60 equilibrium points for the small size satellite (with some data 
similar to First Brazilian Data Collecting Satellite) with 10 Liapunov stable points. For the  
medium size satellite (with some data similar to the  American satellite PEGAUS) it was found 
60 equilibrium points, but with 2 Liapunov stable points. In both cases the fail was in the first 
condition of the Kovalev-Savchenko theorem. 
 
The results for the stable regions show that in the linear stability there is a separation between the 
stable and unstable region when the spacecraft principal moments of inertia are equals. It is also 
possible to observe that the rotational motion is linearly unstable for the small satellite in a low 
orbital inclination. For considered equilibrium points, the second condition is valid for all values 
of k1 and k2 for any orbital inclination for the medium satellite but for the small satellite it is 
necessary an orbital  inclination bigger than 0.1651 rad. In the nonlinear analysis it was possible 
to verify that the linear stability doesn’t guaranty the non-linear stability and the stable regions 
are bigger for the small satellite. For the medium satellite there are two values for the orbital 
inclination in which the Arnold determinant is equal to zero, it means that the rotational motion 
is nonlinear unstable.  For the small satellite there is nonlinear stability for orbital inclination 
bigger than 0.1651 rad. 
 
Then the present analysis can directly contribute in the maintenance  of the spacecraft’s attitude. 
Once the regions of stability are known for the rotational motion, a smaller number of maneuvers 
to maintain the desired attitude can be accomplished. In this case, a fuel economy can be 
generated to the satellite with propulsion systems control, increasing the spacecraft ‘lifetime. 
 
 
 
 
 

 
 


