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Abstract: A probabilistic admissible-region analysis is proposedtfack initiation using angles-
only measurements. Given three observations and knownrsstasgistics, the unscented trans-
form (UT) is used to map the uncertainty in the measuremetesfo uncertainty in the orbital
coordinates space using Gauss’ method. For a given regiarhital space, the probability that
the computed uncertain candidate orbit is admissible is tthefined. This definition provides a
probabilistically-rigorous approach to assessing the egto which the initiated track is admissi-
ble. However, the UT approach to track initiation assumeg tha probability density functions
in the measurement and orbital spaces are Gaussian. TherefdMonte Carlo (MC) analysis is
used to map the uncertainty cloud in the measurement spdhe fall orbital space. This cloud is
then used in order to visualize the true uncertainty cloudaHy, the results from the probabilistic
admissibility analysis are compared to those of the deteistic analysis, and both against the
MC simulation. The results show that, while in some casesermatistic analysis may result in
rejecting (respectively, accepting) the hypothesis thatttack is admissible, the computed prob-
ability of admissibility may be relatively high (respeetiy, low), indicating that the deterministic
decision may be erroneous.
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Transform, Monte Carlo Method

1. Introduction

As new optical sensors come online and more and more optisalreations become available for
space objects previously too small or too far away to detbetspace surveillance community is
presented with the computationally challenging problengerierating initial orbit solutions and
determining association and admissibility for a large namf short-arc line-of-sight (angles-
only) observations. Track association refers to the canaegetermining whether or not a given
subset of the angles-only observations was generated byathe space object. Admissibility
refers to the concept of determining whether or not an uageandidate orbit lies within a
specified subspace, referred to as the constrained adhaissgion (CAR) [l-16], of the space of
all possible orbits. In this paper, we deal primarily witle thatter problem and apply probabilistic
techniques to rigorously determining the admissibilityiotertain candidate orbits.

The admissible region is a concept first introduced by Miktral. [1, 2] to deal with the problem
of identifying asteroids based on very short arc obseraati®pecifically, they referred to a region
in the plane of possible ranges and range-rates defining tradses for which a given line-of-sight
observation produces an orbit solution that satisfiesicestderia. This concept has been extended
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by the space situational awareness (SSA) commuB#§], 13,14, 16] to deal with the problem
of tracking space objects in Earth orbit, for which the CARersfto a region in the range, range-
rate plane which produces orbit solutions with orbit eletaeatisfying some specified bounds. In
previous work, Schumacher, Wilkins, and Roscb2 15] extended this concept to include regions
in the range, range plane satisfying orbit element boundsdios of observations. In this paper, we
refer to the CAR not specifically in terms of range, range-oaiteange, range, but more generally
as a subspace of all possible orbit solutions for a given Sebservations, independent of the
coordinate system in which they are specified (similar topgiaection concept described id][
and [10]).

In order to perform any kind of probability-based analysighwhese orbit solutions, we require an
accurate representation of their uncertainty. Properaratterizing the uncertainty will allow us
to more efficiently deal with large sets of sparse data by lemathe use of rigorous probabilistic
techniques to, for example, asses probability of admigsilpperform data association, determine
collision probabilities, or initialize a Bayesian estinmatischeme. Unlike short-arc line-of-sight
observations, optical observations of actively trackegtspbjects will contain long arcs of data,
for which uncertainty is usually assumed to be Gaussian hednitial covariance is obtained
from the error statistics of the differential correctiog@iithm used to fit the data. This paper
builds on recent work on uncertainty propagation in initigdit determination (IOD) and presents
a probabilistic methodology for assessing the probabditadmissibility, which contrasts with
deterministic approaches that provide binary admissitddmissible type answers.

The subject of IOD dates back to the time of Gauss and Lamb@raphd has more recently been
revisited by Gooding18, 19|, Karimi and Mortari R0], and others21]. Uncertainty propagation
has been investigated in detail in SSA research, partigutahow it applies to collision probabil-
ity computation and Bayesian estimation. Junkins, Akelfa Alfriend [22] studied the general
problem of nonlinear error propagation in orbital mecharmiod showed that the choice of coordi-
nates has a significant impact on how fast errors become @ossgn. Fujimoto, Scheeres, and
Alfriend [23] developed analytical techniques to propagate unceytainthe two-body problem
using the concept of state transition tensors. Horwood auiePR4] discussed the use of the
Gauss von Mises distribution to better capture the evatutibthe orbit uncertainty in angular
coordinates. Several autho25F27] have investigated the use of Gaussian mixture models for un
certainty propagation and Bayesian estimation. Howevergthas been very little attention paid
in any of this research to the determination of prior ungetyao initialize these methods.

Characterization of the IOD uncertainty from sparse optiedh requires relating astrometric mea-
surement errors into a probability distribution in the odiate space. DeMars et a2g deter-
mined first-order state uncertainties by approximatingmeeal covariance through the unscented
transform (UT) of the measurement uncertainties. Ga2@rstudied the impact of different mea-
surement statistics and model assumptions on uncertaidtjusure probability computations for
collision prediction. In pursuing this investigation fqyace surveillance, we take note of the sim-
ilarities between this problem and the asteroid trackimgpfam investigated by Muinonen and
Bowell [30], Virtanen, Muinonen, and Bowell3[l] and authors such as Milani, Valsecchia, La
Spina, Sansaturio, and Chesl&2{35]. Carpino, Milani, and Chesleysp] studied error statistics
of optical observations of asteroids, specifically, anddq8i7] analyzed uncertainty in the orbits
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of extrasolar planets using Monte Carlo (MC) techniques.

Directly related to the present paper is the work of Weism@eh dah B8] and Binz and Healy
[39,40]. In [38], the authors apply a transformation of variables techaitpumap measurement
space uncertainty into the angle-rate, angle acceleratamge and range-rate spaces using the
system dynamics. I8P, 40], the authors use Gauss’ angles-only method combined twathJT

to empirically obtain the probability density function fpéh the orbital space. Unlike the purely
probabilistic approach we pursue in the present paper, Bidz+ealy employ the UT by mixing
deterministic IOD criteria within a probabilistic frameviko

In this paper we pursue a consistent and probabilisticadlyrous approach to obtaining a statis-
tical characterization of the uncertainty of the 10D (usithg UT as well as the MC method) and
assessing the probability of admissibility of the uncertzandidate orbit. The paper is organized
as follows: in Sectior2. we first state the general angles-only IOD problem and summéne
Gauss’ method. In Sectidhl.we describe how uncertainty can be mapped from the measaoteme
space to orbital space using the UT and MC methods. This themsaus to define the probability
of admissibility that we discuss in Secti@2. Finally, in Section3. we demonstrate the main
result of the paper using a numerically simulated example.

2. Probabilistic Angles-Only Initial Orbit Determination
2.1. Uncertainty Mapping from Measurement Spaceto Orbital Space

Letz = (aj, &) be the set of right ascension and declination measureminseanstant;. Given
three distinct measuremertts- (23,2, z3) taken at, ty, andts, Gauss’ method produces a candi-
date orbit described by the six-dimensional state G(z), whereG(-) is the function that maps a
set of three angles-only measurements to orbital spacedicgdo the Gauss IOD solution method.
For the details of Gauss’ method, see, for exam(ld, ¢r [41]. The state may be specified in or-
bital elements, position-velocity coordinates, etc. @Giwmunds on the orbital coordinates, the
CAR is constructed. These bounds may come from physical i@ontst such as the exclusion of
orbits that intersect the Earth’s surface, or geometricstramts imposed by the analyst on semi-
major axis, eccentricity or inclinatioif3,5-8,12,15,16]. If a reconstructed orbit does not belong
to the CAR, the orbit is considered inadmissible.

In the proposed probabilistic approach, we use the 4 {o map the statistics of the measure-
ments, described by the pdf;(z), to statistics of the candidate orbit from the 10D solutide;
scribed by the pdfo(x). The pdffo(x) is then a UT Gaussian approximation of the unknown true
non-Gaussian pdf denoted thyg(x). The measurement statistics are assumed to be Gaussian with
meany, = z and covariance (assuming that the three measurementsasécllly independent)

PL 0 O
P,=| 0 P2 0 |, (1)
0 0 P

whereP!, is the 2x 2 measurement covariance matrix at each timén other words,fy(z) =
fq(z; 4,,P;). These measurement statistics are used to generate a sgmef gointsZj, j =
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1,...,13, in the measurement space (there are-23x 6+ 1 sigma points since the measurement
space has a dimension of 6). Each one of these measuremerat g@nts is then fed into the
Gauss 10D algorithm to produce a set of 13 sigma points in thiad space:

Xj=G(Zj), j=1,...,13 (2)

These sigma points can then be used to obtain the transformead and covariance using the UT
13
M=) WX, 3)
j=1

and

13
Px = ZWCJ(XJ — Hy) (X _”x)Ta (4)
=1

whereWSj andWCj, j=1,...,13, are the UT’s sigma point and covariance weights, resetyt
The resulting pdf is Gaussian with megg and covarianc®y: fo(x) = fg(X; Uy, Px).

To visualize the true transformed distribution we perfortl@ analysis. As before, we assume
that the measurement process is Gaussian with distribdition) = fy(z; 4, P;). We generaten
samplesZ;, j = 1,...,m, from fy and obtain a set of mapped poiXs = G(Zj), j =1,...,m,

in the orbital space. These points can then be used to asuthle true transformed distribution
fo(X).

Remark. We wish to highlight the main difference between the UT pdace we propose in this
paper and the one developed by Binz and HealB$40]. The approach proposed in this paper is
a rigorous implementation of the UT in the following senshehonlinear mappinG(-) is a map
from the entire three-measurement space to the orbitakspen isnot a map of an individual
measuremert;, i = 1,2,3, to the orbital space. Hence, the sigma points should hendfiem

the distribution in the six-dimensional measurement spkfmed with the global measurement
variablez and not from the individual distributions defined on the vidisal measurement variables
zi,i=123. Theresultis a pdfo(x) with a mean and covariance that are computed using the
UT’s standard formulation. Furthermore, determining veetor not an uncertain 10D solution
is admissible should be based on probabilistic criterid tbsult in an assessment of the degree
of admissibility of the uncertain 10D solution. Such a prbiiatic measure, the probability of
admissibility, will be discussed in the next section. 89,[40], on the other hand, each individual
measuremert; at timet;, i = 1,2, 3, is used to generate a set of 5 sigma points-&x 2+ 1
due to the fact that the measurement space is two-dimemsassociated with the measurement.
For each combination of sigma points, one from each of thet8 @lesigma points, the 10D
problem is solved. This results in>X65 x 5 = 125 combinations. Combinations that result in
inadmissible solutions are discarded. The remaining asibiés ones are averaged using a re-
weighted version of the sigma point weights. The final medunevaf the IOD solutions is then
tested for admissibility. The rationale for the overall euxprobabilistic/deterministic approach
seems to be a béd hoc



2.2. Probability of Admissibility

Given fo(x), the probability of admissibilitypa, over a given CARQ is defined as

oA — /Q fo(X)dx. 5)

Even for a Gaussian pdi(x) with a hyper-cubic CARQ, the above integral does not have an
analytic expression (except for the trivial one-dimenaiarase). Hence, one has to resort to nu-
merical techniques to obtajn. In this paper we use theorbital space pointX; to approximate
the integral:

1
pa= [ fobodx= [ ha(x foldx= th(X 0, (6)
wherehgq(x) is an indicator function that is equal to 1xfc Q and zero otherwise, and where the

second integral is over the entire state space. Since tbetig modeling of the CAR is not the
main focus in this paper, in the simulations we assumehathyper-cubic.

m
1

The quantitypa can then be used to assess the relative degree of admigsibithe uncertain
candidate orbit solution. The limiting cases guge= 1, which corresponds to the IOD solution
being admissible with 100% certainty, apd = 0, which corresponds to the 10D solution being
inadmissible with 100% certainty. If it is determined thia¢ tsolution is admissible (by, say, re-
quiring thatpa be larger than a given threshold valpg or some other decision riig then the
mean valueu, will be taken as the maximum likely solution to the 10D prable The primary
merit of our proposed approach is that it is completely pbalstic, by virtue of usingpa as the
criterion for assessing the degree of admissibility of B®Isolution as opposed to employing a
non-rigorous mixed deterministic/probabilistic approadV/e expect that the statistically rigorous
screening criteria for orbit hypotheses, which we haveied here, are less likely to incorrectly
reject/accept viable orbit hypotheses than areahiiocscreening criteria.

Remark. The problem of how best to sample the CAR, and indeed the memasuntespace, is
a challenging problem in its own right. The sampling methalll mave a direct impact on the
computation ofpa and, if not performed properly, will lead to inaccurate fesuAs mentioned,
in the present paper, we use a naive approach of taking rapdoits from a uniform distribution
overQ to perform the MC integration in order to generate repredesmt results for the numerical
example. A detailed analysis of the sampling problem, dngvain the work of Tommei et al3]
and Siminski et al.13,14], will be the subject of future work.

1Such an admissibility decision rule will then be amenabkepoobabilistic analysis that quantifies the probabilities
of errors of Type | (false positive, that is accepting adibitity when the 10D solution is indeed inadmissible) and
errors of Type Il (false negative, that is accepting inadibifity when the 10D solution is indeed admissible). Inlsuc
an analysis, the optimal choice of a threshpjdcan be derived. However, this is beyond the scope of the prese
paper. We are currently investigating the problem of opltide&ision criteria.



3. Simulation Results

In this section we provide a numerical example that dematesrthe above ideas. We consider
an orbit with the orbital element values shown in Tafat the initial simulation time. About 36
minutes from the start of the simulation, the first measurdrigereceived from the object. Once
three angles-only measurements are collected, the I0Ditdgois executed on the collected data.
The measurement noise is assumed to be Gaussian with amastuidard deviation of 1 arcsec
for both right ascension and declination.

The true orbital state &t (time of the second measurement) is given by the followingjtpm and
velocity:

True Position(km) : (—2319136 — 10 0577426 5 4968366
True Velocity(km/s) : (2.7737, 0.7333 4.8581).

In Fig. 1 (for position) and Fig2 (for semimajor axis vs. eccentricity), the true state isespnted
by a solid square. The deterministic IOD algorithm was rurtt@ameasured data and the orbit
was determined to have the following position and velocity:

Deterministic IOD Positiorfkm) : (—88.2427, —9 9274580 5 3080606)
Deterministic IOD Velocity(km/s) : (2.6675 0.6741, 4.6094).

The deterministic 10D solution is represented by the greesymbol. The error from this analysis
was found to 2.35% of the true value for position and 4.91%é&bocity.

The UT approach described in Sectidrwas then implemented. The UT mean in the figures is
represented by the blue circle and the 3-sigma ellipse resepted by the blue line (or surface in
Fig. 1(a). The UT mean position and velocity were found to be:

UT Mean Positior(km) : (—1005409 —9 9419904 5 3260415
UT Mean Velocity(km/s) : (2.6754 0.6751, 4.6265).

The error from this analysis was found to be 2.13% of the tialaesfor position and 4.58% for
velocity. Note that the UT solution is slightly more accer#itan the deterministic IOD solution.

Finally, the MC approach was implemented using 2000 samfles MC points are represented
by gray points in the figures. These form the MC-generatedrtaiogy cloud. The MC mean is

Table 1. Orbital elements of thetrue or bit.

Orbital Element Value
Semimajor Axis (km) 10571.4
Eccentricity 0.3
Inclination (deg) 63.4
Perigee (deg) -90.0
Right Ascension of the Ascending Node (deg)252.8
Initial True Anomaly (deg) 0.0
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represented by the red symbol. The MC mean position and velocity were found to be

MC Mean Positionkm) : (—97.0272 —9 9386943 5 3217201)
MC Mean Velocity(km/s) : (2.6708 0.6724 4.6247).

The error from this analysis was found to 2.19% of the trueiedbr position and 4.65% for
velocity. Note that the MC solution is slightly more accer#itan the deterministic 10D solution,
but the UT solution outperforms the MC and deterministicisohs. Note that this will not always
be necessarily true. It is expected, for example, that theddiGtion should outperform the UT
solution when more MC points are used.

Next, we compute the probability of association. For theesatksimplicity, we assume that the
CAR is a hyper-rectangle in the space of orbital elements. I3Wer and upper bounds on the
elements are shown in Tah. The bounds are shown in semimajor axis/eccentricity speleig. 2
using a dashed rectangle. We used MC integration,@gwith 18 million samples to compute the
probability of association. As can be seen in Rghe deterministic, UT (defined by its mean) and
MC (defined by its mean) solutions lie outside the CAR. In a pudelterministic framework, this
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would then lead to rejecting the admissibility of the salati However, the computed value pf

is 0.1913, which is significantly non-zero, suggesting thatsolution may indeed be admissible.
This example serves to show that binary admissible/inagibies deterministic 10D tests fail to
capture the uncertainty involved in such decisions. A mosiach as the probability of admissibility
can be used in a hypothesis testing framework to rigorouslyenadmissibility decisions.

Table 2. CAR boundsin orbital elements.

Orbital Element Lower Bound | Upper Bound
Semimajor Axis (km) 9740.0 11100.0
Eccentricity 0.28 0.36
Inclination (deg) 57.0 70.0
Perigee (deg) -99.0 -81.0
Right Ascension of the Ascending Node (deg) 242.0 263.0
Initial True Anomaly (deg) 110.0 135.0

4. Conclusion

In this paper, we proposed a probabilistically consistestented transform (UT) based approach
to quantify the uncertainty in Gauss’ method for anglestanitial orbit determination (IOD).
In addition, we introduced the notion of probability of adsibility over a specified constrained
admissible region (CAR). We presented a numerical examplernmwdstrate the approach and the
efficacy of the notion of the probability of admissibility. ssshown in the selected example, the



main conclusion of the paper is that deterministtthocdecision making can lead to erroneous
admissibility decisions. The statistically rigorous sarmg criterion proposed in this paper is less
likely to incorrectly reject/accept viable orbit hypotlessthan are angd hocscreening criteria.
Currently, we are investigating statistically optimal atefor the thresholgj (i.e., decision rule)

for the analyst to use in order to minimize erroneous adimiggidecisions. We are also exploring
probabilistic information-based techniques for meas@m@rio-measurement and measurement-to-
track association techniques in angles-only and otherreaten scenarios.
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