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Abstract: A probabilistic admissible-region analysis is proposed for track initiation using angles-
only measurements. Given three observations and known sensor statistics, the unscented trans-
form (UT) is used to map the uncertainty in the measurement space to uncertainty in the orbital
coordinates space using Gauss’ method. For a given region inorbital space, the probability that
the computed uncertain candidate orbit is admissible is then defined. This definition provides a
probabilistically-rigorous approach to assessing the degree to which the initiated track is admissi-
ble. However, the UT approach to track initiation assumes that the probability density functions
in the measurement and orbital spaces are Gaussian. Therefore, a Monte Carlo (MC) analysis is
used to map the uncertainty cloud in the measurement space tothe full orbital space. This cloud is
then used in order to visualize the true uncertainty cloud. Finally, the results from the probabilistic
admissibility analysis are compared to those of the deterministic analysis, and both against the
MC simulation. The results show that, while in some cases a deterministic analysis may result in
rejecting (respectively, accepting) the hypothesis that the track is admissible, the computed prob-
ability of admissibility may be relatively high (respectively, low), indicating that the deterministic
decision may be erroneous.

Keywords: Initial Orbit Determination, Probabilistic Analysis, Uncertainty Mapping, Unscented
Transform, Monte Carlo Method

1. Introduction

As new optical sensors come online and more and more optical observations become available for
space objects previously too small or too far away to detect,the space surveillance community is
presented with the computationally challenging problem ofgenerating initial orbit solutions and
determining association and admissibility for a large number of short-arc line-of-sight (angles-
only) observations. Track association refers to the concept of determining whether or not a given
subset of the angles-only observations was generated by thesame space object. Admissibility
refers to the concept of determining whether or not an uncertain candidate orbit lies within a
specified subspace, referred to as the constrained admissible region (CAR) [1–16], of the space of
all possible orbits. In this paper, we deal primarily with the latter problem and apply probabilistic
techniques to rigorously determining the admissibility ofuncertain candidate orbits.

The admissible region is a concept first introduced by Milaniet al. [1,2] to deal with the problem
of identifying asteroids based on very short arc observations. Specifically, they referred to a region
in the plane of possible ranges and range-rates defining those values for which a given line-of-sight
observation produces an orbit solution that satisfies certain criteria. This concept has been extended
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by the space situational awareness (SSA) community [3–11, 13, 14, 16] to deal with the problem
of tracking space objects in Earth orbit, for which the CAR refers to a region in the range, range-
rate plane which produces orbit solutions with orbit elements satisfying some specified bounds. In
previous work, Schumacher, Wilkins, and Roscoe [12,15] extended this concept to include regions
in the range, range plane satisfying orbit element bounds for pairs of observations. In this paper, we
refer to the CAR not specifically in terms of range, range-rateor range, range, but more generally
as a subspace of all possible orbit solutions for a given set of observations, independent of the
coordinate system in which they are specified (similar to theprojection concept described in [4]
and [10]).

In order to perform any kind of probability-based analysis with these orbit solutions, we require an
accurate representation of their uncertainty. Properly characterizing the uncertainty will allow us
to more efficiently deal with large sets of sparse data by enabling the use of rigorous probabilistic
techniques to, for example, asses probability of admissibility, perform data association, determine
collision probabilities, or initialize a Bayesian estimation scheme. Unlike short-arc line-of-sight
observations, optical observations of actively tracked space objects will contain long arcs of data,
for which uncertainty is usually assumed to be Gaussian and the initial covariance is obtained
from the error statistics of the differential correction algorithm used to fit the data. This paper
builds on recent work on uncertainty propagation in initialorbit determination (IOD) and presents
a probabilistic methodology for assessing the probabilityof admissibility, which contrasts with
deterministic approaches that provide binary admissible/inadmissible type answers.

The subject of IOD dates back to the time of Gauss and Lambert [17] and has more recently been
revisited by Gooding [18,19], Karimi and Mortari [20], and others [21]. Uncertainty propagation
has been investigated in detail in SSA research, particularly in how it applies to collision probabil-
ity computation and Bayesian estimation. Junkins, Akella, and Alfriend [22] studied the general
problem of nonlinear error propagation in orbital mechanics and showed that the choice of coordi-
nates has a significant impact on how fast errors become non-Gaussian. Fujimoto, Scheeres, and
Alfriend [23] developed analytical techniques to propagate uncertainty in the two-body problem
using the concept of state transition tensors. Horwood and Poore [24] discussed the use of the
Gauss von Mises distribution to better capture the evolution of the orbit uncertainty in angular
coordinates. Several authors [25–27] have investigated the use of Gaussian mixture models for un-
certainty propagation and Bayesian estimation. However, there has been very little attention paid
in any of this research to the determination of prior uncertainty to initialize these methods.

Characterization of the IOD uncertainty from sparse opticaldata requires relating astrometric mea-
surement errors into a probability distribution in the orbit state space. DeMars et al. [28] deter-
mined first-order state uncertainties by approximating mean and covariance through the unscented
transform (UT) of the measurement uncertainties. Garber [29] studied the impact of different mea-
surement statistics and model assumptions on uncertainty and future probability computations for
collision prediction. In pursuing this investigation for space surveillance, we take note of the sim-
ilarities between this problem and the asteroid tracking problem investigated by Muinonen and
Bowell [30], Virtanen, Muinonen, and Bowell [31] and authors such as Milani, Valsecchia, La
Spina, Sansaturio, and Chesley [32–35]. Carpino, Milani, and Chesley [36] studied error statistics
of optical observations of asteroids, specifically, and Ford [37] analyzed uncertainty in the orbits
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of extrasolar planets using Monte Carlo (MC) techniques.

Directly related to the present paper is the work of Weisman and Jah [38] and Binz and Healy
[39, 40]. In [38], the authors apply a transformation of variables technique to map measurement
space uncertainty into the angle-rate, angle acceleration, range and range-rate spaces using the
system dynamics. In [39,40], the authors use Gauss’ angles-only method combined with the UT
to empirically obtain the probability density function (pdf) in the orbital space. Unlike the purely
probabilistic approach we pursue in the present paper, Binz and Healy employ the UT by mixing
deterministic IOD criteria within a probabilistic framework.

In this paper we pursue a consistent and probabilistically rigorous approach to obtaining a statis-
tical characterization of the uncertainty of the IOD (usingthe UT as well as the MC method) and
assessing the probability of admissibility of the uncertain candidate orbit. The paper is organized
as follows: in Section2. we first state the general angles-only IOD problem and summarize the
Gauss’ method. In Section2.1.we describe how uncertainty can be mapped from the measurement
space to orbital space using the UT and MC methods. This then allows us to define the probability
of admissibility that we discuss in Section2.2. Finally, in Section3. we demonstrate the main
result of the paper using a numerically simulated example.

2. Probabilistic Angles-Only Initial Orbit Determination

2.1. Uncertainty Mapping from Measurement Space to Orbital Space

Let zi = (αi ,δi) be the set of right ascension and declination measurements at time instantti. Given
three distinct measurementsz = (z1,z2,z3) taken att1, t2, andt3, Gauss’ method produces a candi-
date orbit described by the six-dimensional statex = G(z), whereG(·) is the function that maps a
set of three angles-only measurements to orbital space according to the Gauss IOD solution method.
For the details of Gauss’ method, see, for example, [17] or [41]. The state may be specified in or-
bital elements, position-velocity coordinates, etc. Given bounds on the orbital coordinates, the
CAR is constructed. These bounds may come from physical constraints such as the exclusion of
orbits that intersect the Earth’s surface, or geometric constraints imposed by the analyst on semi-
major axis, eccentricity or inclination [1–3,5–8,12,15,16]. If a reconstructed orbit does not belong
to the CAR, the orbit is considered inadmissible.

In the proposed probabilistic approach, we use the UT [42] to map the statistics of the measure-
ments, described by the pdffM(z), to statistics of the candidate orbit from the IOD solution,de-
scribed by the pdf̃fO(x). The pdf f̃O(x) is then a UT Gaussian approximation of the unknown true
non-Gaussian pdf denoted byfO(x). The measurement statistics are assumed to be Gaussian with
meanµµµz = z and covariance (assuming that the three measurements are statistically independent)

Pz =





P1
z 0 0

0 P2
z 0

0 0 P3
z



 , (1)

wherePi
z is the 2× 2 measurement covariance matrix at each timeti. In other words,fM(z) =

fg(z; µµµz,Pz). These measurement statistics are used to generate a set of sigma pointsZ j , j =

3



1, . . . ,13, in the measurement space (there are 13= 2×6+1 sigma points since the measurement
space has a dimension of 6). Each one of these measurement sigma points is then fed into the
Gauss IOD algorithm to produce a set of 13 sigma points in the orbital space:

X j = G(Z j), j = 1, . . . ,13. (2)

These sigma points can then be used to obtain the transformedmean and covariance using the UT

µµµx =

13
∑

j=1

W j
s X j (3)

and

Px =
13
∑

j=1

W j
c (X j −µµµx)(X j −µµµx)

T, (4)

whereW j
s andW j

c , j = 1, . . . ,13, are the UT’s sigma point and covariance weights, respectively.
The resulting pdf is Gaussian with meanµµµx and covariancePx: f̃O(x) = fg(x; µµµx,Px).

To visualize the true transformed distribution we perform aMC analysis. As before, we assume
that the measurement process is Gaussian with distributionfM(z) = fg(z; µµµz,Pz). We generatem
samplesZ j , j = 1, . . . ,m, from fM and obtain a set of mapped pointsX j = G(Z j), j = 1, . . . ,m,
in the orbital space. These points can then be used to visualize the true transformed distribution
fO(x).

Remark. We wish to highlight the main difference between the UT procedure we propose in this
paper and the one developed by Binz and Healy in [39,40]. The approach proposed in this paper is
a rigorous implementation of the UT in the following sense. The nonlinear mappingG(·) is a map
from the entire three-measurement space to the orbital space, and isnot a map of an individual
measurementzi, i = 1,2,3, to the orbital space. Hence, the sigma points should be drawn from
the distribution in the six-dimensional measurement spacedefined with the global measurement
variablez and not from the individual distributions defined on the individual measurement variables
zi, i = 1,2,3. The result is a pdf̃fO(x) with a mean and covariance that are computed using the
UT’s standard formulation. Furthermore, determining whether or not an uncertain IOD solution
is admissible should be based on probabilistic criteria that result in an assessment of the degree
of admissibility of the uncertain IOD solution. Such a probabilistic measure, the probability of
admissibility, will be discussed in the next section. In [39,40], on the other hand, each individual
measurementzi at time ti , i = 1,2,3, is used to generate a set of 5 sigma points (5= 2× 2+ 1
due to the fact that the measurement space is two-dimensional) associated with the measurement.
For each combination of sigma points, one from each of the 3 sets of sigma points, the IOD
problem is solved. This results in 5× 5× 5 = 125 combinations. Combinations that result in
inadmissible solutions are discarded. The remaining admissible ones are averaged using a re-
weighted version of the sigma point weights. The final mean value of the IOD solutions is then
tested for admissibility. The rationale for the overall mixed probabilistic/deterministic approach
seems to be a bitad hoc.
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2.2. Probability of Admissibility

Given fO(x), the probability of admissibility,pA, over a given CARΩ is defined as

pA =

∫

Ω
fO(x)dx. (5)

Even for a Gaussian pdffO(x) with a hyper-cubic CARΩ, the above integral does not have an
analytic expression (except for the trivial one-dimensional case). Hence, one has to resort to nu-
merical techniques to obtainpA. In this paper we use themorbital space pointsX j to approximate
the integral:

pA =

∫

Ω
fO(x)dx =

∫

hΩ(x) fO(x)dx ≃
1
m

m
∑

j=1

h(X j), (6)

wherehΩ(x) is an indicator function that is equal to 1 ifx ∈ Ω and zero otherwise, and where the
second integral is over the entire state space. Since the rigorous modeling of the CAR is not the
main focus in this paper, in the simulations we assume thatΩ is hyper-cubic.

The quantitypA can then be used to assess the relative degree of admissibility of the uncertain
candidate orbit solution. The limiting cases arepA = 1, which corresponds to the IOD solution
being admissible with 100% certainty, andpA = 0, which corresponds to the IOD solution being
inadmissible with 100% certainty. If it is determined that the solution is admissible (by, say, re-
quiring thatpA be larger than a given threshold valuep∗A or some other decision rule1), then the
mean valueµµµx will be taken as the maximum likely solution to the IOD problem. The primary
merit of our proposed approach is that it is completely probabilistic, by virtue of usingpA as the
criterion for assessing the degree of admissibility of the IOD solution as opposed to employing a
non-rigorous mixed deterministic/probabilistic approach. We expect that the statistically rigorous
screening criteria for orbit hypotheses, which we have outlined here, are less likely to incorrectly
reject/accept viable orbit hypotheses than are anyad hocscreening criteria.

Remark. The problem of how best to sample the CAR, and indeed the measurement space, is
a challenging problem in its own right. The sampling method will have a direct impact on the
computation ofpA and, if not performed properly, will lead to inaccurate results. As mentioned,
in the present paper, we use a naive approach of taking randompoints from a uniform distribution
overΩ to perform the MC integration in order to generate representative results for the numerical
example. A detailed analysis of the sampling problem, drawing on the work of Tommei et al. [3]
and Siminski et al. [13,14], will be the subject of future work.

1Such an admissibility decision rule will then be amenable toa probabilistic analysis that quantifies the probabilities
of errors of Type I (false positive, that is accepting admissibility when the IOD solution is indeed inadmissible) and
errors of Type II (false negative, that is accepting inadmissibility when the IOD solution is indeed admissible). In such
an analysis, the optimal choice of a thresholdp∗A can be derived. However, this is beyond the scope of the present
paper. We are currently investigating the problem of optimal decision criteria.
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3. Simulation Results

In this section we provide a numerical example that demonstrates the above ideas. We consider
an orbit with the orbital element values shown in Tab.1 at the initial simulation time. About 36
minutes from the start of the simulation, the first measurement is received from the object. Once
three angles-only measurements are collected, the IOD algorithm is executed on the collected data.
The measurement noise is assumed to be Gaussian with an angular standard deviation of 1 arcsec
for both right ascension and declination.

The true orbital state att2 (time of the second measurement) is given by the following position and
velocity:

True Position(km) : (−231.9136, −10 057.7426, 5 496.8366)

True Velocity(km/s) : (2.7737, 0.7333, 4.8581).

In Fig. 1 (for position) and Fig.2 (for semimajor axis vs. eccentricity), the true state is represented
by a solid square. The deterministic IOD algorithm was run onthe measured data and the orbit
was determined to have the following position and velocity:

Deterministic IOD Position(km) : (−88.2427, −9 927.4580, 5 308.0606)

Deterministic IOD Velocity(km/s) : (2.6675, 0.6741, 4.6094).

The deterministic IOD solution is represented by the green+ symbol. The error from this analysis
was found to 2.35% of the true value for position and 4.91% forvelocity.

The UT approach described in Section2. was then implemented. The UT mean in the figures is
represented by the blue circle and the 3-sigma ellipse is represented by the blue line (or surface in
Fig. 1(a)). The UT mean position and velocity were found to be:

UT Mean Position(km) : (−100.5409, −9 941.9904, 5 326.0415)

UT Mean Velocity(km/s) : (2.6754, 0.6751, 4.6265).

The error from this analysis was found to be 2.13% of the true value for position and 4.58% for
velocity. Note that the UT solution is slightly more accurate than the deterministic IOD solution.

Finally, the MC approach was implemented using 2000 samples. The MC points are represented
by gray points in the figures. These form the MC-generated uncertainty cloud. The MC mean is

Table 1. Orbital elements of the true orbit.
Orbital Element Value
Semimajor Axis (km) 10 571.4
Eccentricity 0.3
Inclination (deg) 63.4
Perigee (deg) -90.0
Right Ascension of the Ascending Node (deg)252.8
Initial True Anomaly (deg) 0.0
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(b) Uncertainty ellipse in thex–y plane.
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(c) Uncertainty ellipse in thex–z plane.
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(d) Uncertainty ellipse in they–z plane.

Figure 1. UT, MC, deterministic IOD results and true orbit in position space.

represented by the red× symbol. The MC mean position and velocity were found to be

MC Mean Position(km) : (−97.0272, −9 938.6943, 5 321.7201)

MC Mean Velocity(km/s) : (2.6708, 0.6724, 4.6247).

The error from this analysis was found to 2.19% of the true value for position and 4.65% for
velocity. Note that the MC solution is slightly more accurate than the deterministic IOD solution,
but the UT solution outperforms the MC and deterministic solutions. Note that this will not always
be necessarily true. It is expected, for example, that the MCsolution should outperform the UT
solution when more MC points are used.

Next, we compute the probability of association. For the sake of simplicity, we assume that the
CAR is a hyper-rectangle in the space of orbital elements. Thelower and upper bounds on the
elements are shown in Tab.2. The bounds are shown in semimajor axis/eccentricity spacein Fig. 2
using a dashed rectangle. We used MC integration, Eq. (6), with 18 million samples to compute the
probability of association. As can be seen in Fig.2, the deterministic, UT (defined by its mean) and
MC (defined by its mean) solutions lie outside the CAR. In a purely deterministic framework, this
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Figure 2. UT, MC, deterministic IOD results and true orbit in orbital element space.

would then lead to rejecting the admissibility of the solution. However, the computed value ofpA

is 0.1913, which is significantly non-zero, suggesting thatthe solution may indeed be admissible.
This example serves to show that binary admissible/inadmissible deterministic IOD tests fail to
capture the uncertainty involved in such decisions. A notion such as the probability of admissibility
can be used in a hypothesis testing framework to rigorously make admissibility decisions.

Table 2. CAR bounds in orbital elements.
Orbital Element Lower Bound Upper Bound
Semimajor Axis (km) 9 740.0 11 100.0
Eccentricity 0.28 0.36
Inclination (deg) 57.0 70.0
Perigee (deg) -99.0 -81.0
Right Ascension of the Ascending Node (deg) 242.0 263.0
Initial True Anomaly (deg) 110.0 135.0

4. Conclusion

In this paper, we proposed a probabilistically consistent unscented transform (UT) based approach
to quantify the uncertainty in Gauss’ method for angles-only initial orbit determination (IOD).
In addition, we introduced the notion of probability of admissibility over a specified constrained
admissible region (CAR). We presented a numerical example to demonstrate the approach and the
efficacy of the notion of the probability of admissibility. As shown in the selected example, the
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main conclusion of the paper is that deterministicad hocdecision making can lead to erroneous
admissibility decisions. The statistically rigorous screening criterion proposed in this paper is less
likely to incorrectly reject/accept viable orbit hypotheses than are anyad hocscreening criteria.
Currently, we are investigating statistically optimal choice for the thresholdp∗A (i.e., decision rule)
for the analyst to use in order to minimize erroneous admissibility decisions. We are also exploring
probabilistic information-based techniques for measurement-to-measurement and measurement-to-
track association techniques in angles-only and other observation scenarios.
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