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Abstract: Gravitational capture is an important characteristic otbddy (N3B) dynamical
systems. In this paper, the gravitational capture at Mercury is investigated under the frame of
dliptic restricted three body problem (ER3BP). A new parameter Kk, the corrected ratio of the
radial force, is proposed to analyze the influence of radial force on the capture eccentricity in
the ER3BP. The parametric analysis elucidates the influencefeorarrected ratio k and
tangential force. The minimum capture eccentricity and the corrected minimum capture
eccentricity are respectively introduced under the toh#light and corrected ratio. By
numerical computation, we find the vicinity of perihelics the optimal location for the
gravitational capture, and the global minimum of two kinds of minimum capture eccentricity are
both distributed on two special regions of the sphere of capture, which denote the optimal
regions for gravitational capture.ifally, using the results presented, we design some capture
trajectories for potential Mercury missions.

Keywords: Gravitational Capture, MercuryMission, Elliptic Restricted Three Body Problem,
TrajectoryDesign

1. Introduction

The gravitational capte is a useful phenomenon in the design of low energy transfer (LET)

orbit and has been applied in some deep space missions. The first example was the rescue of the
Japanese lunar probe Hiten in 19Q]L After that, SMARTF1 achieved the capture at Mooravi

the gravitational capturf2]. Recentl vy, NASAG6s GRAIL mission
reach the Moori3]. For the interplanetary transfer, gravitational capture was also applied to
design the trajectory [4]fwhich®ds@sedtdepdeiMeicuoymb o mi

Gravitational capture occurs, when the orbital eccentricity of motion around one celestial body is
altered from greater than 1 to less than 1 without use of any propulsive system. Even though the
gravitational capture is not pernen capture, it can effectively reduce the fuel consumption
comparing with Hohmann transfgr, 6, 7]

The first research in this field can trace back to 1987, when Belbruno proposed the Weak
Stability Boundary (WSB) theory to achieve lunar capture withwaking[5]. Further studies

were conducted by Belbruno and Mill@], Krish et al[9]. They all studied missions of the
Earthto-Moon LET and used this technique to save fuel during inserting a spacecraft into its
final orbit around the Moon. After thasome studies considering the time requirement for this
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transfer appeared in the literatyd®d, 11] Considering the WSB, temporary capture and the
LETs, Fantino et al. discussed the role played by the invariant manifolds in each ¢f2hefs

the research continued, more complicated models were investigated. The gravitational capture
based on bicircular model (BCM) in restricted four body problem (R4BP) can be available in the
literatures[11, 13] The effect of planetary eccentricity on ballisticotae in the elliptic
restricted three body problem (ER3BP) was also investigd#d15] Using the concept of

stable sets, Hyeraci and Topputo proposed a systematic method to design ballistic capture orbits
upon planet arrival in interplanetary transfer the ER3BR16]. Those researches about ER3BP,
however, just involved the planar capture problem, and the results could not be extended to the
spatial situation of the capture directly.

In this paper, several spatial issues of gravitational captiierary in the ER3BP are studied.
Firstly, the basic theories of the problem and the gravitational capture are introduced. Then, to
derive capture eccentricity in the ER3BP, the corrected ratio of the radial force is proposed via
the analysis of the mechigal characters in the space near Mercury. Numerical study displays
the influences of different factors on the corrected ratio. Because of the importance of the
eccentricity, the minimum capture eccentricity in the ER3BP is investigated. Finally, applying
the results obtained in this paper, we construct some gravitational capture trajectories of Mercury.

2.Basic Theory
2.1.The Elliptic Restricted Three Body Problem

The ER3BP is shown in Fig. 1. It is described in itetial frame in whichm, m, and m,

represent the Sun, Mercury asplcecraft respectivelin the ER3BP, the mass of the spacecraft
is supposed to beegligible and only the effects of the twarimary bodes are considered.
Therefore the motion of the spacecraft is influenced byattractionof the Sun and Mercury,
but the motion of tw@rimary bodes cannot be affected by the spacecidsides, th ER3BP

is built on thehypothesisthat the motion of tw@rimary bodes isrestricted Specifically, the
SunandMercuryare in elliptic motion abouhe SuiMercurybarycente{SMB).
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Figure 1. The ER3BPIn the inertial frame

In the Fig.1 the originO is fixed at the $1B and X, axis points to the perihelioMercury
orbital planecoincides with X, OY plane. e vectorr points to Mercuryfrom theSun and}
is the position vector opacecrafi.r.t the 3B. g is the angle between th¢, axis and the
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vector r , that is Mercury trueanomaly The relative position vecter d the bodies can be
expressedsa

[a=4 4 (1a)
=4 1 A (1b)
where m= TZ , isthe ratio of Mercury's mass to the sum of masses @tineand Mercury.
m+m

Under thanertial frame the equation of motion of thepacecraftan be expressed as follows:

1 +m } 1 -
em—-————
p+mf T A -l

I= Gm )

whereG is the universal gravitational constant

Utilizing the rotation matrixC, the equations of motiosan be transformed intthe Sun
Mercury rotating frame The origin is fixed at the SMBTlhe x axis points to Mercury from the
Sun. So we can obtain the expressiolCpf

ecosy sing O
o =g sing cosqg O (3)
g 0 0o 1

Substituting Eg. 3 into Eq. 2 yields

PG _ g GUTm) o GO AL )
dt [y m bR

(4)

where the vectors® and J ® are denoted in theotating frameF,, sor =Ci®, § =CLF.

To simplify the form of theequation nondimensionalizatios applied.The unit lengthl is set

asr, the length of the vectar. The unit timet, is set asTEM = a , Wherea and
2p \/G(Wﬁ m)

T, arethesemimajor axis and the period of Sivercury system respectively. Ags fixed in
nondimensional rotatinffame then Eq. 4 becomes
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Besides, we can derive
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Since the motion of two primaries is considd elliptic, then the following relation can be used:

_ (1+ecogy } (7a)
- ey

G= 2%, (7b)

=gt (70)

=G (7d)

wheree s the eccentricity of Mercury orbit and equal tod&&3, and

esing
= T 8a
' l+ecoyy (8a)
p =80T (8h)
1+ecosy



To simplify the form of theequation we substitutethe vectorsr and j for the vectorr™ and
1 M. Using E. 5 ~ 8 and the definition of,,

-1
° 1+ecoyy

14 9)

Thefinal equation of motiorf spacecraft in theandimensionaSunMercuryrotating frameas
expressed as
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Figure 2. The ER3BP in nondimensional rotating frame

For detailswe can see Fig2, where the vectorg andr will be } =(x,y,2", r =(1,0,0Y,
respectively.

2.2.Gravitational Capture

In two-body model, the energf of spacecraft orthe eccentricitye, of the capture orbit
determineghe shape of orbit. IE>0 or e, >1, the orbit is an opehyperbolic orbit If E=0 or
e.=1, the orbit is an opeparabolic orbitIf E<O or e, <1, the orbit § a closectlliptical orbit.

E can be written asE =V?/2 -n7d, whered andV are the distance and the velocity of the
spaceraft with respect to the celestial body, respectively, ani the gravitational parametef
the celestial bodyin the ER3BP, if the spacecraftirs the vicinity of one primary bod, the
gravitation of that body islominant while theinfluences from other bodies anmelatively less
important.Therefore the concept of energyandthe eccetricity e can still be used to study the
orbital characterin the ER3BP. fferent from that in twebody model,E and e, are time-
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varying in the ER3BP. Hence the enerfgycan be alternated fromositive to negativeor the
orbital eccentricitye, can be alternated from greater thato less than 1which both means that

the transient orbitcan be alternated from openbit to closed orbit.This phenomenons called
the gavitational captureOf particular note ishat the gavitational captures temporarycapture,
but if spacecraft idrakel properly during thisemporarycapture,a permanentapturewill be
accomplisled with less fuetonsumptiori5, 6, 7]

The gavitational capturat Mercury is shown in Fig. 3. The spacecraft is capttemsygboraily at
the capture point after it enters the region of influence from outSide.distance from the
capture point to thearycenterof Mercury isd, and the velocity of the spacecraftMsExisting
literatures defined the region of ¢hinfluence in different ways, such as the $01] and Hill
spherg[18]. In this paper, we adopt the definition of the $@posd by Jehnet al.[4], which
consider the radius of the SOI is 300000.

The sphere

To the Sun

Entrance point

Figure 3. The gavitational capture at Mercury

If the direction of thevelocity vector of thespacecrafts perpendicular to the line that links the
spaceraftto the barycenter of Mercuryhere is aelationshipin two-body model as follows

va/%(l ®) (11)

wherev is the velocity of the spacecraft at capture pans, thedistance from the capture point
to the barycenter of Mercury, is the eccentricity of the capture orbit, andn, is the

gravitational parameter of Merculy 0<e, <, the capture point iseriherm and ife. <0, the
capture point igpoherm

3. MechanicsAnalysis in theSpace near Mercury


app:ds:time-varying
app:ds:temporary
app:ds:brake
app:ds:temporary
app:ds:consumption
app:ds:temporary

3.1.Radial Force andTangenial Force

Adequateknowledge about thenechanicalproperty of the space near Mercury can help us
understand thergvitational captur@at Mercury.In the SurMercuryrotating frameacceleréion
decompositions applied taanalye the dynamicsof spacecraft as follows,

a=a & g (12)

where a, is the relative accelerationof spacecraft in the rotating framae, is the absolute
accelerationa, is the translational acceleratioranda, is the Coriolis accelerationSame as

Sect2.1, we apply andimensionalizatiorto the mechanical quantityn analysis.And the
definition of the length unit and the time unit is also same as that in Sect.2.1. The unit length is
time-varying because theccentricitye of Mercury orbit is not 0. This influence will be coupled

to eachacceleratios in Eq.12. Using Eq. 10, we can obtain the expressionapfin the

nondimensionaBunMercuryrotating frame

a ool Gx G &k y

aa o)+m aa 0] o_.-

3 = e<1 e %—* LI ae'é‘h)q 62 2y K (13)
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where the terms in the firgquare bracketre the expansion df, , including thegravity
accelerationof the Sun and Mercury, respectively. The terms in the sebtoacketis the
centrifugal acceleratign a,. The terms in the laftracketis theCoriolis accelerationa, . As we

can see from Ed.3, a/r, A, andh, are the coupling terms ef

On the other hand, from Eq. 1he position} of spacecraft only affects the terms in the first
two brackes, the velocityj of spacecrafonly affects the terms in the lastacket But the
influences ofg appear in all terms in EQ3.

We define the direction from the spacecraft to the barycenter of Mercury and the direction of the
spacecrafs velocity as theradal direction and thetangential direction respectively. To
investigate the capture in the space near Mercuryatbeleratiors, is decompose along the

radial directionand thetangential directionThen we obtain theadial accelerationa; and the

tangential accelerationa; . The radial accelerationa’ in the ER3BP isequivalent tothe

gravitational acceleratiom two-body model, so it iglirectly relatel to the gravitationalcapture.
And the greater theadial accelerationis, the easier the gravitational capture will be. The

tangentialacceleratiora' is considered to affect the braking at the capture pdime.velocity
increment Dv caused by th&angentialacceleratiorhas the following expression

Dv = tl (14)
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where Dt is brakingtime. Apparently,the tangentialacceleratiora' in the opposite direction to
thevelocity v facilitates capture.

According to the rachanics analysishown above, we find except tigeavity acceleratiorof
Mercury, that all kinds of force couldave component in the tangential directjoeven the
Coriolis force But for theradial direction each kinds of force coulieave componentHence the
mechanicalcircumstancen the ER3BP is more complex than that in #aady model, where
only theradial acckerationof the Mercury gravity exists.

3.2.Corrected Ratio of the Radial Force

In this paper, we suppose tbapturepoint is periherm If the velocity of spacecraft at capture
point isv, andthedistance from the capture poito the barycenter of Mercury i5. Eqg. 11 in

Sect.2.2 can be rewritten as
v, = /rﬁ () (15)
p

Eq. 15is established in twbody model, but notpplicablein the ER3BP. To solve this problem,
we propose a new pareterk, the orrected ratio of the radial forcet describe theproportion
of the radial forcen two-body modelo that in the ER3BP:

k = I:mercury/(I:mercury +F othe) mrz ;7? (16)

where F represents thgravity of Mercury, F, .. represents theadial components arising

mercury

from other forces, andn, denoteghe gravitational parametar the ER3BP.
Then in the ER3BP therbital eccentricitye, is given by

. vl
ec+1—p,kp a7
m,

From Ecp. 15 ~ 17 the relationship betwees and e, is
e+l (e B (18)

The reason why we establish the relationship betvecemd e, is that capturesccentricityis

important to captureSmall captureeccentricityrepresents a higher captureatjty, because it
implies small capture velocity artcansientcaptureorbit closer to the circular orbiTherefore
the @pture eccentricity can be used as an effectivedex to evaluate theguality of the
gravitationalcapture.
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Figure4 shows the relationship betweenand e, for differentk. The discussion about Eq. i3
as follows.

Figure 4. The relational graph betweene, and e,
Figure4 shows some usefirformation

If k=1, €_ is equal toe, . In this case theadialforce from other force =0.

other —

If k>1, € is greater thare, (the red region in Fig. 4), therefore, the capture effect in the ER3BP

is inferior to that intwo-body model. Especially lé&¢=2, if 0<e, <1, € is greater thari, which

means that the capture condition satisfied in-bedy model cannot be satisfied in the ER3BP.
This situation, of course, shoulde lavoided However, this situation isvailable forthe
gravitationalescape. Ik continues to increaseit is meaningless for the research in the ER3BP.
Thereforek=2 isan upper bouncand in this cas = Frean/2-

other —

If O<k<1, € is less thare, ( the green region in Fig. 4). The capture effect in the ER3BP is
superior tothat in twebody model.For example, lek=1/2, if e <1, € is less han 0, which
means that the capture pointisohermif 1<e, <3, apparentlythe capture cannot taehievel in
two-body model,whereasin the ER3BPe, is less thanl, which can satisfy theriteria of the
cgpture.In addition, the leskthe better effect on the captukHowever,k hasalower boundO.
Numerical methodologycan help us to understakdind a' more clearly. And someedcription
about thismethodologyshould bestatedbefore computation

In the mercurycentricrotating framethe positionp and the velocity of any capture point can
be determiné by sixorbital element®f transientcaptureorbit. Considering the capte point is
perinerm if the orbital eccentricitye, and the distance frorperihnermto the barycenter of

Mercury r, are given, in fact we just need thengitude of ascending nodé/, the orbit
inclinationi and theargument of periherna to describe the state of any capture point (see Fig.



5). Whenr  is fixed, the spherical surfacen Fig. 5 is called thesphere of capturewhich
consiss of the capture points. The positigm and the velocitw of capture point are given by

ecoswcosV - sirwcas siltW - sivw cos W -cogv icos sin Wi sin sir@\g\é,

p= gcoswsin Whsinweds codV - siw sin Wkcosr icos cosN - sin c#\&(lQa)
g sinwsin coswsin cos f €
ecoswcosyV - sirwcas sintV - siw cos W -cosgvicos sin Wi sin sirpV\@

V= gcoswsinWFsinWCds codNV - simw sin Wcosr icos cosN - sin C(#g&(wb)

g sinwsin coswsin cos g @&

wherev, can be obtaied from Eq. 15The ranges oWV, i andw are from0° to 360°, from

0° to 18C° and fromQ° to 360, respectively.

z To the Sun

point p

Figure 5. The sphere of capturedescribed by theorbital elementsin the mercury-centric
rotating frame

Furthermore even thdongitude of ascending nod# is given, the positiorp of any capture

point can still badeterminé uniquelyby theorbit inclinationi and theargument of pehierm w.
Howeverthevariationof W will affect the direction of the capture velocity.

By these threerbital elementshown above, we obtain the positipnand the velocity of the
capture pointThen we need téransformthem into the SwiMercury rondimensional rotating
framein which they can be expressed as

bo=@ -myr R (20a)

fo=v 4 b7 (20b)

wheret, is the unit time.

10



Then the Eq. 1@an be used tonplementthe numerical computatiom the ER3BP. Figre 6
showsk on thesphere of capturelescribed by and w, wherer,=2640km (the height of

perihermis 200km), e, =0.97, W =90° and g =0°. Notice that the sphere of capture in Fig. 6
is described in the mercupentricrotating frame
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0.999
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Figure 6. k on the sphere of capturewhere g =0° and W =9C¢°

From Fig. 6, we findk on thesphere of captuns very close to 1 (thmagnitudeof the difference
is about 10). This result isin accordance wittthe fact that thegravitation of Mercury is
dominantin the space near Mercury. Howevkris variableslightly at different capture point.

Figure 6 shows that thdirect orbis (0° <i <9(°) possess the largkrand theretrograde orbs
(9 <i <180) possess the small&r This phenomenomwill explain some results obtained in
Sect. 4

Suppose that the height and the veloniggnitudeof the capture point are given, i.e,,ande,

are fixed then theinfluence parameteiigvolvedin the numerical computationnly include the
Mercury true anomaly and thelongitude of ascending nod#'. From the analysis presented
above, weknow that W affects the velocity direction of capture point ahé influences ofy
appear in all of the parts. The detaiftameteanalysiss shown innext subsection.

3.3.Parameter Analysis

Using the nechanics analysis Sect.3.1, the parametecan be defined as follows

F F

mercu mercu ~ ~

k= Y = & 21
Fmercury+ I:other F mercury -lF sun H— centrifugal I:+coriz;>li

11
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F

centrifugal

where F

sun’?

,and F_, ;. represent theadialforce from the Sun, theentrifugalforce and

the Coriolis force, respectivelfhe radical forces related to the position of the capture point

include F , F,.andF__ . . F__ . is directly related to the velocity of the capture point.
mercury sun centrifugal coriolis

ConsideringF,,., assmall quantitycompared withF,,
Eq. 21can be expanded by

andnegkcing thehigher order terms

ercury

o 'l o ~
k :% ' I:other 0 P I:other 1.,ahFSU“ + Fcentrifugal F,-?;oriolis ~ o
Froy 8 ° F & F R
(; mercury = mercury (; mercury ~mercur

where F_, s/ Freraury iNdicates the influence oV and the influences of aremanifesed in all
terms of Eq. 22

Consideringr, =2640km, captureeccentricityg, =0.97, we study the effect ofV and g on k
on thesphere of capture

Firstly we demonstratéhe influence ofg onk. Figure7 showsk_,, andk_ ., the maximum and
the minimum ofk, with differentg and W. From Fig. 7, we finathatk__ andk_, are mainly

affected by the Mercury anomaty. Besides thenagnitudeof their variations is 18, which is
same as thenagnitudeof the difference ok (see Fig. 6).Therefore, we conclude that the
influence ofg on thedistributionof k on the sphere of capture cannot be negligible.

360

270

180

0 90 180 %0

270 0 O

W/ deg
g/ deg

Figure 7. k_ and k_ with different g and W
Secondly wedemonstratehe influence ofW. As r is fixed, F .., is invariable Accordingto
Eqg. 13 we cancalculate the maximum and minimuvariatiors of F_, ./ Frecuy - Figure 8
Shows (Fqoiis / Frnercund max @A (Forionis / Frnereuy)min With different g and W. It is showed that the

12
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variafons of F

coriolis

capture. Acordingto Eq. 22 we conclude that the function &,/ Freeury IS Significant, i.e.,
the influence ofW on thedistributionof k on the sphere of capture also cannot be negligible.

/Frnereury POSSESS the sanmagnitudeof the differencek on the sphere of

- (Fcoriolis/Fnercury)rrax
o -(Fcoriolis/Fnercury)min

I:c:oriolis/ Fmercury
o
!

360

0
90 180 270 360 W/ d
ec

g/ deg
Figure 8. (F_... / Frereuny) ma AN (Foyiie / Frereun)mn With different g and W

At last, we analyze the influence tahgentiaforce on the gravitational capture. Fige 9 shows
the maximum and minimum déngentialacceleratiora’ with differentg and W. Because the

surfaces of the maximum and minimumayfare very close, they look like one surface.urep
sheds light ore is mainly influenced byy . Of particular conceriis thatno matter whether the
maximum or the minimuma' is less tha 0 where0° <g <80, while a is greater than 0

wherel80 <g <360. Therefore, we conclude that thkengentialforce is alwayghe resistance
when0° <g 480, and theangentiafforce is alwayshethrust whenl8C0 <g <360.

However, we find from Fig. 9, thenagnitudeof a' is 10°*. Considering théorakingtime Dt is

also very small, theelocity incrementDv =9 1 (a product of twosmall quantity caused by

the tangentialaccelerationis quite small.Therefore the effect of théangentialacceleratioron
the gravitational capture pointimggigible.

13
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Figure 9. The maximum and minimum of a' with different ¢ and W

4. Capture Eccentricity

Considering the request of thactual space mission, the time of flight cannot be too long.
Because the longer the time of flight is, the mdisturbance the spacecraft will suffer.
Meanwhile the orbit control will become more complex arfticdit. Therefore, we adopt the
criteriaof the gravitational capture: for the spacecraft, the time of flight from the boundary of the
SOI (radius is 300008m) to the capture point is restricted to 60 ddgsthis paper we regard

the capture pointsr(=2640km) as thenitial values the trajectoriesre numericallyintegrated

backward in timen the ER3BPIf the spacecraft cannot reach the boundary of SOI within 60
days, we deem the gravitational capture cannot be achieved.

4.1. Minimum Capture Eccentricity

As we have analyzed in Sect 3.2, the less camacentricitye,, the higherquality of the

gravitationalcapture Within the restriction of the timef-flight, the state (includes the position
andvelocity direction) of each capture point has tlbeque minimum capture eccentricitg,, .

correspondinglyAnd €,.. can help us evaluate the state of the capture point.

Numeri@l calculation fore,,, is as follows and theescriptionof the methodologyis same as
Sect 3.2. Figre 10 displays thedistribution of the mnimum capture eccentricitg, ,, on the
sphere of capture, whegeg=90" and W =0°.

14
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Figure 10. The minimum capture eccentricity e, on the sphere of capture

Because the radius of capture paipts fixed, there are only two parameters that can affect the
distribution of e, i.e. Wandg. We firstly discuss the effect @f. By comparng numerial
results, we find that the effect gf on thedistributionof e is significant.Limited by space
here only a part of numerical results is demonstratedW=90", Fig.11 shows thdistribution
of the mnimum capture ecentricity e, in i - w coordinate system, iff are0°, 90°, 18¢° and

270@, respectively

0=0°
360
i 270
S
\6 180
a0 2
1
0
0 45 90
i/ deg 0.99
0=180°
360 0.8
é” 270 0.97
B 180 i
90 '
90 135 180 0 45 =11 135 180
i/ deg i/ deg

Figure 11. The minimum capture eccentricity e .. in i- w coordinate system

Figure 11 sheds light on the influence gfon thedistributionof g, . Of particular concermre
the dark blue regions in Fig.11. Those special regions represent the global migjmuwhich

15
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means the optimal effect of the gravitational capts we can see from Fig. 11,4fis 0°, the
dark blue regionsre large and complete; i is 180°, the dark blue regionare small and

fragmented; the siations of90° and 270 are intermediateTherefore, when Mercury is at the
vicinity of perihelion, the gravitational capture is easi@n the contrary, the condition of
aphelion is more detrimental to theagitational captureln order to detect the influence gf

more clearly, we plog,,, with differentg (see Fig. 12)We choosethe capture points from the

dark blue regions in Fid.1 as the initial values, and suppagas set a270 .
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Figure 12. e, with different g and i

As we can see from Fig.12, noatter whati is chosen as, wheg is near0°, e, becomes
smaller; wheng is near1l8C , e . becomes greateiThe situation ofi =0° is the most
significant among the curves, because is the lowest in that casActually if i is equal to0°,

Figure 12 illustrates0® is not the optimal fog. Wheng is about30°~40°, the corresponding
e... IS minmal, which is a little less than the situationgf 0°.

Figure 11 shows the dark blue regioae distributed on whered® <i <45, and w is about70’

or 25C°. Those, in fact, are the ne@un side and faun side on the sphere of capture along the
x axis. Figire 10 likewise reflects the neaBun region and faBun region exist the global
minimum e, . As a consequenaeee will focus onthose two special regions (see Fig. 13).
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Figure 13. The special region®n the sphere of capture

Figure 13 shows two special regions, i.e. the A@an region and fabun regionAs we can see,
those two regios are nosymmetricalwith respect to axis. The deviationis about . Thus,

to make the special regiorsymmetrical we choose are , and
respectively in the following numerical calculatidm. addition in order to study the optimal
condition for the gravitational capture, we supposs  (in fact ~ is optimal for

but the difference between them is very slight) based on the previous analysis.

Figures14 and 15 show theistributionof on the sphere of capture. big 14 is the image

of the neatSun sidewhichis viewed along th& axis. Figire 15 is the image of the f&un side,
which is viewed against th& axis. The yellow arrowsin the dark blue regionmdicate the
velocity directionof capture points.
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