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Abstract: This work considers construction of quasi periodic orbits in the vicinity of the Sun-

Earth system L2 libration point for the upcoming Roscosmos “Spectr-RG” and “Millimetron” 

missions. The problem is considered in the full physical model, including such forces as the ones 

produced by gravity fields of the Sun, the Moon and all the solar system planets, acentral Earth 

gravity field, solar radiation pressure and Earth atmosphere. The initial approximation is built 

with the help of Richardson technique of obtaining 3d order approximation to periodic solution 

based on Lindstedt-Poincaré method, extended on Elliptic Restricted Three-body problem. 

Selection of Ax and Az oscillation amplitudes provides quasi periodic orbits of different types 

(halo or Lissajous orbits) and geometries. Transfer trajectories are selected on the L2 point 

stable manifold in order to obtain one-impulse transfer from LEO. Stationkeeping strategy 

provides up to 10 years of spacecraft operation in a quasi periodic orbit with given geometry. 
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1. Introduction 

Quasi periodic orbits in the vicinity of collinear libration points L1 and L2 have been widely used 

for deployment of a number of NASA and ESA spacecrafts carrying out astrophysical studies. 

These orbits are favourable as they provide stable Sun-Earth-spacecraft configuration, space 

telescope placed in such orbit can maintain its orientation relatively to Sun and Earth. Space 

observatory has great advantage over a ground based station as it does not have any atmosphere 

shield which means no dependence on weather and much higher sensibility. Due to these facts 

Russian federal space agency Roskosmos has planned two missions going to the L2 point for the 

next few years: “Spectr-RG” spacecraft is intended to be placed in a compact Lissajous orbit in 

the vicinity the L2 point in 2016; on the opposite “Millimetron” spacecraft should be going out 

far from the ecliptics plane, using a large radius halo orbit, launch is planned by the end of 2018. 

Both spacecrafts are intended to operate during the 7 years period. To keep the spacecraft in the 

intended quasi periodic orbit some stationkeeping strategy should be applied. According to 

projects’ requirements total stationkeeping costs for this period must not overcome 200 m/sec.  

2. Collinear libration points’ dynamics 

Libration points’ dynamics is usually studied within the Circular Restricted Three Body Problem 

(CRTBP) framework. The best description of libration points’ dynamics is given in [1]: 

“collinear libration points are of centre × centre × saddle type due to the eigenvalues of the 

Jacobian matrix of the CRTBP vector field in these points being {±iω1,±iω2,±λ}. Due to 

the centre × centre part, and according to Lyapunov's centre theorem, each collinear equilibrium 

point gives rise to two one-parameter families of periodic orbits, known as the planar and the 
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vertical Lyapunov families of periodic orbits (Fig. 1). In addition, in each energy level close to 

the one of the equilibrium point, there is a two-parameter family of 2D tori, known as Lissajous 

orbits, that connects the two Lyapunov families. Some of these tori are foliated by periodic 

orbits, but most of them carry an irrational flow. Thus, considering all the energy levels, there are 

4D centre (neutrally stable) manifolds around these points. For a given energy level, they are just 

3D sets where the dynamics has a neutral behavior. 

Along the families of Lyapunov periodic orbits, as the energy increases, the linear stability of the 

orbits change and there appear bifurcating orbits where other families of periodic orbits appear. 

The first family bifurcating from the planar Lyapunov one corresponds to 3-dimensional periodic 

orbits symmetric with respect the y = 0 plane, the so-called halo orbits. At the bifurcation, two 

families of orbits are born, known as the Northern and Southern halo families. 

 

 

Fig.1. Periodic and quasi periodic orbits in the vicinity of the L2 point. Blue color 

represents planar and vertical Lyapunov orbits, black color – halo orbit with red quasi 

periodic orbit around it, green color – Lissajous orbit. 

 

Saddle part gives rise to invariant manifolds, providing natural transfer trajectories to periodic 

orbits.”  

This work combines dynamical systems approach with some numerical techniques. 
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3. Periodic orbit approximations in CRTBP and ERTBP 

The simplest approximation to a quasi periodic orbit in the vicinity the L2 point is the solution of 

the motion equations of circular restricted three body problem (CRTBP) linearized in small area 

around libration point [2]. 
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Here A(t) and B(t) are X-Y and Y-Z plane oscillation amplitudes, average values of A(t) and B(t) 

coefficients are chosen at the orbit design stage, they characterize it’s geometrical size in the 

ecliptics plane and in the plane which is orthogonal to it. C(t) value should be close to zero in 

order to prevent solution from exponential growth. D(t) is chosen in such a way that when t is 

equal to zero the spacecraft’s motion trajectory should cross the border of the Earth’s incidence 

sphere. In the restricted three body problem the A, B, C, D coefficients do not depend on time. 

We shall use this model and the coefficients to describe geometry and stability of the obtained 

quasi periodic orbits. It is more informative to handle dimensionless values obtained by such 

normalization:  
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RL is distance from the L2 point to Earth. 

Another way to build more precise approximation to the CRTBP periodic solution is 

Richardson’s 3d order approximation obtained with the help of Linstedt-Poincaré technique 

applied to Legendre polynomial expansion of the classical CRTBP equations of motion [3]. 
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Where 1  is dimensionless time, 0xA  and 0zA   are oscillation amplitudes and there is 

restriction put upon Ax minimum value 

 min 1/ xA l   (1.4) 

 value is derived from this amplitude bounding equation 

 2 2

1 2 0  x zl A l A   (1.5) 

And all aij, bij and dij values are constants. 



4 
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Details concerning technique providing these equations are discussed in [3]. 

The next step taken was to move this solution from CRTBP to the Elliptic Restricted Three Body 

Problem (ERTBP) in order to obtain more exact approximation of periodic orbit. Transfer to 

elliptic problem is performed the following way: first we convert true anomaly f describing 

ERTBP evolution into dimensionless time t with the help of Kepler’s equation.  
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Then we apply Richardson procedure, obtaining CRTBP initial approximation state vector 

( , , , , , )x y z x y z . After that the state vector is converted to non-dimensional Nechvile variables, 

depending on true anomaly and eccentricity instead of time ( , , , , , )      . 
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The ideas concerning generalization of CRTBP methods to the ERTBP are described in [4]. 

Finally equations of motion in Nechvile variables (1.17) describing ERTBP are obtained. 
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4. Transfer trajectory approximation in RTBP 

Same as with quasi periodic orbits first an approximation of transfer trajectory in RTBP should 

be obtained. Since the libration point orbits around L1 and L2 points have strong hyperbolic 

character, their stable manifold is usually used for the transfer [1]. Transfer trajectory to the 

selected quasi periodic orbit is searched within the invariant manifold with help of the isoline 

method [5,6,7]. This method provides connection between periodic orbit dots (here comes 

periodic orbit approximation obtained in the previous section) and geocentric transfer trajectory 

parameters – the isoloines of transfer trajectory pericentre height function depending on periodic 

orbit parameters are built. The idea of isoline building method is to find trajectories coming out 

of periodic solution dots backwards in time that intersect with an injection orbit. This provides 

one-impulse transfer from LEO to the quasi periodic orbit. This method has been extended on 

non-direct transfers including Moon gravity assist, which is opportune as it provides V needed 

to enter a more compact quasi periodic orbit (Fig. 2) – XY amplitude is 400·10
3
 km instead of 

800·10
3
 km amplitude in case of direct transfer. The idea is the same, but the function of the 

pericentre height also depends on time in this case, setting time restrictions on the launch dates. 
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Fig.2. Left plot: Transfer trajectory without the Moon gravity assist manoeuver. Right 

plot: Transfer trajectory with the Moon gravity assist maneuver. The XY plane view in 

the rotating reference frame, dimension – millions of kilometers. 

A decision has been made not to use Moon gravity assist manoeuver as its performance errors 

may affect the whole mission robustness, but if we concern orbit design solely this is an 

opportune technique. 

5. Nominal trajectory calculation 

After having built obtained a number of trajectories crossing Earth-centered sphere with 

E injectionorbitr r h   within ERTBP framework the nominal transfer trajectory calculation algorithm 

is being applied. It has the following structure: 

• The isolines built are the income data for the flight trajectory initial kinematics 

parameters calculation algorithm – the initial approximation of the transfer to the halo 

orbit. At this stage we move the whole problem in the full numerical model used in 

KIAM Ballistic centre for navigational and ballistic support of currently operating 

missions. Launch data is selected, that defines the injection orbit thus trajectories a sorted 

out. 

• The initial approximation built is used for exact calculation of the flight from the fixed 

LEO to the given halo orbit. The kinematics’ parameters vector is counted more precisely 

according to the boundary conditions.  

1. The velocity vector of the transfer trajectory, obtained from the initial 

approximation is counted more precisely according to the boundary conditions which 

are the given values of the orbit parameters B and C = 0. 

2. The velocity vector, obtained at the stage 1 is counted more precisely according to 

the condition of the maximum time of the halo orbit staying in the L2 sphere of the 

given radius 
2LR  
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around the desired periodic approximation. We have tried it, but the other way – loose control – 

appeared to be a more successful strategy. Every 45 days the orbit correction is performed, 

correction impulse vector iV


 is calculated according to the condition of the maximum time of 

the spacecraft staying in the L2 point vicinity of the stated radius after the correction has been 

implemented. The maximum time is searched for with the help of the gradient method. 
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 FC is the functional, describing the time while the spacecraft stays in the L2 point vicinity of the 

given radius
2LR . 
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The third stationkeeping strategy is represented by another FC expression, representing orbit 

geometry coefficients control. 

      
1

1

2 21




  
t T

C B L

t

F B t r C t dt
T

  (1.21) 

Numerical experience has proved second strategy to be most efficient. It provides quasi periodic 

orbits of desired geometry staying in L2 point vicinity for 7.5 years (the intended spacecraft 

lifetime) with total stationkeeping V costs less than 10 m/sec. 

After the final trajectory is obtained shadow zones and radio visibility zones for Russian ground 

stations are calculated in order to make sure that obtained trajectory meets all restrictions set. 

Details concerning nominal trajectories calculation algorithm are discussed in our paper [7]. 

Figures 3 and 4 represent the obtained trajectories selected as the nominal ones for “Spectr-RG” 

and “Millimetron” missions. It is clear from the figures that selection of different Ax and Az 

amplitudes has resulted in quite different orbit types – “Millimetron” trajectory may be classified 

as a quasi halo orbit while “Spectr-RG” trajectory is pure Lissajous orbit. 
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Fig. 3. 3D view of the quasi periodic orbits, proposed for “Spectr-RG” (red) and 

“Millimetron” (blue) spacecrafts in the rotating L2 centered reference frame (X-axis points 

from the Sun)  

 

Fig. 4. 2D view of the quasi periodic orbits, proposed for “Spectr-RG” (red) and 

“Millimetron” (blue) spacecrafts in the rotating L2 centered reference frame (X-axis points 

from the Sun) 
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7. Conclusions 

A new method of quasi periodic orbits construction, generalizing Lindstedt-Poincaré-Richardson 

technique for the ERTBP case has been developed and programmed. M.L. Lidov’s isoline 

building method providing one-impulse transfers from LEO to a quasi periodic orbit in the 

vicinity of a collinear libration point has been extend on gravity assist trajectory class. An 

algorithm calculating stationkeeping impulses for the quasi periodic orbit maintenance has been 

developed and programmed. It provides stationkeeping strategies for spacecraft lifetime over 7 

years, total V costs are within 10 m/sec. Nominal trajectories for “Spectr-RG” and 

“Millimetron” missions have been obtained by performing the calculation described above in the 

full Solar system ballistic model. All the restrictions such as Earth and Moon shadow avoidance 

conditions and constant radio visibility from the Northern hemisphere have been met. 
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