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Design of High-Energy Escape Trajectories with Lunar Gravity Assist

By Lorenzo @sALINO,Y and Lucio RLizoLa D

Dpolitecnico di Torino, Torino, Italy

This paper presents a procedure for design and optimizatioraneuvers for Earth escape with lunar gravity assist, toseel u
for interplanetary missions. In particular, focus is on nuasito near-Earth asteroids with electric propulsion. Tinysis treats
the geocentric escape maneuver and the interplanetary $igfatrately, according to the patched-conic approxima#anindirect
optimization method is used to maximize the final mass of the ilstegary leg for given escape C3 and mass. The analysis is
conducted for dferent escape dates and provides final mass and componentestéme velocity. An approximate analysis method
is developed to check the feasibility of a lunar gravity stsgb improve the escape maneuver, for the considered escépe lfla
suitable opportunities are found, the indirect optimizatioethod is again used to optimize the escape sequence, usirestlits of
the approximate analysis to find a suitable tentative salutiat permits convergence. Test cases are illustrated diditig the benefit
of lunar gravity assist maneuvers for the considered iraegthry transfer.
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azimuth

semimajor axis

perturbations

effective exhaust velocity
equation cofficients
eccentricity

inclination

ascending node identifier
escape z-direction identifier
equation cofficients

mass

position

thrust

time

radial velocity component
angular momentum unit vector
ascending node unit vector
velocity

eastward velocity component
northward velocity component

escape asymptote-ascending node angle

escape asymptote misalignment
flight path angle

velocity rotation

Moon’s gravitational parameter
true anomaly

hyperbola half-angle

launch site latitude

right ascension of ascending node
argument of periapsis

before flyby

after flyby

start of heliocentric leg
perigee-Moon leg
Moon-escape leg

A asteroid
c . circular
d . upper stage dry mass
E . Earth
esc . escape
f : end of heliocentric leg
M : Moon
p . perigee
PAF :  payload attach fitting
ps . periselenium
u :useful mass on 200-km parking orbit
z . z-axis component
o0 : Moon flyby relative velocity

1. Introduction

Lunar gravity assist (LGA) is a means to boost the energy
and C3, that is, the square of the escape velocity, of an escap
maneuver, thus improving the useful mass for a mission to a
specific target. This strategy has been used in the past both f
missions with low positive values of C3 (STEREO) and larger
C3 values (ISEE-3, Nozomi).

Exploration of the solar system requires relatively large v
lues of escape energy. The escape mass that a given launcher
can provide with a direct launch is a decreasing functiorhef t
energy. However, the escape velocity can be properly didect
to reduce the propellant consumption of the heliocentrighfli
so an optimal tradefb usually exists. When the heliocentric
flight employes a propulsion system with larger specific im-
pulse compared to the launcher (e.g., electric propulsian)
interplanetary transfer to a near Earth target typicaltyunes
escape C3 of a few (kfs)’. Lunar-gravity-assist (LGA) ma-
neuvers can be used for a free increase of the escape C3, and
the design of LGA escape trajectories for interplanetargsini
ons is the object of the present paper. Most of the literatase
concerned low energy trajectories, and only a limited nurobe
papers can be found on high energy esdaflayhich is instead
of interest in the present analysis. The usual approachnsm



escape C3 as a function of date (i.e., position of the Moongalo
its orbit) and C3 value before the flyby, and eventually ceupl
these results with the analysis of the interplanetary leg.
Preliminary design of interplanetary missions is usuadly ¢
ried out with the patched-conic approximation, and the gaec
tric escape maneuver is treated separately from the haligce
leg. This approach is adopted also here. An indirect métRlod
is used to optimize the geocentric and heliocentric phales.
design procedure proposed here starts from the optimizafio
heliocentric legs for dferent values of departure date and mag-
nitude of hyperbolic excess velocity. It is noffitiult to find a
suitable tentative solution for the heliocentric leg, aodwer-
gence is extremely fast. Escape conditions are obtaineshftr
trajectory, and feasibility of a gravity assisted escapaenaer
is evaluated with an approximate analysis, which estinthies
escape mass. Since the procedure is analytical, commahtio
time for the approximate LGA analysis is negligible. The mos
interesting solutions can be optimized and verified by tlig in
rect optimization method. A refinement of the results can fi-
nally be obtained by re-optimizing the heliocentric leghnithe
new escape conditions (i.e., mass and velocity at the erfteof t
geocentric leg).

The trajectory is controlled by the thrust vector (the ef-
fective exhaust velocity is constant). Boundary conditions
require at escapey = re(tp); the magnitude of the hyperbo-
lic excess velocity and the initial mass are specified thinoug
[Vo—VE(to)]? = V2, andmg = 1. At rendezvous with the target
asteroid,r; = ra(ty) andVs = Va(ts) are imposed. The final
massmy; is maximized with an indirect optimization meth&8)

that provides the optimal escape date and the correspoading
cape velocity components in the heliocentric frame; the-opt
mal control history is also obtained. Additional consttaican

be introduced to specify departure gudarrival date, or time

of flight. The hyperbolic excess velocity components cabp als
be specified. A reference initial mass of 10000 kg is used for
the preliminary calculations. The escape mass providetidy t
optimization of the escape maneuver, with the correspgndin
velocity components, is instead used in the refinement phase
A procedure based on Newton’s metffbid employed to solve
the boundary value problem produced by the applicationef th
theory of optimal control.

3. LGA Escape Trajectories

Analysis of the escape maneuver is treated with the same in- The purpose of this paper is the design of suitable LGA tra-

direct optimization method used for the heliocentric Idps,
finding a tentative solution that allows for convergencerisoe
difficult task, at least in the case of LGA escape. Additional
complexity arises for missions to Near-Earth asteroidghas
hyperbolic excess velocity is typically used to rotate thigito
plane (with respect to the ecliptic) rather than changenéesgy,

jectories that attain given escape conditions. At the estiape,

the spacecraft must reach the boundary of Earth’s sphere of i
fluence, here set at 1 million km, and the velocity (relative t
the Earth) components in the J2000 heliocentric ecliptioni

are specified. For the analysis of the geocentric trajectary
riables are made non-dimensional by using the Earth equato-

and has usually a large component perpendicular to the equaral radius and the corresponding circular velocity asneriee

tor or Moon'’s orbital plane; the escape maneuver is theeefor
three-dimensional. The approximate analysis introdueze h
provides performance estimation for a preliminary evatuat
of escape opportunities, but it also gives initial conditidhat
can be used to build a tentative solution for the indireciroipt
zation of the geocentric leg, facilitating convergence.

2. Indirect Optimization of Heliocentric Trajectories
According to the patched-conic approximation, during the
heliocentric flight the spacecraft is subject to the grawityhe
sun alone. In the vicinity of a planet (i.e., inside its sghef
influence) only the planet’s gravity is considered. The ptah
spheres of influence are small compared to heliocentriarmtist
ces and their dimension is neglected in preliminary desigte-
roids do not have a sphere of influence as their gravity isineg|
gible. Heliocentric legs connect at encounters with raiebe-
dies (planets, asteroids, etc.). The relative velocitynabanter

is the hyperbolic excess velocity.

values. Position and velocity of the Moon at escape time are
obtained from JPL Ephemerid@DE405. The osculating or-
bit is used for Keplerian propagation of Moon’s motion. The
approximate analysis is carried out with a reference frame b
sed on Moon’s osculating orbit: x-axis towards the ascendin
node of Moon'’s orbit with respect to Earth’s equator, z-atis
ong angular momentum, y-axis to complete a right-handed re-
ference frameVe« is the escape velocity vector expressed in
this frame.

The approximate analysis is based on a patched-conic ap-
proximation that neglects the dimension of Moon'’s sphere of
influence. The trajectory is split into two geocentric legée
inner leg goes from trajectory perigee (usually imposedhay t
launcher) to the Moon, the outer leg from the Moon to the boun-
dary of Earth’s sphere of influence (1 million km) where the
escape velocity required by the heliocentric trajectonsnie
met at the specified escape time. LGA is modeled as a relative
velocity rotation at Moon'’s intercept, which separatesdgke-
centric legs. The leg from the Moon to escape (subscript 2) is

A point-mass spacecraft with variable mass is considered first considered.

Positionr, velocity V and massn of the spacecraft are the pro-
blem state variables. Normalized values are employedgusin
the radius of Earth’s orbit, the corresponding initial \ctp

3.1. Moon to Escape
Moon’s orbit is on the x-y reference plane and the inter-

and the spacecraft initial mass as reference values. Ttee stacept point must coincide with one of the nodes of the space-

differential equations are

dr/dt =V 1)
dv/dt = —r/r®+T/m (2)
dm/dt = -T/c (3

craft escape hyperbola. The sign of the escape velocity cemp
nent along the z-axigs ; determines where the ascending node
must be positioned with respect to the direction of the omigo
asymptote: escape and ascending node must be on the same
side for positiveves; ; (an indexi, = +1 is introduced to denote
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Fig. 1. Geometry of generic escape hyperbola for positiye (left) and
negativeves: 7 (right).

this situation) and on opposite sides in the other cgse {1).
The position of the ascending node, that is, the RAAN vélpe
defines the flyby point. The remaining orbital parameterfief t
hyperbola are consequently determined, aRgés selected.
Energy and semimajor axis depend on the escape velocity

1

vésc —2/les (4)
A unit vector pointing to the ascending nagie(components al-
ong x, y and z are cd®;,, sinQ,, and 0, respectively) defines the
remaining orbital elements: first, the angle between asngnd
node and escape velocity= cos (U - ves:/vesc) is determined.
Then, the unit vector along angular momentugis computed,
as itis parallel ta,(u, X ves:). The inclination is thus related to
the angular momentum component along the z-axis

ap =

ir = cos(uny)

(5)

Since the flyby is at a node, one has (see Fig 1) eitheb —
wy = 7 (POSitiVeves; 7) OFr @ — @ + wy = 7 (Negativeves: 7), Where
the hyperbola half-angl® = cos(1/e,) has been introduced.
The distance from the Earth must be the same for spacecthft an
Moon at flyby, that is,

a(l-€)

" 1+ ec05v;

(6)

'm

In general, flyby can occur at either node for agy,, with the
true anomaly at flyby, = —w> (flyby at ascending nodé, =
+1) orv, = —wy+n (descending nodé, = —1). However, flyby
at descending node for positive.; and at ascending node for
negativeves:; cannot take place if, < —@.

By manipulating these equations one gets

iai;SiNe \/62 — 1= —(1—iac08a) — (a/rm)(& — 1) (7)

which is squared to obtain a quadratic equatioagin 1

Ca(€ — 1 + op(€ ~ 1)+ Cc =0 (8)
with

Ca = (32/rm)? )
o = 2(az/rm)(1 —iacosa) — sirf (10)
e = (1 - iacosa)? (11)

The quadratic equation is solved to obtain

—Cp + 4/CE — 4CaCc

e="1\1+ (12)

2¢,

The largest of the two solutions given by Eq. (12) (plus sign)
is the only admissible solution of the radical equation (Fgw

the codficient ofeg —-1and,/e& - 1inEq. (7) have the same
sign: sincea, < 0, this occurs whem,i, = +1, that is, for

flyby at ascending node and positivg., or flyby at descen-

ding node and negatiwgs; ;. The lower solution (minus sign)
must instead be selected when flyby and escape are on opposite
sides with respect to the direction of the outgoing asyneptot
This solution, as already highlighted, does not exist when t
hyperbola crosses the reference plane only once, that e wh

v, < —®, Oncee, has been determined}, w,, andv, are
immediately obtained.

Once the orbital elements are known, one can easily obtain
the relative velocity at Moon’s flyby/ ... This analysis can be
performed for any flyby position (i.€2,); however, an iterative
procedure is required to determine the feasible flyby when th
escape time is specified, in dependence of the actual Moon’s
position at the relevant time. The analysis considers flyby a
both ascending and descending node. Starting from a temtati
value forQ,, ome computes the orbital parameters and the time
of flight from the Moon to the boundary of the sphere of influ-
ence (1 million km, here), where escape is assumed to occur.
The actual Moon'’s position at the flyby time is thus deterrdine
and defines the new value 6f,. A few iterations are typi-
cally required to obtain convergence. For the sake of siiipli
Moon’s orbit is assumed to be circular to compuggand the
relative velocity vector.

It is important to note that there is a misalignment between
the velocity directions at infinity and at the boundary of sipe
here of influence, that i = (7/2 — ves: + vesc) — ©. At €scape,
the true anomaly is obtained from

a(1- &)
esc = —1 (13)
+ € COSVes
and the flight path angle is
1 ©&SiNveg
=tant — =% 14
Ve 1+ € COSVes: (14)

Instead of numerically solving for the orbital elementsttha
achieve the correct orientation of the escape velogitg, ad-
ded to the rotation that must be provided by Moon’s flyby, as
discussed later.
3.2. Perigee to Moon

TheAV,, to transfer the spacecraft from a circular parking or-
bit to the trajectory towards the Moon defines the escape.mass
The AV, can be split into multiple burns as discussed later. The
escape maneuver begins at the end of the last upper-stage bur
and it is assumed that the spacecraft is at the perigee oéits t
jectory. The trajectories from perigee to the Moon (sulmcri
1) that allow feasible flybys to match the escape conditioas a
here found. Intercept is again on the reference plane antl mus
therefore occur at a node of the spacecraft ofit= Q, when
the flyby is either at the ascending or at the descending nbde o
both orbits, whereaQ; = Q, + = when it is at the ascending
node of one orbit and descending node of the other one.

The magnitude of the relative velocity before and after the
flyby must be the sam¥.,_ = V... Assuming Moon'’s orbit to
be circular

V2 =P+ @-Vy)2+uw?=V2, (15)



whereVy = +1/ry is Moon’s circular velocity. The radial,
eastward and northward components of the spacecraft teloci
at Moon’ encounter are

u= /1/rp/(L+ er)esiny; (16)
v= 4/1/rp/(1+ €)(1+ ey cosyy)cosiy an
w =ia/1/rp/(1+ e)(1+ e cosvy) siniy (18)

wherey; is the true anomaly at flyby of the perigee-Moon tra-
jectory.
Substitution gives the radical equation

V2, -3/rm) + (1 —e)/rp =

= —2Jrp/r¥ cosii 1+ e (19)
which becomes the quadratic equation
Ka€F + ko1 + ke = 0 (20)
with
ka = (1/rp)? (21)
kp = —4rp cos is/ry — 2/t5 — 20 = 3/rw)/rp  (22)
ke = Whs — 3/Tm)* + 2(0h — 3/Tm)/Tp +
1/r5—4rpcosiy/ry  (23)
Among the solutions
ko= KR — Aok
e = (24)

2Ka
the larger one (plus sign) must be selectedfar /2, whereas
the correct solution is the lower one (minus sign) for retaoig
orbitsiy > /2. Frome;, one hasy = rp/(1-ey). The solution
must be discarded for elliptical orbitsy( > 0) if the apogee
ra = a;(1+ey) is lower tharry,. For acceptable solutiongy, =
a(1- ei) /(1+ ey cosvy) providesy; (only outgoing trajectories
are here considered andOv; < 7). The argument of periapsis
is then determined, being = —w; (ascending node) on =
—w; + r (descending node).

Velocity rotation at flyby is given by the angle between the
computedV ., andV,_ vectors with the addition of the supple-

and azimuth. The departure energy gives the required launch
C3. Azimuth andAV, = V, — V. can be used to evaluate the
mass that the launcher can insert into the escape trajectory
3.3. Verification

The most favorable escape trajectories are verified by nume-
rical integration of the equations of motions in the EME2000
geocentric reference frame.

dr/dt=v (27)
dv/dt = —r/r® + T/m+ a, (28)
dmydt = —T/c (29)

Perturbations, from Moon’s and sun’s gravity, solar radiation
pressure and nonsphericity of the Earth are considered. The
Earth potential is described with the Earth Gravitational-M
del EGM2008, which provides normalized spherical harmonic
codficients for the Earth gravitational potential; terms up ® th
8-th degree are considered.

The indirect method applied to the heliocentric leg cougal
be used for the optimization of the escape maneuver. However
in the present paper, a nonpropelled escape maneuver is cons
dered and a simpler approach, which does not require optimi-
zation, can be used. In fact, if thrust is excluded and thedep
ture inclination is specified, the number of boundary coodg
(five conditions that fix initial inclination and escape nasland
velocity components at the required escape time) exactly ma
tches the number of free parameters (time, longitude ptiit
velocity magnitude and azimuth at departure) and a single so
lution exist. The same procedure based on Newton’s method
employed for the heliocentric leg is used to determine tlie in
tial unknowns, starting from the values provided by the agpr
imate analysis.

4. Mission Design Procedure

Phasing loops are used to obtain the correct tinding. di-
rect launch to the Moon requires a strict timing and wouldehav
a very short launch window. It is instead assumed that the lau
cher parks the spacecraft into a 200-km circular orbit in the
correct plane a few days before the actual start of the escape
trajectory. The launcher upper stage performs a first iniails
maneuver at the proper location along the orbit, to placejplae
cecraft into an elliptic orbit with an apogee that is lowearitihe
value corresponding to the trajectory to reach the Moon.iAdd

mentary rotatiogB, as escape is actually reached at the boundarytional burns can be applied at each subsequent perigeegpassa

of the sphere of influence and not at infinity

8 =B+ COS (Voo - Veor)/VZ] (25)
According to the patched-conic approximation
r
5 = 2.sirt M/ Tes (26)

Vgo +,UM/rps

with um being the Moon’s gravitational parameter amd the
flyby periselenium, which can thus be determined. Trajéesor

to adjust the orbit period and obtain the correct timinghwfite

last one that achieves the required trajectory to the Modineat
proper time. This strategy allows for suitable launch windp

as the burm\Vs can be adjusted to account for the actual launch
conditions.

The useful mass that a launcher can deliver to a specific orbit
depends on the energy of the trajectory and on the launch azi-
muth, but complete data for existing launcher and highgner
orbits are usually not available. They are instead ofteargfer

are deemed feasible when the periselenium is at least 50 kntircular low Earth orbits (e.g., 200-km altitude). The &vlling

above Moon’s surface.

computations are here used to replicate the Delta IV Heary pe

For any feasible flyby, the values of position and velocity at formance!® The starting mass on the initial 200-km parking
perigee V,) are evaluated and then rotated to the J2000 geo-orbit is the sum of useful massy) and upper stage dry mass

centric frame to determine the corresponding latitudegitoile

my (3550 kg). The useful mass given by NASA's Launch Vehi-
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Fig. 2. Final mass of the heliocentric as a function of escaecity and
date for a 10000 kg initial mass.

cle Performance Websi¥ is here approximated with the qua-

dratic equation

my = 26280- .6642(A — 90) (30)

wherem, is in kg and the azimutiA in degrees. The following
burns sum up t\V = 1.05(V, — V), that is the diterence
between the perigee velocity at the start of the trajectohé

Moon and the circular velocity on the parking orbit, with the
addition of a 5 % margin. The useful escape mass is evaluated

with the rocket equation

Mesc = (My + My)exp[-AV/c] — my — mMpar (31)

where the stage dry mass and the payload attach fitting mass

(250 kg) are subtracted from the final mass. The stégetd/e
exhaust velocity corresponds to a 460 s specific impulse.

Table 1. Escape trajectories fdgs; = 1.2 knys.

Iltems Estimate Actual
Launch C3, kri/s? -1.27 -1.34
Launch longitude, deg 154 150

Launch latitude, deg 16 18
Periselenium, km 1989 1904
Escape mass, kg 10469 10480

Table 2. Escape trajectories fdgs: = 1.3 knys.
ltems Estimate Actual
Launch C3, km/s’ -1.05 -1.13
Launch longitude, deg 162 159

Launch latitude, deg 13 15
Periselenium, km 1961 1898
Escape mass, kg 10435 10448

Table 3. Escape trajectories fdgs; = 1.4 knys.

Items Estimate Actual
Launch C3, kri/< -0.76 -0.84
Launch longitude, deg 169 168

Launch latitude, deg 9 11

Periselenium, km 1965 1921
Escape mass, kg 10392 10403
Table 4. Summary of performance.

Items Sol. 1 Sol. 2 Sol. 3
Vese kKM/s 1.2 1.3 1.4
Escape start [26/22  226/22 2/27/22
Escape /22 38/22 38/22
Escape mass, kg 10480 10448 10403
Rendezvous AB723 1323 1023
Final mass, kg 9561 9566 9556

The determination of suitable escape sequences starts frofFscape occurs in March 2022 with rendezvous with the target

the analysis of the heliocentric leg. Trajectories withimma

asteroid in June 2023. Performance of the heliocentricdeg f

departure date are found forfitirent values of the escape velo- reference escape mass of 10000 kg are presented in Fig. 2. The
city magnitude. The departure dates are then varied toatealu heliocentric trajectory benefits from a higher escape gnargl
the dfect of performance (that is, the final mass). For eachthe final mass grows with the escape velocity magnitdge

trajectory, the required escape conditions are also detedn

However, lower escape masses are to be expected When

Convergence is typically very fast and a few minutes are re-grows and the actual escape mass must be used for a meaning-
quired for this analysis. The approximate analysis of the-ge ful comparison.

centric leg evaluates flyby feasibility (height on Moon’sface
must be above 50 km), and provides the initial veloaityas

a function of inclinatiori; with respect to the equatorial plane.

Given the latitude of the launch sigg , launch azimuth is eva-
luated from

COSi; = Cosp. SINA (32)

Direct escape dters from high energy and declination of the
escape hyperbola well above 40 degrees, which forces aHaunc
azimuth diferent from 90 degrees. Expected escape masses
are below 9500 kg. When LGA is considered, solutions which
combine eastward launch from Cape Kennegy € 285 de-
grees) and low energy escape with C3 well beld®s knm?/s?
are found.

to obtain an estimation of the escape mass. The best opportun Estimations of the approximate analysis and results fram th

ties are then numerically verified with the perturbed dyreahi

verification are compared in Tables 1-3 for the three best op-

model to obtain exact departure conditions and escape masgortunities, corresponding M. = 1.2,1.3, 1.4 knys, respecti-

The heliocentric legs for these escape conditions are yinall
optimized to obtain the actual mass delivered to the targtet a
roid.

5. Results

A mission to asteroid 2001 @} with departure in early 2022

is presented as a test case. This asteroid is a possibleaalter

tive target for the Asteroid Robotic Redirect Mission (ARRM

vely. These trajectories require departure around MJD 6964
(March 8,2022) slightly later than the optimal date detewedi
by the heliocentric leg optimization for the lower valuesest
cape velocity. They have inclination equal to the latitude o
the launch site for eastward launch and flyby at the ascending
node (with respect to the plane of Moon’s orbit) of both peeig
Moon and Moon-escape legs.

The estimations are fiiciently accurate to find suitable ten-
tative solutions to assure convergence, even though tegrant
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tion is numerically sensitive. Bierences between the approxi-

mate and exact trajectories are essentially due to the gégum
of circular Moon’s orbit for the approximate analysis arwlat
lesser extent, to the angbeand perturbations thaffect the ex-

act trajectory. Results of the re-optimization of the hegiotric
leg for the selected escape maneuvers are presented in Table
4. The proposed procedure allows to find the optimal value of
escape velocity for the proposed mission with a limited comp
tational efort.

The globally optimal solution corresponds ig., = 1.3
km/s and is presented in Figs. 3-5. The approximate and exact
trajectories aim at slightly éfierent points but the similarities of
the solutions are evident. The trajectories after the flyified
because of the angkdiscussed before. Berence at departure
are due to the dierent Moon distance in the two models, and
in part to the &ect of Earth oblateness. The exact solution can
be used to identify the flyby geometry: the spacecraft passes
below the Moon, to obtain the required high escape dectinati
towards the northern hemisphere.

6. Conclusion

A procedure for the design of LGA escape maneuvers for
interplanetary transfers has been presented. In contrasig-
ting methods, the proposed procedure starts from the asalys
of the heliocentric leg with an indirect optimization methend
then finds suitable escape maneuvers by means of an approxi-
mate analysis followed by numerical verification. THBotent
indirect optimization of the heliocentric legs and the atiehl
approximate analysis of LGA escape maneuvers limit the com-
putational &ort. Results prove theffectiveness of the method,
which can provide the globally optimal solution to targetsp
fic destinations in short times.

References

1) Campagnola, S., Jehn, R., and Corral Van Damme, C.: Batcllor
K.: Design of Lunar Gravity Assit for the BEPICOLOMBO Missio
to Mercury, AAS Paper 04-130, 2004.

2) Landau, D., McElrath, T.P., Grebow, D., and Strange,: NEfficient
Lunar Gravity Assits for Solar Electric Propulsion MisssorPaper
AAS 12-165, 2012.

3) McElrath, T.P., Lantoine, G., Landau, D. Grebow, D., 8g& N.,
Wilson, R., Sims, J., Using Gravity Assists in the Earth-M&ystem
as a Gateway to the Solar System, GLEX-2012.05.5.2x12332,.20

4) Lantoine, G., and . McElrath, T.P.: Families of Solar-Beréd Moon-
to-Moon Tranfers, Paper AAS 14-471, 2014.

5) Bryson, A.E., and Ho, Y.-C.Applied Optimal Control, Cambridge
University Press, London, 1967, pp.1-10.

6) Casalino, L., Colasurdo, G., and Pastrone, D.:"Optimat{Jdrust
Escape Trajectories Using Gravity Assisidurnal of Guidance, Con-
trol, and Dynamics, 22 (1999), pp. 637-642.

7) Colasurdo, G., and Pastrone, D.: Indirect Optimizatiorttidé for
Impulsive Transfer, Paper AIAA 94-3762, 1994.

8) JPL Planetary and Lunar Ephemerides, hitgsd.jpl.nasa.gg? pla-
netephexport, accessed April 3, 2017.

9) Farquhar, R. W., and Dunham, D. W.: The Indirect Launch Mdde
New Launch Technique for Interplanetary MissioAsta Astronau-
tica, 45(1999), pp. 491-497.

10) Launch Vehicle Performance Website, hitjedrperf.ksc.nasa.gpv
pagegQuery.aspx, accessed April 3, 2017.

11) DeltalV launch Services User's Guide, United Launcliakite, Cen-
tennial, CO, 2013.



	ISTSProgramNumber: 
	0: 
	8989989975398143: ISTS-2017-d-023／ISSFD-2017-023




