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This paper presents a procedure for design and optimization of maneuvers for Earth escape with lunar gravity assist, to be used

for interplanetary missions. In particular, focus is on missions to near-Earth asteroids with electric propulsion. The analysis treats

the geocentric escape maneuver and the interplanetary flightseparately, according to the patched-conic approximation.An indirect

optimization method is used to maximize the final mass of the interplanetary leg for given escape C3 and mass. The analysis is

conducted for different escape dates and provides final mass and components of theescape velocity. An approximate analysis method

is developed to check the feasibility of a lunar gravity assist to improve the escape maneuver, for the considered escape date. If

suitable opportunities are found, the indirect optimization method is again used to optimize the escape sequence, using the results of

the approximate analysis to find a suitable tentative solution that permits convergence. Test cases are illustrated to highlight the benefit

of lunar gravity assist maneuvers for the considered interplanetary transfer.
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Nomenclature

A : azimuth
a : semimajor axis
ap : perturbations
c : effective exhaust velocity

ca,b,c : equation coefficients
e : eccentricity
i : inclination
ia : ascending node identifier
iz : escape z-direction identifier

ka,b,c : equation coefficients
m : mass
r : position
T : thrust
t : time
u : radial velocity component
uh : angular momentum unit vector
un : ascending node unit vector
V : velocity
v : eastward velocity component
w : northward velocity component
α : escape asymptote-ascending node angle
β : escape asymptote misalignment
γ : flight path angle
δ : velocity rotation
µM : Moon’s gravitational parameter
ν : true anomaly
Φ : hyperbola half-angle
ϕL : launch site latitude
Ω : right ascension of ascending node
ω : argument of periapsis

Subscripts
− : before flyby
+ : after flyby
0 : start of heliocentric leg
1 : perigee-Moon leg
2 : Moon-escape leg

A : asteroid
c : circular
d : upper stage dry mass
E : Earth

esc : escape
f : end of heliocentric leg

M : Moon
p : perigee

PAF : payload attach fitting
ps : periselenium
u : useful mass on 200-km parking orbit
z : z-axis component
∞ : Moon flyby relative velocity

1. Introduction

Lunar gravity assist (LGA) is a means to boost the energy
and C3, that is, the square of the escape velocity, of an escape
maneuver, thus improving the useful mass for a mission to a
specific target. This strategy has been used in the past both for
missions with low positive values of C3 (STEREO) and larger
C3 values (ISEE-3, Nozomi).

Exploration of the solar system requires relatively large va-
lues of escape energy. The escape mass that a given launcher
can provide with a direct launch is a decreasing function of the
energy. However, the escape velocity can be properly directed
to reduce the propellant consumption of the heliocentric flight,
so an optimal trade-off usually exists. When the heliocentric
flight employes a propulsion system with larger specific im-
pulse compared to the launcher (e.g., electric propulsion), an
interplanetary transfer to a near Earth target typically requires
escape C3 of a few (km/s)2. Lunar-gravity-assist (LGA) ma-
neuvers can be used for a free increase of the escape C3, and
the design of LGA escape trajectories for interplanetary missi-
ons is the object of the present paper. Most of the literaturehas
concerned low energy trajectories, and only a limited number of
papers can be found on high energy escape,1–4) which is instead
of interest in the present analysis. The usual approach is tomap



escape C3 as a function of date (i.e., position of the Moon along
its orbit) and C3 value before the flyby, and eventually couple
these results with the analysis of the interplanetary leg.

Preliminary design of interplanetary missions is usually car-
ried out with the patched-conic approximation, and the geocen-
tric escape maneuver is treated separately from the heliocentric
leg. This approach is adopted also here. An indirect method5,6)

is used to optimize the geocentric and heliocentric phases.The
design procedure proposed here starts from the optimization of
heliocentric legs for different values of departure date and mag-
nitude of hyperbolic excess velocity. It is not difficult to find a
suitable tentative solution for the heliocentric leg, and conver-
gence is extremely fast. Escape conditions are obtained foreach
trajectory, and feasibility of a gravity assisted escape maneuver
is evaluated with an approximate analysis, which estimatesthe
escape mass. Since the procedure is analytical, computational
time for the approximate LGA analysis is negligible. The most
interesting solutions can be optimized and verified by the indi-
rect optimization method. A refinement of the results can fi-
nally be obtained by re-optimizing the heliocentric leg with the
new escape conditions (i.e., mass and velocity at the end of the
geocentric leg).

Analysis of the escape maneuver is treated with the same in-
direct optimization method used for the heliocentric legs,but
finding a tentative solution that allows for convergence is amore
difficult task, at least in the case of LGA escape. Additional
complexity arises for missions to Near-Earth asteroids, asthe
hyperbolic excess velocity is typically used to rotate the orbit
plane (with respect to the ecliptic) rather than change its energy,
and has usually a large component perpendicular to the equa-
tor or Moon’s orbital plane; the escape maneuver is therefore
three-dimensional. The approximate analysis introduced here
provides performance estimation for a preliminary evaluation
of escape opportunities, but it also gives initial conditions that
can be used to build a tentative solution for the indirect optimi-
zation of the geocentric leg, facilitating convergence.

2. Indirect Optimization of Heliocentric Trajectories

According to the patched-conic approximation, during the
heliocentric flight the spacecraft is subject to the gravityof the
sun alone. In the vicinity of a planet (i.e., inside its sphere of
influence) only the planet’s gravity is considered. The planets’
spheres of influence are small compared to heliocentric distan-
ces and their dimension is neglected in preliminary design;aste-
roids do not have a sphere of influence as their gravity is negli-
gible. Heliocentric legs connect at encounters with relevant bo-
dies (planets, asteroids, etc.). The relative velocity at encounter
is the hyperbolic excess velocity.

A point-mass spacecraft with variable mass is considered.
Positionr, velocityV and massm of the spacecraft are the pro-
blem state variables. Normalized values are employed, using
the radius of Earth’s orbit, the corresponding initial velocity
and the spacecraft initial mass as reference values. The state
differential equations are

dr/dt = V (1)

dV/dt = −r/r3 + T/m (2)

dm/dt = −T/c (3)

The trajectory is controlled by the thrust vectorT (the ef-
fective exhaust velocityc is constant). Boundary conditions
require at escaper0 = rE(t0); the magnitude of the hyperbo-
lic excess velocity and the initial mass are specified through
[V0−VE(t0)]2 = V2

esc andm0 = 1. At rendezvous with the target
asteroid,r f = rA(t f ) andV f = VA(t f ) are imposed. The final
massm f is maximized with an indirect optimization method,5,6)

that provides the optimal escape date and the correspondinges-
cape velocity components in the heliocentric frame; the opti-
mal control history is also obtained. Additional constraints can
be introduced to specify departure and/or arrival date, or time
of flight. The hyperbolic excess velocity components can also
be specified. A reference initial mass of 10000 kg is used for
the preliminary calculations. The escape mass provided by the
optimization of the escape maneuver, with the corresponding
velocity components, is instead used in the refinement phase.
A procedure based on Newton’s method7) is employed to solve
the boundary value problem produced by the application of the
theory of optimal control.

3. LGA Escape Trajectories

The purpose of this paper is the design of suitable LGA tra-
jectories that attain given escape conditions. At the escape time,
the spacecraft must reach the boundary of Earth’s sphere of in-
fluence, here set at 1 million km, and the velocity (relative to
the Earth) components in the J2000 heliocentric ecliptic frame
are specified. For the analysis of the geocentric trajectory, va-
riables are made non-dimensional by using the Earth equato-
rial radius and the corresponding circular velocity as reference
values. Position and velocity of the Moon at escape time are
obtained from JPL Ephemerides8) DE405. The osculating or-
bit is used for Keplerian propagation of Moon’s motion. The
approximate analysis is carried out with a reference frame ba-
sed on Moon’s osculating orbit: x-axis towards the ascending
node of Moon’s orbit with respect to Earth’s equator, z-axisal-
ong angular momentum, y-axis to complete a right-handed re-
ference frame:Vesc is the escape velocity vector expressed in
this frame.

The approximate analysis is based on a patched-conic ap-
proximation that neglects the dimension of Moon’s sphere of
influence. The trajectory is split into two geocentric legs.The
inner leg goes from trajectory perigee (usually imposed by the
launcher) to the Moon, the outer leg from the Moon to the boun-
dary of Earth’s sphere of influence (1 million km) where the
escape velocity required by the heliocentric trajectory must be
met at the specified escape time. LGA is modeled as a relative
velocity rotation at Moon’s intercept, which separates thegeo-
centric legs. The leg from the Moon to escape (subscript 2) is
first considered.

3.1. Moon to Escape
Moon’s orbit is on the x-y reference plane and the inter-

cept point must coincide with one of the nodes of the space-
craft escape hyperbola. The sign of the escape velocity compo-
nent along the z-axisvesc,z determines where the ascending node
must be positioned with respect to the direction of the outgoing
asymptote: escape and ascending node must be on the same
side for positivevesc,z (an indexiz = +1 is introduced to denote
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Fig. 1. Geometry of generic escape hyperbola for positivevesc,z (left) and
negativevesc,z (right).

this situation) and on opposite sides in the other case (iz = −1).
The position of the ascending node, that is, the RAAN valueΩ2,
defines the flyby point. The remaining orbital parameters of the
hyperbola are consequently determined, onceΩ2 is selected.

Energy and semimajor axis depend on the escape velocity

a2 = −
1

v2esc − 2/resc
(4)

A unit vector pointing to the ascending nodeun (components al-
ong x, y and z are cosΩ2, sinΩ2, and 0, respectively) defines the
remaining orbital elements: first, the angle between ascending
node and escape velocityα = cos−1(un ·uesc/vesc) is determined.
Then, the unit vector along angular momentumuh is computed,
as it is parallel toiz(un × uesc). The inclination is thus related to
the angular momentum component along the z-axis

i2 = cos−1(uh,z) (5)

Since the flyby is at a node, one has (see Fig 1) eitherα+Φ−
ω2 = π (positivevesc,z) orα−Φ+ω2 = π (negativevesc,z), where
the hyperbola half-angleΦ = cos−1(1/e2) has been introduced.
The distance from the Earth must be the same for spacecraft and
Moon at flyby, that is,

rM =
a2(1− e2

2)

1+ e2 cosν2
(6)

In general, flyby can occur at either node for anyvesc,z, with the
true anomaly at flybyν2 = −ω2 (flyby at ascending node,ia =
+1) orν2 = −ω2+π (descending node,ia = −1). However, flyby
at descending node for positivevesc,z and at ascending node for
negativevesc,z cannot take place ifν2 < −Φ.

By manipulating these equations one gets

iaiz sinα
√

e2
2 − 1 = −(1− ia cosα) − (a2/rM)(e2

2 − 1) (7)

which is squared to obtain a quadratic equation ine2
2 − 1

ca(e2
2 − 1)2 + cb(e2

2 − 1)+ cc = 0 (8)

with

ca = (a2/rM)2 (9)

cb = 2(a2/rM)(1− ia cosα) − sin2α (10)

cc = (1− ia cosα)2 (11)

The quadratic equation is solved to obtain

e2 =

√

√

√

1+
−cb ±

√

c2
b − 4cacc

2ca
(12)

The largest of the two solutions given by Eq. (12) (plus sign)
is the only admissible solution of the radical equation (7) when

the coefficient ofe2
2 − 1 and

√

e2
2 − 1 in Eq. (7) have the same

sign: sincea2 < 0, this occurs wheniaiz = +1, that is, for
flyby at ascending node and positivevesc,z or flyby at descen-
ding node and negativevesc,z. The lower solution (minus sign)
must instead be selected when flyby and escape are on opposite
sides with respect to the direction of the outgoing asymptote.
This solution, as already highlighted, does not exist when the
hyperbola crosses the reference plane only once, that is, when
ν2 < −Φ. Oncee2 has been determined,Φ, ω2, andν2 are
immediately obtained.

Once the orbital elements are known, one can easily obtain
the relative velocity at Moon’s flybyV∞+. This analysis can be
performed for any flyby position (i.e.Ω2); however, an iterative
procedure is required to determine the feasible flyby when the
escape time is specified, in dependence of the actual Moon’s
position at the relevant time. The analysis considers flyby at
both ascending and descending node. Starting from a tentative
value forΩ2, ome computes the orbital parameters and the time
of flight from the Moon to the boundary of the sphere of influ-
ence (1 million km, here), where escape is assumed to occur.
The actual Moon’s position at the flyby time is thus determined
and defines the new value ofΩ2. A few iterations are typi-
cally required to obtain convergence. For the sake of simplicity,
Moon’s orbit is assumed to be circular to computerM and the
relative velocity vector.

It is important to note that there is a misalignment between
the velocity directions at infinity and at the boundary of thesp-
here of influence, that is,β = (π/2− νesc + γesc)−Φ. At escape,
the true anomaly is obtained from

resc =
a2(1− e2

2)

1+ e2 cosνesc
(13)

and the flight path angle is

γesc = tan−1 e2 sinνesc

1+ e2 cosνesc
(14)

Instead of numerically solving for the orbital elements that
achieve the correct orientation of the escape velocity,β is ad-
ded to the rotation that must be provided by Moon’s flyby, as
discussed later.
3.2. Perigee to Moon

The∆Vp to transfer the spacecraft from a circular parking or-
bit to the trajectory towards the Moon defines the escape mass.
The∆Vp can be split into multiple burns as discussed later. The
escape maneuver begins at the end of the last upper-stage burn
and it is assumed that the spacecraft is at the perigee of its tra-
jectory. The trajectories from perigee to the Moon (subscript
1) that allow feasible flybys to match the escape conditions are
here found. Intercept is again on the reference plane and must
therefore occur at a node of the spacecraft orbit:Ω1 = Ω2 when
the flyby is either at the ascending or at the descending node of
both orbits, whereasΩ1 = Ω2 + π when it is at the ascending
node of one orbit and descending node of the other one.

The magnitude of the relative velocity before and after the
flyby must be the sameV∞− = V∞+. Assuming Moon’s orbit to
be circular

V2
∞− = u2 + (v − VM)2 + w2 = V2

∞+ (15)



whereVM =
√

1/rM is Moon’s circular velocity. The radial,
eastward and northward components of the spacecraft velocity
at Moon’ encounter are

u =
√

1/rp/(1+ e1)e sinν1 (16)

v =

√

1/rp/(1+ e1)(1+ e1 cosν1) cosi1 (17)

w = ia
√

1/rp/(1+ e1)(1+ e1 cosν1) sini1 (18)

whereν1 is the true anomaly at flyby of the perigee-Moon tra-
jectory.

Substitution gives the radical equation

(V2
∞+ − 3/rM) + (1− e1)/rp =

= −2
√

rp/r3
M cosi1

√

1+ e1 (19)

which becomes the quadratic equation

kae2
1 + kbe1 + kc = 0 (20)

with

ka = (1/rp)2 (21)

kb = −4rp cos2 i1/r
3
M − 2/r2

p − 2(v2in f − 3/rM)/rp (22)

kc = (v2in f − 3/rM)2 + 2(v2in f − 3/rM)/rp +

1/r2
p − 4rp cos2 i1/r

3
M (23)

Among the solutions

e1 =

−kb ±
√

k2
b − 4kakc

2ka
(24)

the larger one (plus sign) must be selected fori1 ≤ π/2, whereas
the correct solution is the lower one (minus sign) for retrograde
orbitsi1 ≥ π/2. Frome1, one hasa1 = rp/(1− e1). The solution
must be discarded for elliptical orbits (a1 > 0) if the apogee
ra = a1(1+ e1) is lower thanrM. For acceptable solutions,rM =

a1(1− e2
1)/(1+ e1 cosν1) providesν1 (only outgoing trajectories

are here considered and 0< ν1 ≤ π). The argument of periapsis
is then determined, beingν1 = −ω1 (ascending node) orν1 =
−ω1 + π (descending node).

Velocity rotation at flyby is given by the angle between the
computedV∞+ andV∞− vectors with the addition of the supple-
mentary rotationβ, as escape is actually reached at the boundary
of the sphere of influence and not at infinity

δ = β + cos−1[(V∞− · V∞+)/V2
∞] (25)

According to the patched-conic approximation

δ = 2 sin−1 µM/rps

V2
∞ + µM/rps

(26)

with µM being the Moon’s gravitational parameter andrps the
flyby periselenium, which can thus be determined. Trajectories
are deemed feasible when the periselenium is at least 50 km
above Moon’s surface.

For any feasible flyby, the values of position and velocity at
perigee (Vp) are evaluated and then rotated to the J2000 geo-
centric frame to determine the corresponding latitude, longitude

and azimuth. The departure energy gives the required launch
C3. Azimuth and∆Vp = Vp − Vc can be used to evaluate the
mass that the launcher can insert into the escape trajectory.
3.3. Verification

The most favorable escape trajectories are verified by nume-
rical integration of the equations of motions in the EME2000
geocentric reference frame.

dr/dt = u (27)

dV/dt = −r/r3 + T/m + ap (28)
dm/dt = −T/c (29)

Perturbationsap from Moon’s and sun’s gravity, solar radiation
pressure and nonsphericity of the Earth are considered. The
Earth potential is described with the Earth Gravitational Mo-
del EGM2008, which provides normalized spherical harmonic
coefficients for the Earth gravitational potential; terms up to the
8-th degree are considered.

The indirect method applied to the heliocentric leg could also
be used for the optimization of the escape maneuver. However,
in the present paper, a nonpropelled escape maneuver is consi-
dered and a simpler approach, which does not require optimi-
zation, can be used. In fact, if thrust is excluded and the depar-
ture inclination is specified, the number of boundary conditions
(five conditions that fix initial inclination and escape radius and
velocity components at the required escape time) exactly ma-
tches the number of free parameters (time, longitude, latitude,
velocity magnitude and azimuth at departure) and a single so-
lution exist. The same procedure based on Newton’s method
employed for the heliocentric leg is used to determine the ini-
tial unknowns, starting from the values provided by the approx-
imate analysis.

4. Mission Design Procedure

Phasing loops are used to obtain the correct timing.9) A di-
rect launch to the Moon requires a strict timing and would have
a very short launch window. It is instead assumed that the laun-
cher parks the spacecraft into a 200-km circular orbit in the
correct plane a few days before the actual start of the escape
trajectory. The launcher upper stage performs a first impulsive
maneuver at the proper location along the orbit, to place thespa-
cecraft into an elliptic orbit with an apogee that is lower than the
value corresponding to the trajectory to reach the Moon. Addi-
tional burns can be applied at each subsequent perigee passage
to adjust the orbit period and obtain the correct timing, with the
last one that achieves the required trajectory to the Moon atthe
proper time. This strategy allows for suitable launch windows,
as the burn∆Vs can be adjusted to account for the actual launch
conditions.

The useful mass that a launcher can deliver to a specific orbit
depends on the energy of the trajectory and on the launch azi-
muth, but complete data for existing launcher and high-energy
orbits are usually not available. They are instead often given for
circular low Earth orbits (e.g., 200-km altitude). The following
computations are here used to replicate the Delta IV Heavy per-
formance.11) The starting mass on the initial 200-km parking
orbit is the sum of useful mass (mu) and upper stage dry mass
md (3550 kg). The useful mass given by NASA’s Launch Vehi-
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Fig. 2. Final mass of the heliocentric as a function of escape velocity and
date for a 10000 kg initial mass.

cle Performance Website10) is here approximated with the qua-
dratic equation

mu = 26280− .6642(A − 90)2 (30)

wheremu is in kg and the azimuthA in degrees. The following
burns sum up to∆V = 1.05(Vp − Vc), that is the difference
between the perigee velocity at the start of the trajectory to the
Moon and the circular velocity on the parking orbit, with the
addition of a 5 % margin. The useful escape mass is evaluated
with the rocket equation

mesc = (mu + md)exp[−∆V/c] − md − mPAF (31)

where the stage dry mass and the payload attach fitting mass
(250 kg) are subtracted from the final mass. The stage effective
exhaust velocity corresponds to a 460 s specific impulse.

The determination of suitable escape sequences starts from
the analysis of the heliocentric leg. Trajectories with optimal
departure date are found for different values of the escape velo-
city magnitude. The departure dates are then varied to evaluate
the effect of performance (that is, the final mass). For each
trajectory, the required escape conditions are also determined.
Convergence is typically very fast and a few minutes are re-
quired for this analysis. The approximate analysis of the geo-
centric leg evaluates flyby feasibility (height on Moon’s surface
must be above 50 km), and provides the initial velocityVp as
a function of inclinationi1 with respect to the equatorial plane.
Given the latitude of the launch siteϕL, launch azimuth is eva-
luated from

cosi1 = cosϕL sinA (32)

to obtain an estimation of the escape mass. The best opportuni-
ties are then numerically verified with the perturbed dynamical
model to obtain exact departure conditions and escape mass.
The heliocentric legs for these escape conditions are finally re-
optimized to obtain the actual mass delivered to the target aste-
roid.

5. Results

A mission to asteroid 2001 QJ142 with departure in early 2022
is presented as a test case. This asteroid is a possible alterna-
tive target for the Asteroid Robotic Redirect Mission (ARRM).

Table 1. Escape trajectories forVesc = 1.2 km/s.

Items Estimate Actual
Launch C3, km2/s2 -1.27 -1.34
Launch longitude, deg 154 150
Launch latitude, deg 16 18
Periselenium, km 1989 1904
Escape mass, kg 10469 10480

Table 2. Escape trajectories forVesc = 1.3 km/s.

Items Estimate Actual
Launch C3, km2/s2 -1.05 -1.13
Launch longitude, deg 162 159
Launch latitude, deg 13 15
Periselenium, km 1961 1898
Escape mass, kg 10435 10448

Table 3. Escape trajectories forVesc = 1.4 km/s.

Items Estimate Actual
Launch C3, km2/s2 -0.76 -0.84
Launch longitude, deg 169 168
Launch latitude, deg 9 11
Periselenium, km 1965 1921
Escape mass, kg 10392 10403

Table 4. Summary of performance.

Items Sol. 1 Sol. 2 Sol. 3
Vesc km/s 1.2 1.3 1.4
Escape start 2/26/22 2/26/22 2/27/22
Escape 3/8/22 3/8/22 3/8/22
Escape mass, kg 10480 10448 10403
Rendezvous 6/17/23 6/13/23 6/10/23
Final mass, kg 9561 9566 9556

Escape occurs in March 2022 with rendezvous with the target
asteroid in June 2023. Performance of the heliocentric leg for a
reference escape mass of 10000 kg are presented in Fig. 2. The
heliocentric trajectory benefits from a higher escape energy, and
the final mass grows with the escape velocity magnitudeVesc.
However, lower escape masses are to be expected whenVesc

grows and the actual escape mass must be used for a meaning-
ful comparison.

Direct escape suffers from high energy and declination of the
escape hyperbola well above 40 degrees, which forces a launch
azimuth different from 90 degrees. Expected escape masses
are below 9500 kg. When LGA is considered, solutions which
combine eastward launch from Cape Kennedy (ϕL = 28.5 de-
grees) and low energy escape with C3 well below−0.5 km2/s2

are found.
Estimations of the approximate analysis and results from the

verification are compared in Tables 1-3 for the three best op-
portunities, corresponding toVesc = 1.2,1.3,1.4 km/s, respecti-
vely. These trajectories require departure around MJD 59646
(March 8,2022) slightly later than the optimal date determined
by the heliocentric leg optimization for the lower values ofes-
cape velocity. They have inclination equal to the latitude of
the launch site for eastward launch and flyby at the ascending
node (with respect to the plane of Moon’s orbit) of both perigee-
Moon and Moon-escape legs.

The estimations are sufficiently accurate to find suitable ten-
tative solutions to assure convergence, even though the integra-
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tion is numerically sensitive. Differences between the approxi-
mate and exact trajectories are essentially due to the assumption
of circular Moon’s orbit for the approximate analysis and, to a
lesser extent, to the angleβ and perturbations that affect the ex-

act trajectory. Results of the re-optimization of the heliocentric
leg for the selected escape maneuvers are presented in Table
4. The proposed procedure allows to find the optimal value of
escape velocity for the proposed mission with a limited compu-
tational effort.

The globally optimal solution corresponds tovesc,z = 1.3
km/s and is presented in Figs. 3-5. The approximate and exact
trajectories aim at slightly different points but the similarities of
the solutions are evident. The trajectories after the flyby differ
because of the angleβ discussed before. Difference at departure
are due to the different Moon distance in the two models, and
in part to the effect of Earth oblateness. The exact solution can
be used to identify the flyby geometry: the spacecraft passes
below the Moon, to obtain the required high escape declination
towards the northern hemisphere.

6. Conclusion

A procedure for the design of LGA escape maneuvers for
interplanetary transfers has been presented. In contrast to exis-
ting methods, the proposed procedure starts from the analysis
of the heliocentric leg with an indirect optimization method and
then finds suitable escape maneuvers by means of an approxi-
mate analysis followed by numerical verification. The efficient
indirect optimization of the heliocentric legs and the analytical
approximate analysis of LGA escape maneuvers limit the com-
putational effort. Results prove the effectiveness of the method,
which can provide the globally optimal solution to target speci-
fic destinations in short times.
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