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Small-Body Lander Simulations Using the GPU
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We demonstrate the application of a contact model for the simulation of small-body lander/hopper spacecraft using the paral-
lelization capabilities of a high-end video card (GPU). The target body surface is represented implicitly, which enables fast distance
computations between high-resolution shape models and the spacecraft. The motion of the latter is propagated relative to a rotat-
ing target-fixed frame. Contacts between the spacecraft and that target are modeled using a distributed normal force and torque.
Friction and rolling resistance forces and torques are applied at an effective application point, and regularized to smooth transitions
between stick and slip. Simple examples of a cube bouncing and settling on a planar surface are used to verify the model; its potential
applications are demonstrated using simulations of a MINERVA-II hopper analog deployed to comet 67P/Churyumov-Gerasimenko.
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1. Introduction

Asteroids and comets, known collectively as the small bodies
of our Solar System, have been receiving ever-increasing atten-
tion as potential targets for both Discovery- and New Frontiers-
class space missions. They are expected to provide a window
through time into the conditions of the early Solar System, and
may teach us about its formation and evolution.1) Similarly,
these missions may provide a proving ground for planetary de-
fense strategies2) and in-situ resource utilization techniques.3)

The science returns from past missions were provided primarily
through remote sensing operations from an orbiting spacecraft;
this return may be increased significantly by including a lan-
der and/or surface mobility operations. However, the delivery
of a lander to the surface of a small body is often challeng-
ing, as experienced by both the Philae and Minerva landers.4, 5)

To convince future mission designers to include landers/rovers
as primary payloads, we require methods to predict the settling
statistics of various deployment strategies. Similarly, to demon-
strate controlled mobility of a surface hopper and the effective-
ness of on-board autonomous planning, high-fidelity simulation
software is required.

Previous work by the authors on the motion of small-body
landers has established techniques to model the complex gravi-
tational field and surface of a small body at high resolution and
low numerical burden.6, 7) The presence of rocks on the small-
body surface, as observed on asteroid Itokawa by the Hayabusa
spacecraft, is accounted for using a procedural geometry gen-
eration technique.7) The previously developed software can be
used to validate lander deployment strategies and to investigate
sensitivities to uncertain parameters. Significant effects due to
the lander mass distribution and shape, density of rocks on the
surface, and surface interaction coefficients on the resulting de-
ployment statistics have been identified. Although our CPU-
based implementation of this software is effective, its perfor-
mance is limited.

In this work, we develop techniques to perform lander/hopper
simulations using graphics processing units (GPUs) instead, as
they provide massive parallelization compared to a CPU. Fur-
thermore, the GPUs architecture enables various novel model-
ing strategies. Instead of representing the surface with an ex-
plicit polyhedron, it is implicitly defined by a signed distance
field (SDF), see also Fig. 1. The SDF allows for fast spatial
queries, such as collision detection, and is well-suited to the ad-
dition of detailed surface features, such as rocks, craters, and
small cracks, by procedurally distorting the SDF with multi-
ple octaves of fractal noise.8) We demonstrate the use of a
distributed compliant contact model capable of handling both
collisions and continued contact of an arbitrarily-shaped lan-
der/hopper with this surface. The model includes forces and
torques from the surface normal reaction, friction, and rolling
resistance forces and torques. The resulting lander/hopper sim-
ulation software enables full life-cycle simulations: from moth-
ership release, to bouncing and settling on the surface, and to
hopping surface mobility operations. We present the method-
ologies used in, and first results provided, by this novel tech-
nique.

Fig. 1. Sections of the SDF of comet 67P/C-G.
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2. Equations of Motion

We model the motion of some rigid spacecraft with arbitrary
shape and inertia. The spacecraft moves in the neighborhood
of a targeted small body, denoted the target, also with arbi-
trary shape (see also Fig. 2). The target is assumed to rotate
uniformly about its axis of major inertia. The state X of the
spacecraft-target system is represented using six vectors, which
together contain 20 state variables:

X =
[
x v q ω Q Ω

]T
(1)

The x and v vectors are the spacecraft center of mass position
and velocity, expressed relative to the target, i.e., relative to a
rotating, non-inertial reference frame fixed to the small-body
center of mass. The spacecraft attitude is also expressed rela-
tive to the target, using the quaternion q and corresponding an-
gular velocity ω. Finally, the attitude of the target is expressed
relative to an inertial frame using the quaternion Q and corre-
sponding angular velocity Ω. These state vectors are illustrated
in Fig. 2.

The equations of motion expressing the change of these state
variables are given as:

Ẋ =



v
g(x) − [Ω̃][Ω̃]x − 2[Ω̃]v + 1

m
∑

Fc
1
2 [B(q)][0 ω]T

−[IS ]−1[ω̃∗][IS ]ω∗ − [ω̃∗]ω + [IS ]−1 ∑
Lc

1
2 [B(Q)][0 Ω]T

0


(2)

whereω∗ is the spacecraft angular velocity relative to an inertial
frame, which may be computed as ω∗ = ω + Ω. Furthermore,
g(x) is the gravitational attraction of the target on the space-
craft, and

∑
Fc and

∑
Lc are the contact forces and torques on

the spacecraft. The [IS ] and [IT ] matrices are the inertia matri-
ces of respectively the spacecraft and the target, and m is the
spacecraft mass.

Fig. 2. Illustration of the applied state variable vectors.

3. Signed Distance Field

The irregular shape of small bodies is usually modeled ex-
plicitly using a polyhedron, a closed surface consisting of ver-
tices connected by triangular facets. High-resolution small-
body polyhedron models consist of a large number of facets;
consider for example the 1.9-million facet model of comet
67P/Churyumov-Gerasimenko (67P/C-G) shown in Fig. 1. The

polyhedron can also be used to capture the irregular gravita-
tional field of a small body, when assuming a constant density
(see Werner and Scheeres9)). The ability to capture both shape
and gravity makes the polyhedron model a useful tool in the
simulation of small-body lander/hopper spacecraft. For exam-
ple, consider the lander simulation work by Tardivel et al.6) and
Van wal et al.7)

Despite the successful implementations of the aforemen-
tioned works, the polyhedron suffers from limitations due to its
explicit nature. Collision detection between a spacecraft and the
polyhedral surface requires distance computations between the
two. When performed naı̈vely, the model resolution may render
these distance computations numerically burdensome. Further-
more, even high-resolution models such as that of Fig. 1 are
limited in terms of the smallest resolved surface features. Al-
though a collection of smaller polyhedra may be used to pop-
ulate the surface with rocks, this inevitably further increases
the computational cost of collision detection.6, 7) In an attempt
to avoid these limitations, we instead represent the small-body
surface implicitly using a signed distance function d(p) with the
following properties:

d(p) = s · min
∀cεT
‖p − c‖ with s


> 0 if p inside
= 0 if p on surface
< 0 if p outside

(3)

In words, this function provides the signed minimum distance
between a point p and all points c on the surface of the target T .
When using a trivial shape such as a sphere or ellipsoid, the
corresponding signed distance functions are (relatively) simple.
Unfortunately, arbitrary bodies do not have a closed-form sur-
face expression that can be molded into a distance function. In
this case, we can make use of a signed distance field (SDF).
An SDF is a three-dimensional grid surrounding a body, with
its mesh points storing the minimum signed distance between
the respective points and the body.10) As this only samples
the signed distance at those particular points, an interpolation
method must be applied to evaluate the SDF at intermediate
points. Different interpolators exist; we use the simple and fast
trilinear interpolator illustrated in Fig. 3. This figure shows the
8 mesh points d(i, j, k) of the SDF that define the cuboid region
containing p. By interpolating these 8 values, we can obtain
the minimum signed distance at p. Furthermore, the gradient of
d(p) yields the direction of the surface normal N̂p through p.11)

Fig. 3. Illustration of the trilinear interpolation of a signed distance field.

In order to generate the initial SDF mesh point values
d(i, j, k), we make use of the open-source SDFGen tool by
Batty.12) This allows us to sample the signed distance function
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Fig. 4. Sample fBm noise generation on the SDF of comet 67P/C-G, for varying noise octaves.

-

of a polyhedron model at the desired mesh points, and apply
the trilinear interpolator to the resulting SDF. As an example,
we show slices of the SDF of comet 67P/C-G, in Fig. 1. The
coloring of the three planar slices in this figure is indicative of
the minimum distance to the comet surface, which was obtained
by sampling its SDF. For more details on the construction of this
SDF, the reader is referred to Refs. 10, 13).

When using a polyhedron shape model, distance computa-
tion requires iteration over a set of surface features. Generally
speaking, the numerical burden of this iteration increases when
the resolution of the underlying shape is increased. In contrast,
a distance computation with the SDF involves only a single
(cheap) evaluation of the interpolator. The cost of this compu-
tation is independent of the SDF resolution. Although the use
of a higher resolution SDF will increase the pre-computational
cost, the simulation-time effort of a low- and high-resolution
model will be the same (if noise is not added). This allows us to
perform fast simulations on high-resolution small-body surface
models.

Furthermore, the SDF is well-suited for the inclusion of
procedurally-generated noise. Various noise generation algo-
rithms exist; see for example Ebert et al.8) We apply the
commonly-used fractional Brownian motion (fBm). This al-
lows us to perturb the d(p) values returned by an SDF with
continuously varying noise, at different frequencies and ampli-
tudes. These values can be tuned to match the surface features
and irregularities observed on small bodies, allowing for the
procedural generation of such features onto an SDF.14) We pro-
vide an example of procedurally-generated fBm noise on the
SDF of comet 67P/C-G in Fig. 4. This figure illustrates how
gradually smaller surface features are generated onto the sur-
face as the number of noise octaves is increased. Rather than
explicitly storing these features using e.g. vertices and facets,
this method simply stores the parameters of the underlying dis-
tribution and generates the features ‘on-the-fly’ using random
numbers. By locally varying the noise parameters across the
surface of a body (possibly using additional three-dimensional
grids) we can include regions of varying topography, e.g. sandy
and rocky areas.

4. The Contact Model

The model we have developed generates a distributed com-
pliant soft contact response, using normal, friction, and rolling
resistance forces and torques. In contrast to hard contact mod-

els, it robustly handles both impulsive collisions and continued,
‘rolling’ contact phases, while resolving both slip and stick be-
havior in the tangential spacecraft velocity. In order to gener-
ate a distributed force response, the spacecraft shape is defined
through a collection of vertices assumed to be uniformly spread
across its surface, as illustrated in Fig. 5.

Fig. 5. Illustration of the contact geometry and normal force definition.

The position of each vertex p j is defined relative to the space-
craft center of mass using the vector r j, where p j = x + r j. By
evaluating the SDF at a vertex position, we can determine its
penetration depth d j = d(p j) into the surface, as well as the cor-
responding surface normal N̂ j = ∇d(p j). This enables a com-
putation of that vertex’s normal velocity υN, j = (v +ω× r j)TN̂ j.
This contains components from both the linear and angular
spacecraft velocities.

4.1. The Normal Force
A distributed normal force is generated by attaching spring-

damper units to all active vertices; this approach is commonly
used in literature,15) see also Fig. 5. The magnitudes of these
forces are governed by the spring and damper coefficients, k
and c. The damper coefficient is modulated to only generate a
force when the corresponding vertex is moving into the surface,
such that the applied damper force can never be cohesive. The
normal forces FN, j generate corresponding torques LN, j.

4.2. Coulomb Friction
The Coulomb friction force reduces the tangential surface ve-

locity υT of the spacecraft to zero. If we apply friction forces at
all active vertices where more than one vertex reaches υT, j = 0,
a system of inequalities must be solved in order to resolve the
force magnitudes. This is most commonly cast in the form
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of a linear complementarity problem (LCP), which must be
solved iteratively.16–18) This methodology further requires con-
vergence on the slip-stick transition epochs. Both the iterative
solution method and transition convergence are poorly-suited
for parallel implementation in a GPU environment, as these pro-
cedures are likely to stall a warp of GPU cores, significantly re-
ducing their computation speed. In order to avoid these issues,
we follow the approach by Refs. 19–21) and apply friction at a
single, effective application point pp = x + rp, defined through
a weighted sum of the active vertices:

rp =
∑
∀ j

(
d jr j

)
/
∑
∀ j

d j (4)

The application point geometry and the applied forces and
torques are also illustrated in Fig. 7. Assuming that the applica-
tion point moves a negligible distance between successive time
steps, we can express its velocity as υp = v + ω × rp. The
Coulomb friction force opposes the tangential component of
this velocity, which is defined as υT,p =

(
I3 − N̂pN̂T

p

)
υp where

N̂p = ∇d(pp) is the surface normal obtained from an SDF eval-
uation at the application point. When υT,p is non-zero, the fric-
tion force opposes it as FF,slip = −µFNυ̂T,p where µ is the co-
efficient of friction and ˆ indicates a unit vector. This force has
an associated torque LF,slip = rp × FF,slip. When υT,p reaches
zero, the friction force reduces to its sticking form FF,stick. Like
FF,slip, it acts within the tangential plane at pp, but at some re-
duced magnitude FF,slip ≤ µsFN that ensures υ̇T,p = 0. This
force can be computed from an expression of the derivative of
υp.

Due to the discrete time stepping of a numerical integra-
tor, we do not automatically step onto the precise epoch of
slip-stick transitions. This leads to chatter around the stick-
ing point, in which υT,p continually switches direction and ef-
fectively halts integration. Although it is possible to decrease
the step size as the point of stick is approached, such conver-
gence is again poorly-suited for parallel GPU implementation.
Instead, we smooth the slip-stick transitions using the regu-
larization variable η(v), illustrated on the right side of Fig. 6.
Using this variable, we define the regularized friction force as
F∗F = η(υT,p) · FF,slip +

(
1 − η(υT,p)

)
· FF,stick. Using this scheme,

the friction force is gradually smoothed from FF,slip to FF,stick as
υT,p → 0. The time histories of the regularized and unregular-
ized tangential velocity are illustrated with a dashed line on the
left side of Fig. 6.

Fig. 6. Time history of (left) regularized and unregularized tangential ve-
locity and (right) regularization variable.

Using this regularization, an integrator can smoothly transi-
tion between slip and stick without needing to precisely con-
verge on the epoch of transition. Furthermore, any deviation in
the tangential application point velocity resulting from errors in

the computed sticking friction force are damped out through the
combination of sticking and sliding friction forces.

Fig. 7. Illustration of the application point, and the friction and rolling
resistance forces and torques.

4.3. Rolling Resistance
In addition to the normal and friction forces, we also include

spinning friction or rolling resistance in our model. Rolling
resistance, as also included in e.g.,6, 19, 22) generates a torque that
opposes the angular velocity ω of the spacecraft. Whenever the
angular velocity ω , 0 (the spacecraft is “rolling”), this torque
is given as LRR,roll = −CRRFNω̂ where CRR is the coefficient of
rolling resistance. The similarity between this formulation of
rolling resistance and friction is notable; the interested reader
is referred to22) for a detailed discussion of the mechanics of
rolling resistance. When the spacecraft angular velocity ω = 0,
it is said to be in rolling stick. In analogy with Coulomb friction,
rolling resistance will act at some reduced magnitude during
rolling stick to ensure the spacecraft angular velocity remains
zero, i.e., ω̇ = 0. An expression for this torque can be derived
from the equations of motion in Eq. 2.

If the rolling resistance torque were to be applied by itself
(regardless of the value of ω), the tangential application point
velocity would change. This would, in turn, create a coupling
between the Coulomb friction and rolling resistance torques. In
order to avoid this, we follow the approach of22) and also in-
clude a rolling resistance force FRR, applied in the tangential
plane and at the spacecraft center of mass, such that rolling re-
sistance has a zero net effect on υT,p. Finally, the rolling resis-
tance torque is regularized near the ω = 0 point, following the
same regularization law applied to the Coulomb friction force.

5. Applications

By integrating the three sources of contact interactions men-
tioned above, i.e. the normal reaction, Coulomb friction, and
rolling resistance forces and torques, we can implement a simu-
lation framework for the motion of a lander/hopper spacecraft.
In this section, we provide sample simulations to verify the
model and demonstrate its applications.

5.1. Sample Motion on a Plane
As a first example, we simulate the motion of a cube impact-

ing and settling on a plane, subject to a uniform gravity field.
Vertices are placed on all eight corners of the cube. Starting
from the same set of initial conditions, we perform a simulation
for three relevant gravitational regimes, i.e., Phobos, 67P/C-G,
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and Itokawa. The resulting trajectories are plotted in Fig. 8.
We observe the distinctly different scales at which trajectories
in these three regimes take place. This is especially true for the
Phobos-like trajectory, which covers an almost negligible dis-
tance compared to the 67P/C-G- and Itokawa-like trajectories.
Nonetheless, all three exhibit a similar degree of apparent ran-
domness, similar to a die thrown on Earth.

Fig. 8. Sample simulations of a cube in the considered gravitational
regimes.

As discussed, we detect the settling of a spacecraft by track-
ing the magnitude of its linear and angular velocities. On the top
of Fig. 9, we plot the variation of the spacecraft linear and angu-
lar velocity magnitude during the settling phase of the Phobos-
like trajectory, where the contact phases are highlighted in blue.
The final parts of this phase consist of a quick succession of
several short contacts at linear velocities between roughly 10−2

and 10−5 m/s, during which the spacecraft velocities show sig-
nificant variation. This is then followed by one final, unending
contact during which both v and ω monotonically decrease to-
wards zero. This shows that a tracking of v and ω successfully
detects settling of the spacecraft, assuming the v f and ω f values
are sufficiently small.

One measure that yields insight into the mechanics of contact
is the total spacecraft energy E, which consists of contributions
from the gravitational potential, linear kinetic, angular kinetic,
and elastic potential energies. In Fig. 10, we plot the variation
of this energy during the Phobos-like trajectory. We note that,
in this collision, the spacecraft touches the surface at only one
of its corner vertices. The elastic potential energy increases to
a maximum as the spring is compressed, and then decreases as
it expands again. Corresponding variations are present in the
linear and angular kinetic energies. Over the course of the col-
lision, energy is dissipated by the forces and torques from the
damper, friction, and rolling resistance. We observe that energy
appears to only dissipate during the compression phase; the to-
tal energy curve remains flat during the restitution phase. This
behavior appears as the dampers only dissipate energy during
springs compression, and the friction force only dissipates en-
ergy while the tangential application point velocity is non-zero.

In the development of our friction model, we claimed that
our regularization method is robust against variations in the
application point position rp. To investigate these claims,

we modify the initial conditions of the Phobos-like trajectory
such that four different vertices contact the surface over the
course of some contact phase. The tangential application point
velocity variation during this multi-contact situation is shown
on the bottom of Fig. 9, for varying values of the friction
regularization tolerance υ∗T,p. This figure clearly shows that
the size of the slip-stick transition region decreases when υ∗T,p
is decreased. For all tested values of ε, the sliding velocity
tracks the sticking point where υT,p = 0 more closely when the
regularization tolerance υ∗T,p is decreased. This illustrates that
our friction force regularization is indeed robust against errors
in the sticking friction resulting from changes in rp.

5.2. Sample Motion on Comet 67P/C-G
The motion of a spacecraft impacting with and settling on

a plane provides an excellent environment for verification pur-
poses. However, it has little other use due to its simple geome-
try. In order to provide an example more relevant to the motion
of a spacecraft in the small-body environment, we consider the
MINERVAII-1A/B spacecraft as illustrated on the right side of
Fig. 11. This 1.2 kg micro-hopper is included on the Hayabusa-
2 sample return mission to asteroid Ryugu, and provides a rele-
vant test model for our simulation methodology. As the cur-
rent shape model of asteroid Ryugu is limited in resolution,
we choose to simulate a deployment of MINERVAII-1A/B to
comet 67P/C-G instead. We use the 25-meter resolution SDF
illustrated in Fig. 1 to capture the comet’s shape, and use a low-
resolution polyhedron model for gravity field evaluations. The
motion, which is plotted in Fig. 11, takes place in the Imhotep
basin on the comet’s large lobe. We note that although the
comet’s SDF was used for all simulation purposes, its polyhe-
dron model is used for visualization in Fig. 11.

The ability to simulate the motion of an arbitrarily-shaped
spacecraft to a targeted small body enables various relevant in-
vestigations. First and foremost, it allows for the simulation
of specific spacecraft such as the MINERVA-II and MASCOT

Fig. 9. (top) Velocity and (bottom) application point sliding velocity vari-
ation in the Phobos-like trajectory.
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Fig. 10. Energy variation in the Phobos-like trajectory.

Fig. 11. Sample trajectory of the MINERVAII-1A/B hopper settling on comet 67P/C-G.

hoppers on the Hayabusa-2 mission. Taking into account the
relevant uncertainties in release condition and surface interac-
tion properties, Monte Carlo-type simulations enable prediction
and analysis of e.g., the spacecraft landing ellipse, settling time,
and illumination conditions. At a more abstract level, a simula-
tion framework with this contact model can be used to perform
simulations where a single relevant parameter is tuned and its
effects on the resulting spacecraft motion analyzed. For exam-
ple, we may investigate how the spacecraft mass distribution,
spacecraft shape, or surface topography affect its motion. The
latter can be performed by using the previously mentioned pro-
cedural fBm noise generation techniques. This may, in turn,
provide design guidelines for the hardware of a lander/hopper
spacecraft.

Finally, such a framework also enables the simulation of sur-
face mobility operations, where momentum exchange devices
on board the spacecraft allow it to hop across its target and
obtain scientific measurements in multiple locations, as envi-
sioned for by the Hedgehog hopper demonstrator.23) By simu-
lating these mobility operations, it is possible to develop and
test relevant planning and control algorithms. GPU imple-
mentations of this simulation framework, which our model is
well-suited for, have the potential of significantly increasing the
speed at which these simulations can be performed, due to their
ability to run thousands of simulations in parallel.

6. Conclusion

We have presented a distributed compliant contact model
for the surface interactions between an arbitrarily-shaped lan-
der/hopper spacecraft and a targeted small-body, such as an as-
teroid, comet, or small moon. The spacecraft motion is prop-
agated relative to a rotating, target-fixed reference frame; its
shape is represented by an inertia matrix and a collection of
vertices distributed across its shell. The target surface is repre-
sented implicitly using a signed distance function, which yields
the minimum distance between a spacecraft vertex and the tar-
get surface, as well as the corresponding surface normal.

A distributed normal force and torque are generated using
spring-damper units attached to all spacecraft vertices. Friction
and rolling resistance forces and torques are applied at a sin-
gle application point, defined as the weighted sum of the active
vertices. A regularization method smooths the transition be-
tween sliding and sticking and is robust against deviations in the
computed sticking forces. The contact model is non-stiff and
avoids the need to iteratively convergence on contact changes,
rendering the model suitable for implementation on the GPU.
It robustly handles both collisions and continued contact, with-
out requiring active switching between ‘flying’ and ‘contact’
arcs. The spacecraft linear and angular velocities are tracked
and used to detect the spacecraft settling on the target surface.
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The integration of this contact model into a small-body lan-
der/hopper simulation framework enables a variety of relevant
applications. By simulating a particular spacecraft, such as the
MINERVA-II or MASCOT hoppers on the Hayabusa-2 mission,
predictions of its descent trajectory, surface dispersion, settling
time, and landing site illumination may be made, in the pres-
ence of uncertainties in the release conditions and surface in-
teraction parameters. By separately varying these parameters,
we can investigate their effects on the resulting spacecraft mo-
tion. This may reveal guidelines for in the hardware and mis-
sion planning design of a small-body lander/hopper. Finally,
the simulation of surface mobility operations may be used to
develop planning and control strategies to reach specific targets
on the small-body surface. We plan to perform these investiga-
tions in future work.
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