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Without consideration of stochastic forces, orbital dynamical systems are expressed by ordinary differential equations (ODE) and

its orbital uncertainty propagation (OUP) can be solved by one of the following methods: Monte Carlo simulations (MCS), state

transition tensors, polynomial chaos expansion, etc. While the stochastic forces or diffusion (e.g., the stochastic force from the error

in atmospheric mass density (AMD) models) may exert a large effect on a long-term OUP of nonlinear dynamical systems. The OUP

expressed by stochastic differential equations (SDE) remains an unsolved problem due to its high dimensionality and nonlinearity.

Currently, the Fokker-Planck equation (FPE), a powerful tool for OUP, has been used to propagate the probability density function

(PDF) of the orbital state. However, numerical methods used to solve the FPE suffer from the curse of dimensionality more than

analytical methods. This study investigates the impact of stochastic error in AMD models on OUP for low Earth orbit (LEO) satellites.

The solution to the OUP problem is obtained by analytically solving the FPE using the Adomian decomposition (AD) method. The AD

method is first applied to OUP in this study by approximating the time-varying PDF of the orbital state. The two-body motion model

with non-conservative atmospheric drag is used to evaluate the AD solution. This solution shows a good agreement with the MCS

result – a 0.1 m standard deviation of the orbital position (three-dimensional) from one-orbit propagation. This result also indicates

the sensitivity of the OUP to the error associated with AMD models, which can be a reference for both space situational awareness

and AMD modelling for LEO space objects.

Key Words: Orbital uncertainty propagation, Atmospheric mass density, Stochastic differential equation, Fokker-Planck equation,

Adomian decomposition method

Nomenclature

ad : Atmospheric drag

B,Bi : Phase volume of the state x and its ele-

ment xi

B : Ballistic coefficient

Ci : Probability current of in the Fokker-

Planck equation

f : Deterministic forces

g : Stochastic forces

S : Diffusion coefficient vector

H : Scale height in the atmospheric mass den-

sity model

LFP : Fokker-Planck operator

Lt : Partial differential operator with respect

to time t
p : Transition probability density function or

probability density function

Q,Q : Time-invariant correlation matrix and

correlation of Wiener process

x : Orbital state vector

r, r : Position in the Earth-centred inertial

frame and its norm

u, v : Inertial velocity in ECI and its norm

t : time

ur, vr : Relative velocity in ECI and its norm

W,W : m- and one-dimensional zero mean

Wiener process

RE : Earth radius

ωE : Earth rotation vector

μ : Earth gravitation constant

ρ : Atmospheric mass density
Subscripts

0 : Initial

i, j : Generic indexes

1. Introduction

The collision of satellites between Iridium 33 and Kosmos-

2251 on February 10, 2009 has called for more attention to

space situational awareness of Earth-orbiting objects including

active satellites and debris. The representation of orbital uncer-

tainty propagation (OUP) plays a substantial role in space risk

analysis. In addition, OUP is also critical for many aerospace

engineering applications, such as re-entry analysis and orbit

control of space objects.

Generally, the uncertainty can be categorised into three types:

(1) epistemic uncertainty (systematic bias), (2) aleatory uncer-

tainty (stochastic uncertainty) and (3) uncertainty due to human

errors.1) In OUP, the first two types are resulting from an im-

perfect knowledge of orbital dynamics and randomness in the

dynamical systems, respectively. Traditional OUP methods for

deterministic (diffusionless) dynamical systems only deal with

the aleatory uncertainties of the initial orbital state. Those OUP

methods for the non-linear systems include Monte Carlo sim-

ulations (MCS), multi-Gaussian and non-Gaussian closure,2, 3)

polynomial chaos expansion,2) and state transition tensors.4, 5)
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Most of these methods, except for MCS, are developed for ap-

proximating the actual probability density function (PDF) with

a few number of parameters, e.g., the first Nth moments. Al-

though the MCS can capture the revolution of PDF, it involves

giant sampling of the state vector according to its probability

distribution. This process needs extensive computation and thus

to be time-consuming for long-term orbital propagation. In ad-

dition, other OUP methods such as Gaussian closure rely on the

assumption of Gaussian distribution and only an approximate

uncertainty (e.g., mean and covariance) is propagated forward

in time with linear or higher order error propagation theory.6)

This approximation may lead to significant errors for long-term

propagation of non-linear orbital dynamical systems.7)

On the other hand, only a few studies have been carried

out for those orbital dynamical systems perturbed by stochastic

forces (diffusion).7–9) Although the stochastic forces are very

small, e.g., the stochastic forces from the error in atmospheric

mass density (AMD) models, they may exert a large effect on

the propagation of orbital uncertainty.10) The evolution of a dif-

fusion system can be described by an Itô stochastic differential

equation (SDE) if the random error is a stationary Markov pro-

cess, e.g., stationary Gaussian white noise (GWN).11, 12) More-

over, dynamical systems disturbed by other stationary processes

with zero initial state and independent increments (e.g., the

Poisson white noise and Lévy noise) can also be modelled with

SDE.13, 14)

Currently, a powerful tool for the OUP problems of both

deterministic and stochastic dynamical systems is the Fokker-

Planck equation (FPE), which is a partial differential equa-

tion capturing the evolution of orbital uncertainty by propa-

gating PDF or transition PDF (TPDF, or termed as conditional

PDF).15) Nevertheless, the FPE is very difficult to solve and its

exact analytical solutions only exists for limited dynamical sys-

tems. Therefore, many studies have been carried out to numeri-

cally solve the FPE using methods such as the tensor decompo-

sition, finite element approach, and path integral method.14–16)

However, the curse of dimensionality becomes even more seri-

ous for the numerical techniques. As an alternative, the Ado-

mian decomposition (AD) method can provide an analytical

solution to FPE.17) It is a computationally effective methods,

compared with the numerical methods, for linear or nonlinear,

deterministic or stochastic operator equations such as ordinary

differential equations (ODE), integral equations and partial dif-

ferential equations.18) The studies in Ref. 19, 20) show that the

AD method can provide an approximate solution in an efficient

way during a short period of time.

The OUP for a stochastic dynamical system still remains un-

solved because of its computational burden and the curse of di-

mensionality. In this study, the AD method is applied to solving

the FPE of orbital dynamics. The outline of the rest of the pa-

per is as follows. Section 2. introduces the FPE of stochastic

dynamical systems and its properties and Section 3. reviews the

AD method and its application in solving FPE and some rele-

vant conclusions are presented. Section 4. elaborates the imple-

ment of using the AD moethod to solve the FPE and AD method

in details, followed by a numeric example to evaluate the new

method. Section 6. presents the Conclusions.

2. Fokker-Planck Equation

The FPE, or forward Kolmogorov equation, depicts the evo-

lution of the PDF of a stochastic dynamic system associated

with an Itô process5)

dx = f (x, t) dt + g(x, t) dW(t), (1)

where x(t) ∈ R
n is a n-dimensional state vector (position-

velocity); dx = [dxi]
T ∈ R

n; f (x, t) : R
n × [0,∞] → R

n de-

notes the deterministic terms of the dynamical systems; g(x, t) :

R
n × [0,∞] → R

n×m denotes the stochastic terms (diffusion);

W(t)t∈(0,T ) = [Wi(t)]T (i = 1, 2, . . . ,m) is a m-dimensional zero

mean Wiener process (the Brownian motion) with a correlation

function

E

{
dW(t) dWT (s)

}
= δ(t − s) Qdt, (2)

where δ is the Dirac delta function; Q is the time-varying cor-

relation matrix (or diffusion matrix) with a size of n×m. The f
and g are supposed to be continuous and bounded in R

n, which

can generally be satisfied in most of physical problems.

The evolution of the TPDF (or conditional PDF) is governed

by the FPE11, 12)

∂

∂t
p(x, t | x0, 0) = LFP (p(x, t | x0, 0)) , (3)

where

LFP(.) = −
n∑

i=1

∂

∂xi

[
f (x, t)(.)

]
i

+
1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂x j
[S(x, t)(.)]i j ,

(4)

S
n×n

(x, t) = g(x, t) Q(t) gT (x, t). (5)

Here LFP(.) is the FPE operator for n-dimensional variables,

f (x, t) and S(x, t) are known as the drift coefficient vector and

diffusion coefficient matrix (non-negative definite); x0 ∈ R
n is

the initial state of x whose expectation and covariance are μ
and Σ, respectively; subscript i represents the ith element of a

vector and the index i j represents the (i, j) element of a matrix;

p(x, t |x0, 0) : Rn × [0,∞] → [0, 1] is the TPDF centred at x0

with the the normalisation condition∫
B

p(x, t | x0, 0) dnx = 1, (6)

which ensures the solution of the FPE to be a valid TPDF,

whose moments of arbitrary order are assumed to be existed

and finite. In addition, the initial condition with respect to x0

will satisfy15)

lim
t→0

p(x, t | x0, 0) = δ(x − x0), (7)

where B = B1 × · · · × Bn (Bi ∈ R) is the time-

invariant phase volume of x. The expression
∫
B

(.) dnx denotes∫
B1
· · · ∫

Bn
(.) dx1 · · · dxn. Note that the phase volume can be ei-

ther natural boundaries (±∞) or a finite real space. The rela-

tionship between the PDF and TPDF of x for a Markov random

process can be expressed by

p(x, t) =
∫
B

p(x, t | x0, 0) · p(x0, t) dnx0, (8)
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where p(x, t) : R
n × [0,∞] → [0, 1] is the PDF of x and

p(x, t) | t=0 = p(x0, 0) is the initial PDF of x at the time of t.
Taking the limits to both sides of Eq. (8) as t approaches to 0

yields Eq. (7).

Since the FPE is also applicable to PDF (proof refers to Ap-

pendix A):

∂

∂t
p(x, t) = LFP (p(x, t)) . (9)

All the formulas above for the TPDF can be applied to PDF,

except for its initial condition. Although, the FPE in the form

of PDF is used in the following of this paper, similar equations

for the TPDF can also be obtained.

The FPE in Eq.(3) is essentially a partial differential equation

problem. Ref. 5) showed that the normalisation condition in

Eq.(6) can be satisfied in any dynamical system without diffu-

sion terms. However, this condition can be extensively applied

to any dynamical system if following boundary conditions are

satisfied at time t

lim
x→sup(B)

p(x, t) = lim
x→inf(B)

p(x, t) = 0,

lim
x→sup(B)

∂

∂x
p(x, t) = lim

x→inf(B)

∂

∂x
p(x, t) = 0n×1,

(10)

where sup and inf indicate the boundaries of the B. Refer to

Appendix B for detailed proof.

Note that Eq. (10) is a sufficient but not the necessary con-

dition for the normalisation condition. Usually, this pair of

equations hold true for most of statistical distributions (e.g., the

Gaussian normal distribution), otherwise
∫
B

p(x, t)dnx > ∞. In

addition, the k-th moment of the initial PDF is assumed to be

existed, i.e.,
∫
B

xk p(x, t)dnx < ∞.

The following two properties can be derived from the defini-

tion of FPE in Eq. 3

(1) The FPE operator is a linear operator.

Considering two PDFs A and C from the space B × [0,+∞]

to [0, 1]:

LFP (a ·A + c · C ) = aLFP (A ) + cLFP (C ) , (11)

where a and c are real constants. This property can be used to

speed up the computation of Adomian series in parallel (shown

in Section 5.).
(2) The expectations of the state for the SDE problem and its

corresponding ODE problem are identical.

Applying expectations to both sides of Eq. (1) and using the

boundary conditions given in Eq. (9) yields

E(x, t) =
∫ t

0

∫
B

p(x, τ) f (x, τ) dnxdτ. (12)

The corresponding deterministic dynamical system to the

SDE system is given by the following:

dx = f (x, t) dt, (13)

which has the same expectation as that given by Eq. (12).

The results reveal that the stochastic forces in a SDE system

do change the propagation of PDF but the expectation of the

state will remain the same.

3. Application of AD method in FPE

3.1. Principle of AD method
Rewriting the FPE in Eq. (3) in the form of PDF21) leads to

Lt (p(x, t)) = LFP (p(x, t)) , (14)

where Lt(p) =
∂p
∂t , and p can be an arbitrary PDF. If the inverse

operator of Lt(.) is existed, it can be given by the following

definite integral with respect to τ from 0 to t

L−1
t (.) =

∫ t

0

(.)dτ, (15)

Applying the operator to both sides of Eq. (14) yields

p(x, t) = p(x, 0) +L−1
t (LFP(p)) . (16)

p(x, t) can be expressed by a sum of components:

p(x, t) =
∞∑

i=0

pi(x, t), (17)

where pi(x, t) is determined by the following recursive equa-

tions:

⎧⎪⎨⎪⎩
p0(x, t) = p(x, 0)

pi+1(x, t) = L−1
t (LFP(pi)) (i ≥ 0)

(18)

We can find that
∫
B

p(x, t)dnx is also an integral invariant if

p0(x, t) meet the condition in Eq. (10) (see Appendix C for more

details), although pi(x, t)(i ≥ 1) is not a strict non-negative dis-

tribution function. Now the N order approximation of the solu-

tion is defined as φN(x, t) =
∑N

i=0 pi(x, t).
3.2. Properties of the AD method
3.2.1. Convergence of the AD method

The convergence of the AD method has been proved using

fixed point theorems under two given assumptions: (1) the so-

lutions of a differential equation can be expressed as a series of

functions which is assumed to be absolutely convergent and (2)

the convergence radius of the Adomian polynomials is equal

to infinity.22–24) Refs. 25, 26) show that convergence of the

AD method is not limited to these two assumptions and the

fixed-point theorem. The convergence on AD method for non-

contractive non-linear equation has been investigated in Ref.

27). Nevertheless, the speed of convergence is the largest lim-

itation for the AD method, especially for the high order differ-

ential or high dimension problems.

Note that the AD method is essentially based on the Adomian

series, which is an advantageous rearrangement of the Banach-

space in computation similar to the Taylor expansion series.18)

The choice of decomposition in AD method is not unique.18) It

provides an advantageous characteristic to design the recursion

schemes of AD method. For instance, convergence parameters

are introduced into the AD method in order to achieve larger ef-

fective regions of convergence.18, 28) In this study, an improved

recursive method of AD method is proposed with a convergence

parameter, which is determined from the solutions to the corre-

sponding ODE problem (see Section 4.).
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3.2.2. Moment of the PDF solution to FPE
The propagation of PDF using AD method can provide more

information of interest than traditional way, e.g., propagation

of expectation and covariance. Nevertheless, the expectation

and covariance (or the first and second moments) are still used

as two benchmarks in this study to evaluate the improved AD

method. Substituting Eq. (17) into the kth moment of x at the

epoch of t:

E(Xk, t) =
∫
B

p(x, t) · xkdn x

=

∞∑
i=0

(∫
B

pi(x, t) · xkdnx
)
=

∞∑
i=0

E
k
i (t).

(19)

where X indicates the random variables whose PDF is p(x, t);
E

k
i (t) is the kth moment for the PDF pi(x, t).
This means that the moment of p(x, t) is the sum of E

k
i (t)

determined by p(x, t). Applying Eqs. (10) and (18) to the equa-

tion above, the first two moments for the PDF pm(x, t) can be

simplified as

E
1
m(t) =

∫ t

0

(∫
B

pm−1 f (x, τ)dnx
)

dτ, (20)

E
2
m(t) =

1

2

∫ t

0

[∫
B

(
S(x, τ) + f (x, τ) · xT

+x · f T (x, τ)
)

pm−1 dnx
]
dτ. (21)

The moments for higher orders can be derived but are ex-

cluded here for complexity. To be more general, for a given

differentiable and continuous scalar function h(x, t), we have

∫
B

h(x, t) pm dnx

=

∫ t

0

⎡⎢⎢⎢⎢⎢⎢⎣
∫
B

⎛⎜⎜⎜⎜⎜⎜⎝−
n∑

i=1

fi
∂h
∂xi
+

1

2

n∑
i=1

n∑
j=1

S i j
∂2 h
∂xi∂x j

⎞⎟⎟⎟⎟⎟⎟⎠ pm−1 dn x

⎤⎥⎥⎥⎥⎥⎥⎦ dt,

(22)

which is obtained assuming that the products of h(x, t) and pm

vanish on the boundary of B.

lim
x→sup(B)

h(x, t) pm = lim
x→inf(B)

h(x, t) pm = 0,

lim
x→sup(B)

h(x, t)
∂pm

∂x
= lim

x→inf(B)
h(x, t)

∂pm

∂x
= 0n×1.

(23)

4. OUP in static orbital dynamics

The orbital dynamics of LEO satellites with no diffusion term

can be expressed by Eq. (13), in which x is in the Earth-centered

inertial (ECI) Cartesian frame; f (x, t) : R
6 × [0,+∞] → R

6

can include Earth gravitational force, N-body attraction, solar

radiation pressure, and atmospheric drag, Earth albedo radia-

tion pressure, Earth infrared radiation pressure, etc.29) For sim-

plicity, only two-body motion perturbed by atmospheric drag is

Fig. 1. Histogram of q = Δρ/ρ (a) and Quantile-Quantile plot between q
and a standard Gaussian distribution (b); q is the ratio of error in DTM2012-

model-derived AMD (Δρ) to the model-derived AMD (ρ). The reference

AMD values are derived from accelerometer measurements collected from

the GRACE-A satellite in 2009.

considered in this study which can be formulated as

dx =
[

u
− μr3 r + ad

]
dt, x =

[
r3×1

u3×1

]
, (24)

ad(x) = −1

2
ρ B |ur | ur, (25)

ur(x) = −u + ωE × r, (26)

ρ(x) = ρ0 e−
|r|−RE

H , (27)

where ad is the atmospheric drag; ur is the satellite velocity

relative to the atmosphere; B is the ballistic coefficient; ωE is

the Earth’s angular velocity vector; | . | is the Euclidean distance.

The AMD ρ in Eq. (27) is assumed to follow a time-invariant

exponential model with reference AMD ρ0.

If ãd is the ‘true’ acceleration due to the atmospheric drag,

the noise Δρ in the AMD can be expressed by a ratio q

ãd = −1

2
ρ̃ B |ur | ur = −1

2
(ρ + Δρ) B |ur | ur

= −1

2
ρ B |ur | ur

(
1 +
Δρ

ρ

)
= −1

2
ρ B |ur | ur (1 + q) .

(28)

Figure 1 gives the histogram and the fitting PDF curve

(in red) of Δρ/ρ determined from the state-of-the-art AMD

model – DTM201230) and accelerometer measurements from

the GRACE-A satellite in 2009. These data are provided by

Ref. 31). Note that those ratio values out of μ±5σ are excluded

as outliers. The outlier deletion rate is around 0.012%. The

red curve in Fig. 1(a) indicates a standard Gaussian distribution.

Figure 1(b) gives the Quantile-Quantile plot of the quantiles of

q versus theoretical quantiles from a normal Gaussian distribu-

tion.

This results show that the relative error Δρ/ρ approximately

follows a Gaussian distribution, i.e., Δρ/ρ ∼ N(0.16, 0.04). If

the bias of 0.16 is neglected, the aforementioned Itô process

(see Section 2.) can be used to depict the orbital dynamics of

the two-body problem.

Consequently, the continuous-time system subjected to the

stochastic error (Δρ/ρ) in AMD can be expressed as

dx =
[

u
− μr3 r + ad

]
dt +

[
03×1

ad

]
dW(t), (29)
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where W(t) is an one-dimensional zero-mean standard Wiener

process and its correlation factor Q is reduced to be a constant

scalar.

In this dynamical system, the epistemic uncertainty (sys-

tematic error) in AMD is neglected for simplicity and, con-

sequently, the drift term from the uncertainty of AMD is not

shown in Eq. (29). Nevertheless, its drift effect can be easily

modelled by adding a term into the deterministic forces. It is

worth noting that ur in Eq. (26) is not the wind velocity of the at-

mosphere, since its impact on the OP of LEO satellites is found

not significant. The maximum difference between in the 3D-

orbit of the GRACE-A (∼ 500 km) propagated with and with-

out wind models during one-day propagation in solar minimum

is less than 3m (not shown in this study). The horizontal wind

model (HWM07)32) is used in this evaluation.

As a result, Eq. (9) can be rewritten as

∂p(x, t)
∂t

= −
6∑

i=1

∂

∂xi

[
fi · p]

+
1

2

6∑
i=4

6∑
j=4

∂2

∂xi∂x j

[
S i j · p

]
.

(30)

Substituting Eq. (29) into the above equation yields

LFP(p) = 2ρ B |ur | p − f T · ∂p
∂x

+
1

8
B2 ρ2 Q |ur |2

(
12 ur

T · ∂p
∂u

+ vec
(
ur

T ur
)T · vec

(
∂2 p
∂u ∂uT

)
+ 30p

)
,

(31)

where ‘vec’ is the reshaping process that stacks one column of

a matrix underneath the previous one.

Since the orbital dynamical system defined in Eq. (29) is

static, the approximate solution to the FPE derived from the

AD method can be simplified as

φN(x, t) =
N∑

i=0

ti

i!
L(i)

LP(p0). (32)

Taking the expectation of both sides of Eq. (29), this SDE

dynamical system will be reduced to the ODE dynamical sys-

tem expressed by Eq. (24) since the drift effect of the stochastic

force in Eq. (29) is not considered. Therefore, the expectation

of the states in the SDE at a specific time is identical to that in

the corresponding ODE problem at the same epoch. This prop-

erty has been used to validate the results of the AD method in

this study.

To improve the convergence of the Adomian series, a con-

vergence parameter q(x, t) =
∑∞

i=0 qi(x, t) is substituted into

Eq. (18)

⎧⎪⎨⎪⎩
u0 = q(x, t)

ui+1 = L−1
t (LFP(pi)) − L−1

t (LD(qi)) (i ≥ 0),
(33)

where

LD(.) = −
n∑

i=1

∂

∂xi
fi(x, t)(.), (34)

⎧⎪⎨⎪⎩
q0 = p(x, 0)

qi+1 = L−1
t (LD(qi)) (i ≥ 0).

(35)

One may notice that q(x, t) is in fact the AD-derived approx-

imate solution to the corresponding ODE problem defined in

Eq. (24). Since the stochastic forces will not modify the ex-

pectation of the orbital state (Section 3.), the expectation of

ui (i ≥ 1) is zero, i.e., the first moment of u(x, t) can be es-

timated without error. Moreover, its covariance matrix can be

expressed by

D(X, t) =
∞∑

i=3

(∫
B

ui(x, t) xxT dnx
)
. (36)

where the contributions of u1 and u2 are zero due to p1 = q1

and p2 = q2.

Since the total number of the terms in ui will be exponentially

increased, the parallel computation is adopted in determination

of the ui according to the linearity of FPE operator given in

Eq. (11).

5. Results and discussions

In this section, results of OUP for an example of LEO satel-

lites are presented and it is assumed that the initial state of the

LEO satellite is accurately known

x0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1571946.9778 m
−542449.7712 m
−6634410.9086 m

7153.3854 m/s
−1891.6220 m/s
1854.9557 m/s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This example corresponds to a initial orbit with an altitude of

470 km and a period of 93.5 min. Therefore, the initial PDF of

the orbital state is a Dirac delta function p(x, 0) = δ(x−x0). The

corresponding ODE problem to this SDE problem is determin-

istic and uncertainty-free and its solution can be determined ac-

curately (termed as xs(t)). As a result, q(x, t) in Eq. 33 becomes

δ(x − xs(t)). This example of two-body motion is selected in

this study for two reasons: (1) the uncertainty of the initial or-

bital state can be excluded in this study and (2) determination

of the expectations and covariances of the orbital state can be

simplified using the properties of the Dirac Delta function.33)

In this example, the atmospheric drag is only perturbation

force considered. The settings of the other parameters in

Eq. (29) are B = 0.0023, ρ0 = 9×10−13 kg/m3, H = 65 km. The

values of ρ0 and H are estimated from the DTM2012-derived

AMD using the least squares method. The time-invariant corre-

lation of the one-dimensional Wiener process in Eq. (29) is as-

signed to one, i.e., Q = 1, indicating that the relative error Δρ/ρ

falls within the interval [−100%, 100%] for the probability of

0.68. Note that the noise in ρ is assumed to be bias-free. In this

study, the Mathematica software is applied to running the MCS

using the stochastic Runge-Kutta scheme. Of the MCS with the

same initial orbital state, 5000 samples are propagated forward

for one orbital period. The result of MCS is a benchmark for

evaluating the AD method.

Figures 2 and 3 illustrate the expectation and standard devi-

ation (σ) of the orbital position in one orbital period propaga-

tion. It can be seen that the trajectory of the satellite shows

a clear periodic pattern resulting from the two-body motion.
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Fig. 2. Expectation of the three components of orbital position in ECI

frame for one-orbital-period (∼ 93.5 min) propagation from MCS.
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Fig. 3. Standard deviation of the orbital position (3D) and its three com-

ponents (ri) in ECI frame for one-orbital-period propagation from MCS.

More importantly, the impact of the random error in ρ is lim-

ited (σ of position) for one orbital period propagation. Whilst

the AD method with order of five gives consistent OUP results

as shown in Fig. (4). Only presented are standard deviation val-

ues, obtained from Eqs. (22) and (36), since the expectations are

error-free.

Although the above results are from one-orbital-period only,

the AD method may be applied to long-term propagation if

its dominant limitation of convergence can be further im-

proved. In addition, the computational burden involved in

0 0.2 0.4 0.6 0.8 1
-0.03

-0.02

-0.01

0

0.01

0.02

Fig. 4. Difference of the standard deviation of the orbital position (3D)

and its three components (ri) in ECI frame between MCS and AD method

for one-orbital-period propagation.

multi-dimensional integrals and differentials in the AD method

is another limiting factor. A semi-analytical method based on

the AD method is a better approach which represents PDF by

specific functions, e.g., Fourier series16) or Gaussian mixture.7)

For a short-term orbit propagation, however, the AD method

shows a fast convergence as presented in this study. This re-

sults imply the applicability of the method to non-linear filter-

ing problems34)).

6. Conclusions

OUP is of great importance in many aerospace engineering

applications such as space situational awareness and orbit con-

trol. However, The OUP problem is not perfectly solved, es-

pecially for orbital dynamical systems perturbed by stochastic

forces. This study presents an analytical approach based on the

AD method for solving the FPE which depicts the evolution

of PDF of an orbital dynamical system. A sufficient condition

is identified for integral invariance of the PDF of orbital state

for diffusion orbital dynamical systems. Also proved is that the

AD method can keep the property of integral invariance to its

solutions. In addition, it is found that stochastic forces will not

change the expectation of the orbital states in stochastic dynam-

ical systems.

The result of the AD method show its good agreement with

that of MCS. However, both speed and region of convergence

are the two limiting factors for the AD-based approach. To ad-

dress these limitations, a convergence parameter and parallel

computation can be adopted based on the linearity of the FPE

operator. The standard deviation of orbital position resulting

from the diffusion for one orbital period is less than 0.1 m. In

future studies, the improved AD method will be applied to the

OUP problem with uncertainty of the initial orbital states.
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A The FPE for transition PDF and PDF

Taking derivative of Eq. (8) with respect to time t

∂p(x, t)
∂t

=
∂

∂t

∫
B

p(x, t | y, 0) · p(y, 0) dny

=

∫
B

∂p(x, t | y, 0)

∂t
p(y, 0) dny.

(A.1)

Upon substitution of the Eqs. (3)−(5) into the above equa-

tion, the following equation is obtained

∂p(x, t)
∂t

=

∫
B

LFP

(
p(x, t

∣∣∣ y, 0)
)
· p(y, 0) dny. (A.2)

Since the derivative in the FPE operator is only with respect
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to x, we thus have the following equation

∂p(x, t)
∂t

= LFP

(∫
B

p(x, t
∣∣∣ y, 0) p(y, 0) dny

)

= LFP (p(x, t)) .
(A.3)

The proof shows that FPE is also applicable to PDF.

B Integral invariant of
∫
B

p(x, t)dnx

Define the probability current Ci(x, t) : Rn × [0, +∞]→ R to

be

Ci(x, t) = −LFP (p(x, t))

= p(x, t) fi(x, t) − 1

2

n∑
j=1

∂

∂x j
p(x, t) Di j.

(B.1)

Then the FPE can be expressed as

∂p(x, t)
∂t

+

n∑
i=1

∂

∂t
Ci(x, t) = 0. (B.2)

If the Ci(x, t) (i = 1, 2, . . . n) vanish at the boundaries of phase

space B (i.e., xi = sup(Bi) or xi = in f (Bi)), then total proba-

bility
∫
B

p(x, t) dnx will be constant.12) Here B can be natural

boundaries (±∞) or a finite real space.

Keep in mind that x in the total probability p(x, t) is not a

function of time t. Hence, the derivative of total probability of

PDF p(x, t) with respect to time will be

d

dt

(∫
B

p(x, t) dnx
)
=

∫
B

∂ p(x, t)
∂t

dnx

=

∫
B

−
n∑

i=1

∂

∂xi
Ci(x, t) dnx

= −
n∑

i=1

∫
B

∂

∂xi
Ci(x, t) dnx.

(B.3)

Considering the boundary condition of Ci(x, t) presented as

above, each term in the summation on the right side of Eq. (B.3)

can be rewritten as

∫
B

∂

∂xi
Ci(x, t) dnx =

∫
B/Bi

Ci(x, t)
∣∣∣∣xi=sup(Bi)

xi=in f (Bi)
dnx/dxi.

(B.4)

This result shows that if PDF is normalised to 1 at any time

(e.g., at the initial time t = 0), or the normalisation condition of

PDF will always hold. Specifically, the boundary condition of

Ci(x, t) can be reduced to

lim
xi→sup(Bi)

p(x, t) = lim
xi→inf(Bi)

p(x, t) = 0,

lim
xi→sup(Bi)

∂

∂x j
p(x, t) = lim

xi→inf(Bi)

∂

∂x j
p(x, t) = 0.

(B.5)

These two equations are detailed format of Eq. (10). As read-

ers may have noticed that these boundary conditions will be sat-

isfied if any xi approaches to its boundary.

C Integral invariant of pi+1(x, t) (i � 0)

By substituting the Eq. (18) into the integral of pn+1 with re-

spect to x over B domain, we have

∫
B

pn+1(x, t) dnx =
∫
B

L−1
t (LFP(pn)) dnx

=

∫
B

∫ t

0

⎧⎪⎪⎨⎪⎪⎩−
n∑

i=1

∂

∂xi

[
pn(x, τ) fi(x, τ)

]

+
1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂x j

[
pn(x, τ) S i j(x, τ)

]⎫⎪⎪⎪⎬⎪⎪⎪⎭ dt dnx

=

∫ t

0

∫
B

⎧⎪⎪⎨⎪⎪⎩−
n∑

i=1

∂

∂xi

[
pn(x, τ) fi(x, τ)

]

+
1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂x j

[
pn(x, τ) S i j(x, τ)

]⎫⎪⎪⎪⎬⎪⎪⎪⎭ dnx dt

=

∫ t

0

∫
B

− ∂
∂xi

Ci(x, τ)dnx dt. (C.1)

Based on the conclusions given in Appendix B, the term on

the right side of Eq. (C.1) will be zero if Ci(x, t)
∣∣∣xi=sup(Bi)

xi=in f (Bi)
= 0 or,

specifically, if Eq. (B.5) is satisfied. It means that the approx-

imate solution φN(x, t) =
∑N

i=0 pi(x, t) to the FPE will always

fulfil the normalisation condition if the condition for the initial

PDF p0 is satisfied. Similarly, the integral invariance of TPDF

can be repeatedly derived from Eq. (8) and Appendix A. The

proof will be skipped here owing to space constraints.
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