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In this paper, a fuel optimal rendezvous problem is tackled in the Hill-Clohessy-Wiltshire framework with several operational

constraints as bounds on the thrust, non linear non convex and disjunctive operational constraints (on-off profile of the thrusters,

minimum elapsed time between two consecutive firings...). An indirect method and a decomposition technique have already been

combined in order to solve this kind of optimal control problem with such constraints. Due to a great number of parameters to tune,

satisfactory results are hard to obtain and are sensitive to the initial condition. Assuming that no singular arc exists, it can be shown

that the optimal control exhibits a bang-bang structure whose optimal switching times are to be found. Noticing that a system with a

bang-bang control profile can be considered as two subsystems switching from one with control on to with control off, and vice-versa,

a technique coming from the switching systems theory is used in order to optimise the switching times.
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1. Introduction

For proximity operations purposes, spacecraft have to make

rendezvous to a target point or to their nominal operating posi-

tion. Thus, it is necessary to design an accurate control strat-

egy in order to fulfil the rendezvous mission requirements. To

this end, spacecraft are equipped with electric and/or chemi-

cal thrusters, and studies about effective numerical solutions

for minimum-fuel rendezvous problems, dating back to the

sixties,5, 12) are still ion progress nowadays for both types of

propulsion.4, 6, 13)

When chemical thrusters, the thrusts are so high that the

thrusting durations are short in comparison to the orbital period

and the thrusts can therefore be idealised as impulsive manoeu-

vres (instantaneous change of velocity without change of posi-

tion). As opposed to chemical thrusters, electric thrusters re-

quire a longer thrusting duration leading to the low-thrust class

of rendezvous problems. Despite the drawbacks of necessitat-

ing complex power management and the very low level of the

thrust, electric propulsion is nowadays a viable alternative to

the chemical one thanks to the saving of on-board fuel and the

use of chemical passive propellants.10) Reducing the on-bord

fuel mass leads to an increase of the payload.11) However, as

the available electrical power is first allocated to the payload,

the use of electric thrusters raises some operational constraints.

For a satellite moving in an inverse square gravitational field

(keplerian assumption), the relative dynamics with respect to a

reference point evolving in a circular orbit can be expressed by

the the Hill-Clohessy-Wiltshire equations. In this framework,

the minimum-fuel rendezvous problem is naturally recast as a

fuel optimal control problem with linear dynamics. Operational

constraints on the propulsion system induce to add control con-

straints that are hard to handle with classical approaches: a min-

imum time must last between two consecutive firings and the

thrusters must have an on-off profile. Although the dynamics

can be stated in a simple manner, taking the operational con-

straints into account requires to design a dedicated numerical

approach to solve the OCP.

Between the existing numerical methods, one have to dis-

tinguish the direct and the indirect methods. Direct methods

as the collocations methods1, 9) rely on a discretisation of the

state and the control variables. The infinite-dimensional opti-

misation problem (OCP) is thus recast as a finite-dimensional

nonlinear programming problem. Indirect approaches for solv-

ing OCP rely on the application of the Pontryagin Maximum

Principle (PMP). First order necessary conditions are derived in

order to end up with a Two-Point Boundary Value Problem (TP-

BVP), that has to be solved with a Newton-Raphson algorithm

or a shooting method. These approaches have complementary

drawbacks (sub-optimality and a lack of precision for the for-

mer while the latter is hard to initialise and less flexible), it is

not unusual to resort to hybrid methods that combine the two

approaches: the solution of a direct method is used as an initial-

isation to the solution of the TPBVP.2, 8)

However, adding the previously mentioned operational con-

straints on the control makes the hybrid approach not com-

pletely effective, justifying to resort to a two-step decomposi-

tion approach as mentioned in reference 7) for a geostaionary

station keeping problem. The difficult operational constraints

are first removed from the OCP so that it can be numerically

solved with an hybrid method. In a second step, an equivalent

trajectory is sought in order to fulfil the operational constraints.

However, in order to meet the final rendezvous constraints, nu-

merous parameters are to be tuned, what makes the searching

of the optimal switching times feasible but time consuming.7)

Assuming that no singular arcs exist, it may be shown that the

minimum fuel optimal control law has an on-off profile and an

ensuing difficulty is to find the optimal switching times respect-

ing the operational constraints. In the reference 14), a method

for solving switched system based on the parametrisation of the
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switching sequence is presented. Noting that a system with an

on-off control profile exhibits a switching sequence from the

system whose control is off to the system whose control is on,

and vice-versa, it is possible to apply the switched systems tech-

nique from14) to optimise the commutation times.

The contribution of this paper is to apply the optimisation

of the commutation times for the fixed-time fuel optimal ren-

dezvous problem using the switched systems framework. In

order to use this approach, the order of the firing thrusters has

to be known in advance. The optimal sequence of thrusters is

determined by applying the two-step methods of.7) Hence, this

contribution can be considered as a third decomposition step in

order to enforce both the operational constraints and the final

rendezvous constraint. The benefits of using the proposed op-

timisation of the switching times are illustrated on a numerical

low-thrust rendezvous problem example.

2. Modelling in the Switched Systems Framework

2.1. Rendezvous Problem Statement
A satellite in its terminal phase of rendezvous with a target

orbiting the Earth on the geostationary Earth orbit. Assuming

that the satellite is only submitted to a central attraction field, its

position and velocity vectors can be computed relatively to the

fictitious geostationary mission operation point in a local LVLH

frame (see Figure 1). In such a coordinate frame, the state vec-

tor consists in the vector of relative positions and velocities:

X(t) =
[
x(t) y(t) z(t) ẋ(t) ẏ(t) ż(t)

]T
(1)

�Y

�X

�Z

�R

�T
�N

r

Fig. 1. Local Orbital Frame RT N.

The satellite is supposed to be equipped with an electric

thruster on each face allowing 6 degrees of freedom control.

The control vector has thus six components and reads:

u =
Fmax

mn2

[
uR uT uN u−R u−T u−N

]T ∈
[
0;

Fmax

mn2

]6

,

(2)

where m is the satellite mass, n its mean motion and Fmax the

maximum thrust level. Each component of the thrust vector is

thus supposed to be either 0 or 1.

As the reference point is located on a circular keplerian orbit,

the relative motion of the satellite is given by the Hill-Clohessy-

Wiltshire equations:3)

Ẋ(t) =
[
03 I3

A1 A2

]
︸�����︷︷�����︸

A

X(t) +
[

03 03

n2I3 −n2I3

]
︸������������︷︷������������︸

B

u(t), (3)

where 03 is the 3 × 3 null matrix, I3 is the 3 × 3 identity matrix

and:

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
3n2 0 0
0 0 0
0 0 −n2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , A2 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 2n 0
−2n 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (4)

The thrusters are supposed to be on-off thrusters. There-

fore the thrust profile is modelled as a rectangular signal that

is parametrized by the date ti, j corresponding to the middle in-

stant of the thrust and by its half width duration denoted Δti, j
as depicted on Figure 2. Operational thruster propulsion sys-

tem constraints must be taken into account while solving the

rendezvous problem:

(i) thrusters cannot have simultaneous thrusts;

(ii) a thrust must last at least Tl : 2Δti, j � Tl;

(iii) two successive thrusts of a given thruster must be separated

of an interval of latency equal to Ts;

(iv) two thrusts of two different thrusters must be separated by

an interval of latency equal to Td.

Δti, j

ti, j

t

F̃i

1

Fig. 2. Parametrization of the jth thrust.

2.2. Formulation of the problem in the switched systems
framework

The control profile of the system can be decomposed in K
intervals Tk with constant control vector Uk. Each interval must

verify:

K⋂
i=1

Tk = ∅ and

K⋃
i=1

Tk = [t0, t f ], (5)

and the control vector Uk must be one of the 26 = 64 admissible

control vectors:

Uk

Umax
∈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , . . . ,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
...
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, (6)

with Umax =
Fmax
mn2 .

The disjunction constraint (i) imposes to eliminate the control

vectors for which more than one thruster is active. Hence, the

admissible control vectors are only the 7 remaining ones:

Uk

Umax
∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (7)

These 7 admissible control vectors define the seven possi-

ble modes that satisfy constraint (i). It is thus possible to ex-

press the system dynamics (3) by separating the several possible



modes. On the interval Tk, the system dynamics are:

Ẋ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AX(t),
or

AX(t) + BV1,

or

AX(t) + BV2,

or
...

AX(t) + BV6,

(8)

with Vi being a 6 × 1 zero vector with a 1 at the ith position. By

extension, it is possible to write by extension U0 as the 6 × 1

zero vector.

With the considerations introduced above, all the dynamics

functions:

fi(X) = AX + BVi, i ∈ 0, . . . , 6, (9)

can represent a subsystem of the overall system. Hence, the

commutation from Uk to Uk+1 between the intervals Tk and Tk+1

can be viewed as a commutation between two of the seven sub-

systems. In a switched system framework, the system dynamics

can be written as:

for t ∈ Tk, ∃ik ∈ {0, . . . , 6}, Ẋ(t) = fik (X(t)), (10)

where the following equality holds : Uk = Vik .

3. Constrained Optimal Control Problem

3.1. Optimal Control Problem Statement
The rendezvous problem has to be solved on the fixed-time

interval [t0, t f ] and Pi denotes the number of thrusts for thruster

i in this time interval. If
(
ti,k

)
k=1...Pi

is the ordered sequence of

firing times for thruster i, the constraints (iii) and (iv) may be

expressed as:

|ti,k − t j,l| − (Δti,k + Δt j,l) � Ki, j, (11)

for k = 1 . . . Pi and l = 1 . . . Pj, where Ki, j = Ts if i = j
(constraint (iii)) and Ki, j = Td otherwise (constraint (iv)).

Some additional constraints are used in order to prevent the

firing of thrusters before t0 or after t f :

ti, j − Δti, j � t0 and ti, j + Δti, j � t f . (12)

The aim is to perform a minimum-fuel fixed-time rendezvous

from the initial state X(t0) = X0 to the final state X(t f ) = Xf .

The performance index to be minimized reads thus as:

J = J(u) =

∫ t f

t0

6∑
i=1

|ui(t)|dt. (13)

The fuel-optimal rendezvous problem is thus recast as the

following Optimal Control Problem (OCP):

Problem 1

min
u(t)

J(u) =

∫ t f

t0

6∑
i=1

|ui(t)|dt

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ(t) = AX(t) + Bu(t)
X(t0) = X0, X(t f ) = Xf ,

2Δti, j � Tl, ti, j − Δti, j � t0,
ti, j + Δti, j � t f ,

|ti,k − t j,l| − (Δti,k + Δt j,l) � Ki, j,

ul(t) ∈ [0, 1],

(14)

with ul standing for the six components uR, . . . , u−N of the con-

trol vector. ◦
3.2. Transformation of the OCP in the Switched Systems

Framework
Defining the Hamiltonian of the Problem 1:

H(X, λ, u) =

6∑
i=1

|ui(t)| + λ(t)T (AX(t) + Bu(t)), (15)

with λ ∈ R6 the costate vector, the Pontryagin Maximum Prin-

ciple allows to express the optimal control as:

u∗ = arg min
u
H(X∗, λ∗, u). (16)

Assuming that no singular arc exists, the optimal control can

be restated as:

u∗ = −sign
(
BTλ∗

)
, (17)

and is thus a bang-bang control. The operational constraint of

having an on-off control profile is automatically satisfied thanks

to Equation (17). In the case where optimal singular arcs are

present, strict optimality would not be reached due to this con-

straint on the propulsion system.

A system with a bang-bang control profile can be considered

as a switched system with two subsystems : one whose control

is on and the other whose control is off. It is therefore possible

to use the modelling of the rendezvous problem introduced in

Section 2.2. where the system has been decomposed into seven

subsystems: one for a coasting arc and one for the firing arc for

each thruster. In this modelling, at most one thruster can be on

at each time.

Rewritting the dynamics of the system:

for t ∈ Tk, ∃ik ∈ {0, . . . , 6}, Ẋ(t) = fik (X(t)), (18)

it can be seen that the control is not unknown anymore. Indeed,

if the active subsystem for the interval Tk is known, the con-

trol vector Uk is either 0 or Umax for the thruster corresponding

to the active subsystem. The unknown are now the sequence

of active subsystems and the commutation times between each

subsystem.

If P is the optimal number of thrusts, the number of switching

times is 2P and the number of intervals on which the control is

constant is 2P+1. Denoting tk the switching times, it is possible

to write t f = t2K+1 as if the final time were the last commutation

time.

In order to satisfy the operational constraints (iii) and (iv),

each firing arc must be separated by a coasting arc. Therefore,

assuming that the first arc is a coasting arc, the intervals T2k+1

are always coasting arcs and the intervals T2k are firing arcs

whose length must respect the constraints:



• t2k+1 − t2k � Ts if the coasting arc lies between two firing

arcs of the same thruster,

• t2k+1 − t2k � Td if the coasting arc lies between two firing

arcs of two different thrusters.

The operational constraint (ii) is written as:

t2k − t2k−1 � Tl. (19)

The cost function for the fuel minimisation is written in terms

of the commutation times as:

J(u) = J({tk}) =
P∑

k=1

(t2k − t2k−1)
Fmax

mn2
. (20)

The application of the necessary conditions on the state and

the costate vectors for Problem 1 where J(u) = J({tk}) yields:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ∗ =
(
∂H
∂λ∗

)T

= fik (X
∗(t)) for t ∈ Tk,

λ̇∗ = −
(
∂H
∂X∗

)T

= −
(
∂ fik
∂X∗

)
for t ∈ Tk.

(21)

Due to the transversality conditions, the costate vector must

satisfy:

λ(t0) and λ(t f ) free. (22)

As the structure of the optimal control is supposed to be

known in advance, the parametrisation by the switching times

avoid the use of the transversality conditions on λ∗ for imposing

the final state constraint X(t f ) = Xf . Therefore, it is necessary

to add a penalisation of the gap between the actual final state

and the target state and to modify the performance index. The

new performance index to be minimised is thus:

J̃ = J̃({tk}, X(2P + 1)) =

P∑
k=1

(t2k − t2k−1)
Fmax

mn2

+
(
X(2P + 1) − Xf

)T
Q

(
X(2P + 1) − Xf

)
, (23)

where the matrix Q is defined by:

Q =
[
μxI3 03

03 μvI3

]
(24)

As the state vector X is made of the three position coordinates

and the three velocity coordinates, two different penalisation

parameters can be chosen.

The OCP to be solved is thus given by:

Problem 2

min
{tk},X(2P+1)

J̃({tk}, X(2P + 1)) =

P∑
k=1

(t2k − t2k−1)
Fmax

mn2

+
(
X(2P + 1) − Xf

)T
Q

(
X(2P + 1) − Xf

)

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ẋ(t) = fik (X(t)), with ik ∈ {0, . . . , 6} for t ∈ Tk,

X(t0) = X0,

t2k − t2k−1 � Tl, t2k+1 − t2k � α,
(25)

where α = Ts in case of two successive thrusts of a given

thruster or α = Td in case of two thrusts of two different

thrusters. ◦

4. Optimisation of the Switching Sequence in the Switched
System Framework

The Problem 2 is an OCP for a switched system. The ref-

erence 14) has developed a technique in order to solve such

problems. A difference between the problem solved by 14) and

the Problem 2 lies in the fact that the commutation times of the

bang-bang control have been interpreted as the switching times

from a subsystem whose control is 0 to a subsystem whose con-

trol is Umax, and vice versa. Assuming that the commutation

sequence, i.e. the ordered sequence of active subsystems, is

known in advance, the optimal switching times are sought and

can be found by applying the method described in14) based on a

switched system framework with parametrisation of the switch-

ing times. The appropriate control vector Uk is applied on each

interval [k, k + 1].

The idea of the technique described in 14) is to parametrise

the switching times. Changing the time variable as:

t = tk + Δk(τ − k) if t ∈ [tk, tk+1], (26)

with Δk = tk+1 − tk, the switching times become parameters of

the optimal control problem and the system dynamics (18) can

be expanded and rewritten as:

∂X(τ)

∂τ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

AXΔ2k−2 if τ ∈ [2k − 2, 2k − 1],

(AX + Fmax
mn2 BUk)Δ2k−1 if τ ∈ [2k − 1, 2k],

...
AXΔ2P if τ ∈ [2P, 2P + 1],

(27)

for k = 1, . . . , P. The state vector can be now considered as a

function of the new time variable τ and of the switching times

tk: X = X(τ, {tk}).
The problem to be solved with the introduced change of time

coordinates reads thus:

Problem 3

min
{tk},X(2P+1)

J̃({tk}, X(2P + 1)) =

P∑
k=1

(t2k − t2k−1)
Fmax

mn2

+
(
X(2P + 1) − Xf

)T
Q

(
X(2P + 1) − Xf

)
s.t.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂X(τ)

∂τ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

AXΔ2k−2 if τ ∈ [2k − 2, 2k − 1],

(AX + Fmax
mn2 BUk)Δ2k−1 if τ ∈ [2k − 1, 2k],

...

AXΔ2P if τ ∈ [2P, 2P + 1],

X(0) = X0,

Δ2k−1 � Tl, Δ2k � α,
(28)

where α = Ts in case of two successive thrusts of a given

thruster or α = Td in case of two thrusts of two different

thrusters. ◦
As the structure of the optimal control is known, the first or-

der necessary optimality conditions would not give any useful

information, and the optimal state trajectory can be obtained by

propagating the system dynamics (27).

If the overall switching times optimisation problem is solved

with a descent method, it is necessary to compute the deriva-

tive of the performance index with respect to the parametrised



switching times. Computing
∂J̃

∂tk
will require the computation

of
∂x

∂tk
, obtained by differentiation of the system dynamics (27).

The derivative of the performance index with respect to the

switching times are given by:

∂J̃
∂t2l−1

= −Fmax

mn2
+ 2

(
Q(X(2P + 1) − Xf )

)T ∂X(2P + 1)

∂t2l−1

(29)

∂J̃
∂t2l
= +

Fmax

mn2
+ 2

(
Q(X(2P + 1) − Xf )

)T ∂X(2P + 1)

∂t2l
(30)

and the derivatives of the state vector with respect to the

switching times are:

∂

∂τ

⎛⎜⎜⎜⎜⎜⎝ ∂X∂t2l−1

⎞⎟⎟⎟⎟⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ2k−2A
∂X

∂t2l−1

if τ ∈ [2k − 2, 2k − 1],

Δ2k−1A
∂X

∂t2l−1

if τ ∈ [2k − 1, 2k],

Δ2l−2A
∂X

∂t2l−1

+ AX if τ ∈ [2l − 2, 2l − 1],

Δ2l−1A
∂X

∂t2l−1

− (AX +
Fmax

mn2
BUl) if τ ∈ [2l − 1, 2l],

(31)

and

∂

∂τ

⎛⎜⎜⎜⎜⎜⎝ ∂X∂t2l

⎞⎟⎟⎟⎟⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ2k−2A
∂X

∂t21

if τ ∈ [2k − 2, 2k − 1],

Δ2k−1A
∂X

∂t2l
if τ ∈ [2k − 1, 2k],

Δ2l−2A
∂X

∂t2l
+ (AX +

Fmax

mn2
BUl) if τ ∈ [2l − 1, 2l],

Δ2l−1A
∂X

∂t2l
− AX if τ ∈ [2l, 2l + 1].

(32)

The optimisation of the performance index and the switching

times can be computed using any non linear solver. The equa-

tions (29) - (32) can be useful if a descent algorithm is used to

perform the optimisation.

5. Numerical Results

In this section, the proposed methodology is applied on

a low-thrust rendezvous involving a satellite of mass 4850

kg supposed to be equipped with 6 thrusters, one on each

side. This satellite has to fly from its initial position X0 =[
5 10 10 0 0 0

]T
(the positions are given in km and

the velocities in km/day) to its rendezvous target Xf =[
0 0 0 0 0 0

]T
in a fixed period of time (t f − t0 = 1

day).

The process to obtain the optimal structure of the control pro-

file satisfying the operational constraints (i) - (iv) is:7)

• remove the operational constraints,

• solve the OCP obtained with an hybrid method (see Prob-

lem 4),

• solve the consumption based equivalence (CBE) with the

operational constraints and the modified cost function with

a penalisation of the final state (see Problem 5),

• solve the effect based equivalence (EBE) as described in

Problem 6.

Problem 4

min
u(t)∈[0;1]4

∫ T

0

6∑
i=1

ui(t)dt,

s.t.

{
Ẋ(t) = AX(t) + BUmaxu(t),
X(t0) = X0, X(t f ) = Xf .

(33)

◦
Problem 5

min
ti, j,Δti, j

6∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝‖uBVP,i(t)‖1 −
Pi∑
j=1

Δti, j

⎞⎟⎟⎟⎟⎟⎟⎠
+

(
X(2P + 1) − Xf

)T
Q

(
X(2P + 1) − Xf

)
, (34)

such that the constraints (ii),(iii) and (iv) are satisfied. uBVP(t)
is the control solution of Problem 4. ◦
Problem 6

min
(
X(2P + 1) − Xf

)T
Q

(
X(2P + 1) − Xf

)
, (35)

such that the constraints (ii),(iii) and (iv) are satisfied. uBVP(t)
is the control solution of Problem 4. ◦

Once the order of the firing thrusters is know by means of the

modified CBE or the EBE, the proposed optimisation technique

can optimise the switching times.

Figure 3 shows the positions and the velocities of the satel-

lite after solving the modified CBE and the EBE problems on

one hand, and on the other hand the position and velocity of the

satellite after solving Problem 3. The parameters for the final

rendezvous constraint are : μx = 100, μv = 0.001. Figure 4

shows the trajectories in the the (x, y) plane. The norm of the

final position shows that the use of the proposed technique al-

lows to optimise the switching times computed by the modified

CBE and EBE schemes so that the resulting trajectory comes

closer to the final target with less fuel consumption (see Table

1).
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Fig. 3. Satellite positions and velocities:

–: solution of the modified CBE Problem 5,

-·-: solution of the EBE Problem 6,

- -: solution of Problem 3.
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Fig. 4. Satellite positions and velocities:

–: solution of the modified CBE Problem 5,

-·-: solution of the EBE Problem 6,

- -: solution of Problem 3.

Figure 5 shows the control profile solution of the modified

CBE problem, the EBE problem the control profile after having

optimised the switching times using Problem 3.

Problem Problem 5 Problem 6 Problem 3

||X(t f )|| (m) 658.0 1 008 114.9

||V(t f )|| (m/s) 5.10−4 4.10−4 0.39

consumption (m/s) 2.051 2.052 1.881

Table 1. Final position ||X(t f )||, final velocity ||V(t f )|| and consumption

for the modified CBE Problem 5, the EBE Problem 6 and the proposed

technique (Problem 3).
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Fig. 5. Satellite control profiles:

–: solution of the modified CBE Problem 5,

-·-: solution of the EBE Problem 6,

- -: solution of Problem 3,

uM = u+M − u−M with M ∈ {R,T,N}.

6. Conclusion

In this paper, the switched system framework is used in

order to optimise the commutation sequence for a fixed-time

minimum-fuel rendezvous problem whose control presents an

on-off profile. In this case, the system can be naturally separated

into two subsystems, depending on the value of the control: on

or off. After the parametrisation of the switching times, a de-

scent algorithm can be used to minimise the overall fuel con-

sumption as well as the distance to the target. As the proposed

method requires to know beforehand the optimal thrusters firing

sequence, a two-step decomposition method is used in advance.

The optimisation of the switching times allow to overcome the

drawbacks of the previous steps. Hence it can be considered as

the third step of the decomposition. An improvement of the pre-

sented results would be to extend the technique to time varying

and non-linear systems.
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