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Low-thrust propulsion is a key technology for space exploration, and much work in astrodynamics presents low-thrust trajectory
design methods. Typically, a nominal trajectory is designed in a deterministic system. To account for model and execution errors,
mission designers heuristically add margins - for example, by reducing the thrust and specific impulse or by computing penalties
for specific failures. These conventional methods are time-consuming, done by hand by experts, and lead to conservative margins.
This paper introduces a new method to compute nominal trajectories, taking into account disturbances. The proposed method, Tube
Stochastic Differential Dynamic Programming, is a modified algorithm of Stochastic Differential Dynamic Programming to handle
the control constraints. The proposed algorithm, which is inspired by the Tube MPC in the field of robotics, employs the sigma points
to create a tube and computes the expected value by the Unscented Transform. Finally, we present numerical examples where the
proposed solutions are more robust against disturbances when uncertainties are introduced.
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Nomenclature

x : state vector: x ∈ Rn

X : sigma points on x: X ∈ Rn

X : set of sigma points X: X ∈ R2n(n+1)

u : control vector: u ∈ U ⊂ Rm

U : sigma points on u: U ∈ U ⊂ Rm

U : set of sigma pointsU: U ∈ R2m(n+1)

w : disturbance vector: w ∈ Rn

W : sigma points on w:W ∈ Rn

µ : mean value of random variable x: µ ∈ Rn

P : covariance of random variable x: P ∈ Rn×n

f (·) : dynamical system: f : Rn × Rm → Rn

h(·) : control policy: h : Rn → Rm

L(·) : cost functions: L : Rn × Rm → R
Φ(·) : terminal cost function: Φ : Rn → R
V∗(·) : optimal cost-to-go function
α : open-loop control variations: α ∈ R2m(n+1)

β : closed-loop control gains: β ∈ R2m(n+1)×2n(n+1)

Wm : Weight on the sigma points for mean-value
Wc : Weight on the sigma points for covariance
n : dimension of state vectors
m : dimension of control vectors

Subscripts
k : stage numbers: k ∈ {1, 2, ...,N + 1} ⊂ N
x : partial derivatives with respect to x
u : partial derivatives with respect to u
X : partial derivatives with respect to X
U : partial derivatives with respect to U

1. Introduction

Low-thrust propulsion is a key technology for space mis-
sions because of its high specific impulse, and various low-
thrust trajectory design methods have been developed.1, 2) One

of the most numerically stable methods3–7) is Differential Dy-
namic Programming (DDP),8) which computes the optimal
control solving a second order expansion of Bellman equa-
tion. Although low-thrust trajectory design methods are im-
plemented on deterministic systems, in actual spacecraft op-
erations, the trajectories are perturbed by disturbances includ-
ing unmodeled accelerations, guidance/navigation errors, and
missed-thrust9)(i.e. the contingent coasting period due to oper-
ational troubles, such as safe-mode operations). For these rea-
sons, mission designers use heuristic methods to add margins,
for example introducing duty cycles,9) which reduce the thrust
magnitude, and forced coast periods.9) These methods are time-
consuming, tuned by hand by experts, and lead to conservative
margins. As non-heuristic approaches, Olympio and Yam10)

have suggested a surrogate-based method for one temporary en-
gine failure, and Olympio11) has solved the same problem us-
ing two-stage stochastic programming. These methods include
only one temporary engine failure and cannot model multiple
engine failures or persistent disturbances. We should develop a
systematic method to find the robust-optimal trajectory which
guarantees the feasibility all along the trajectory when general
uncertainties perturb the trajectory.

In the field of robotics, systematic methods have been devel-
oped to compute the optimal control in stochastic systems.12–17)

One of the successful work is the constraint tightening model
predictive control, which ensures the feasibility all along the
trajectory when uncertainties perturb the nominal trajectory.
This is achieved by tightening the constraints on the nominal
control; in other words, it is accomplished by designing the
nominal control without accelerating in full throttle and retain-
ing the margin to compensate future perturbations. Another
successful work is the tube model predictive control,17) which
makes a tube around the nominal trajectory and ensures the fea-
sibility to reach the target from the state inside the tube. These
methods have been efficiently implemented in linear systems.



For nonlinear systems with uncertainties, Stochastic Differen-
tial Dynamic Programming (SDDP).8, 18–20, 25) has been studied
as the extension of DDP. However, these methods cannot handle
the constraints, and therefore they are not practical for robust
low-thrust trajectory design.

This paper presents a new SDDP-based algorithm to opti-
mize the trajectory with uncertain dynamical systems and con-
trol constraints. The proposed method, Tube Stochastic Dif-
ferential Dynamic Programming (TSDDP), is inspired by the
tube model predictive control and the tube is created by the
sigma points of the Unscented Transform.21) Numerical ex-
amples show that our algorithm can be applied to low-thrust
trajectory design problems, and the solution gains good robust-
ness against disturbances without heuristic analyses.

2. Background of Stochastic Dynamic Programming

This section introduces the stochastic dynamical system and
derives the stochastic dynamic programming with imperfect in-
formation. In other words, the optimization problems yield the
optimal feedback control policies. In this work, 1) a stochastic
dynamical system is modeled as the deterministic dynamical
system with an additive disturbance, 2) the stochastic process is
approximated as a Gaussian process, 3) the estimation errors are
negligible and the control policy only depends on the estimated
value.

2.1. Stochastic Dynamical System
This paper models the stochastic dynamical system of the

spacecraft by a discrete-time stochastic equation with an addi-
tive disturbance

xk+1 = fk (xk,uk) + wk, k = 1, 2, ...,N (1)

where xk ∼ N(µk, Pk) is a random state vector, wk ∼ N(0, Rk)
is a random disturbance vector, and uk is the control vector
specified by the control policy

uk = hk (xk) (2)

Note that the stochastic process {xk} does not keep a Gaussian
process through the nonlinear transformation (1). Hereafter, we
successively approximate {xk} as a Gaussian process.

Fig. 1.: Example of stochastic process evolution with two
stages.

Figure 1 illustrates the evolution of stochastic process {xk}.
Let us explain the evolution from 1st stage to 2nd stage as an ex-
ample. Starting from the initial condition x1 ∼ N(µ1 P1) at the

epoch t1, the observation and estimation acquire the estimated
state vector x̂1. Here, we neglect the estimation errors for sim-
plicity. The control vector u1 is determined through the control
policy h1(·) with the estimated state vector x̂1. The propagation
with (x̂1,u1) yields the propagated state vector y1 by

y1 = f1(x̂1,u1) + w1

where y1 ∼ N( f1(x̂1,u1), R1) because of the additive random
disturbance w1. The trajectory design with a priori information
must consider this process for all possible estimated state x̂1.
Therefore, the random state vector x2 at the epoch t2 and the
control vector u1 at the epoch t1 are obtained as

x2 = f1(x1,u1) + w1

u1 = h1(x1)

where x2 should be approximated as a Gaussian random vari-
able following N(µ2, P2).
2.2. Stochastic Dynamic Programming

The distributions of Gaussian random variables are identified
by the mean values and covariance matrices. Let us define the
following mapping

b[xk] := {(µk, Pk) : xk ∼ N(µk, Pk)} , (3)

and b[xk] determines the property of the Gaussian random vari-
able xk.

For a given mean value and covariance matrix b[xk], the
stochastic optimal control problem finds the optimal control
policies hk:N(·) (= {hk(·), ..., hN(·)}) to minimize the cost-to-go
function

Vk(b[xk], hk:N(·)) = E
xk

[
Lk(xk,uk) + E

wk
[Lk+1(xk+1,uk+1) + · · ·

+ E
wN−1

[
LN(xN ,uN) + E

wN
[ΦN+1(xN+1)|xN]

∣∣∣∣∣ xN−1

]
· · ·
∣∣∣∣∣ xk

]]
(4)

where xi, i = k + 1, ...,N + 1 and ui, i = k, ...,N are computed
through Eqs.(1) and (2) with given xk. The optimal cost-to-go
function is therefore given as

V∗k (b[xk]) := min
hk:N (·)

Vk(b[xk], hk:N(·)) (5)

Replacing the expected value E
wk

by E
xk+1

and introducing the Bell-

man’s principle of optimality27) derive a recursive equation

V∗k (b[xk]) = min
hk(·)

{
E
xk

[
Lk(xk,uk) + V∗k+1(b[xk+1|xk])

]}
(6)

where

b[xk+1|xk] := {( fk(xk,uk), Rk) : xk ∼ N(µk, Pk),uk = hk(xk)} .
(7)

b[xk+1|xk] computes the conditional expectation and its covari-
ance where xk is given. Note that b[xk+1|xk] is also a random
variable because xk is a random variable.

Equation (6) is a typical formulation of Stochastic Dynamic
Programming (SDP) with imperfect information.
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3. Tube Stochastic Differential Dynamic Programming

This section proposes Tube Stochastic Differential Dynamic
Programming (TSDDP) by introducing the Unscented Trans-
form (UT). This algorithm, which is inspired by Tube MPC,17)

extends a conventional SDDP8, 18–20, 25) to handle control con-
straints by making tubes of stochastic distribution.Introducing
UT and the tubes of the sigma points can reformulate the
stochastic dynamic programming as the deterministic dynamic
programming. Once the problems are formulated as the de-
terministic dynamic programming, the recent techniques of
DDP5, 6, 28, 29) can efficiently solve the constrained problems.

3.1. Dynamical System with Unscented Transform
The Unscented Transform (UT) is a mathematical function to

estimate the probability distribution as a Gaussian distribution.
Given a nonlinear mapping f (·) and an input random variable x,
the UT estimates the mean value and covariance of f (x). The
UT refers the behaviors of the representative points, which is
called sigma points, through the nonlinear transformation. The
details are shown in Appendix A.

This section derives the deterministic dynamical system of
sigma points instead of the stochastic dynamical system.22, 23)

Let us define the set of the sigma points Xk = [X0
k ,X1

k , ...,X2n
k ] ∈

Rn(2n+1). The sigma points of the random state vector are ob-
tained from b[xk] by

b[xk]
φσ7−→ Xk (8)

where the mapping φσ are defined in Appendix A
Instead of considering the control policies {hk(·)} as a func-

tion, let us express the control policies as the interpolant of the
set of control vectors on the sigma points.

Uk = [U0
k ,U1

k , ...U2n
k ] ∈ Rm(2n+1) (9)

= [hk(X0
k), hk(X1

k), ...hk(X2n
k )] (10)

3.1.1. Stochastic Dynamics with A Posteriori Information
Once the state vector is estimated as x̂k, the control vector

can be determined as uk = hk(x̂k). For the stochastic dynamics
(1), the disturbance vector wk perturbs the state vector at (k+1)-
st stage. Introducing the sigma points with respect to wk yields
the sigma points of the propagated state vector yk as

Y p
k = fk(x̂k,uk) +W p

k , p = 0, .., 2n (11)

whereW p
k ∈ Rn, p = 1, .., 2n are the sigma point of wk.

3.1.2. Stochastic Dynamics with A Priori Information
Before the observation and estimation at the k-th stage, the

state vector xk cannot be determined as a fixed value. However,
we can anticipate the distribution b[xk] and it can be expressed
by the set of sigma points Xk. Therefore, the sigma points of
the state vector Xk+1 at (k+1)-st stage can be obtained from Xk,
Uk and Rk as

Xk+1 = Fk(Xk,Uk, Rk) (12)

where Rk is the covariance matrix of wk. Equation (12) can be
considered as the dynamical system with a priori information.
The nonlinear mapping Fk : Rn(2n+1)×Rm(2n+1)×Rn×n → Rn(2n+1)

can be derived in Appendix B

3.2. Unscented Stochastic Dynamical Programming
The Bellman equation (6) finds the optimal control policy

hk(·) for given b[xk] by introducing the optimal cost-to-go func-
tion V∗k (·) with respect to b[xk]. The proposed algorithm re-
places b[xk] with the set of the sigma points Xk, and finds the
optimal control vectors Uk for the given Xk.

Let us re-define the optimal cost-to-go function as V∗k (Xk).
The UT reformulates the Bellman equation (6) as a following
recursive equation

V∗k (Xk) = min
Uk

2n∑
j=0

W j
m

[
Lk(X j

k,U
j
k) + V∗k+1(Yk)

]
(13)

where V∗k+1(·) should be evaluated with a posteriori information,
and therefore Yk = [Y0

k ,Y1
k , ...,Y2n

k ] ∈ Rn(2n+1), and

Y p
k = fk(X j

k,U
j
k) +W p

k , p = 0, .., 2n. (14)

Equation (13) is the formulation of the deterministic dynamic
programming with respect to the sigma points Xk.

We can realize that Eq.(13) has an analogy to Tube MPC.17)

Both the methods evaluate the cost-to-go function by taking the
sum of cost Lk(·) at the representative points on the tubes. The
proposed method adopts the sigma points as the representative
points, and takes the weighted sum to evaluate the expected
cost-to-go.
3.3. Tube Stochastic Differential Dynamic Programming

Tube Stochastic Differential Dynamic Programming (TS-
DDP) solves the Bellman equation (13) by Differential
Dynamic Programming (DDP). The recent techniques of
DDP5, 6, 28, 29) can be adopted to solve the constrained problems
efficiently because these methods can be applied to the deter-
ministic dynamic programming such as Eq.(13).
3.3.1. Reference Trajectory

Let us introduce a reference trajectory (X̄k, Ūk), k =

1, 2, ...,N, where X̄k is the set of the sigma points of the ref-
erence trajectory and Ūk is the set of the control vectors on the
sigma points. TSDDP can evaluate the control constraints only
on the sigma points, and the constraints may not be satisfied out-
side sigma points region. Therefore, the sigma-points should be
put on the 3-sigma ellipse for the practical use.

The UT has the arbitrary parameters α ∈ (0, 1] and κ ∈ (0,∞).
The following condition is necessary and sufficient to put the
sigma points on the 3-sigma ellipse

κ =
9
α2 − n (15)

Proof. For the random variable x ∼ N(µ, P), where µ ∈ Rn and
P ∈ Rn×n, the sigma points {X0,X1, ...,X2n} are calculated as

X0 = µ (16)

X j = µ +
( √

(n + λ)P
)

j
, j = 1, 2, ..., n (17)

Xn+ j = µ −
( √

(n + λ)P
)

j
, j = 1, 2, ..., n (18)

where λ := α2(n + κ) − n and (·) j means the j-th column vector
of the matrix. To put the sigma points on the 3-sigma ellipse,
the following condition should be satisfied

√
n + λ = 3 (19)

⇔ α2(n + κ) = 9. (20)

□
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3.3.2. Second-Order Expansion of Bellman Equation
Let us expand Eq.(13) in the neighborhood of the reference

trajectory (X̄k, Ūk). The second order expansion of Lk(X j
k,U

j
k)

is

Lk(X j
k,U

j
k) ≃ Lk,0 +

[
LT

k,x LT
k,u

] [δX j
k

δU j
k

]
+

1
2

[
δX jT

k δU jT
k

] [Lk,xx Lk,xu
LT

k,xu Lk,uu

] [
δX j

k
δU j

k

]
(21)

where δXk := Xk−X̄k, δUk :=Uk−Ūk, and Lk,0, Lk,x, ..., Lk,uu

are evaluated at (X̄k, Ūk).
V∗k+1(·) can be expanded with respect to (Xk,Uk) by introduc-

ing the chain rule. Let us first expand V∗k+1(·) with respect to Yk

as follows

V∗k+1(Yk) ≃ V∗k+1,0 + V∗Tk+1,XδYk +
1
2
δYT

k V∗k+1,XXδYk (22)

where δYk = [δY0
k , δY1

k , ..., δY2n
k ] ∈ Rn(2n+1), and

δY p
k = Y

p
k − X̄

p
k+1 (23)

= fk(X j
k,U

j
k) +W p

k − X̄
p
k+1 (24)

Let V∗k+1,X ∈ Rn(2n+1) and V∗k+1,XX ∈ Rn(2n+1)×n(2n+1) be parti-
tioned into the block matrices with respect to sigma points as
V p

k+1,x ∈ Rn and V pq
k+1,xx ∈ Rn×n. Introducing the block matri-

ces simplifies Eq.(22) as

V∗k+1(Yk) ≃ V∗k+1,0 +

2n∑
p=0

V pT
k+1,xδY

p
k

+
1
2

2n∑
p=0

2n∑
q=0

δY pT
k V

pq
k+1,xxδY

q
k

= V∗k+1,0 +

2n∑
p=0

V pT
k+1,x

(
W p

k − X̄
p
k+1

)
+

1
2

2n∑
p=0

2n∑
q=0

(
W pT

k − X̄
pT
k+1

)
V pq

k+1,xx

(
Wq

k − X̄
q
k+1

)
+

2n∑
p=0

2n∑
q=0

(
W pT

k − X̄
pT
k+1

)
V pq

k+1,xx fk

+

 2n∑
p=0

V pT
k+1,x

 fk +
1
2

f T
k

 2n∑
p=0

2n∑
q=0

V pq
k+1,xx

 fk

(25)

= Ak+1 + BT
k+1 fk +

1
2

f T
k Ck+1 fk (26)

where fk = fk(X j
k,U

j
k) can be expanded as

fk(X j
k,U

j
k) ≃ fk,0 +

[
f T
k,x f T

k,u

] [δX j
k

δU j
k

]
+

1
2

[
δX jT

k δU jT
k

] [ fk,xx fk,xu
f T
k,xu fk,uu

] [
δX j

k
δU j

k

]
(27)

Finally, the Bellman Equation (13) can be expressed as the
following quadratic form

V∗k (Xk) = min
δUk

2n∑
j=0

W j
m

{
q j

0 +
[
q jT

x q jT
u

] [δX j
k

δU j
k

]

+
1
2

[
δX jT

k δU jT
k

] [q j
xx q j

xu

q jT
xu q j

uu

] [
δX j

k
δU j

k

]}
(28)

= min
δUk

{
Q0 +

[
QT

X QT
U

] [δXk
δUk

]
+

1
2

[
δXT

k δUT
k

] [QXX QXU
QT

XU QUU

] [
δXk
δUk

]}
(29)

where the coefficients are defined in Appendix C. Eq.(29) can
be solved by the ordinary DDP techniques.
3.3.3. Backward Sweep

The quadratic optimal control problem (29) yields the varia-
tion of the optimal control policy

δU∗k = αk + βkδXk (30)

where αk = −Q−1
UUQU and βk = −Q−1

UUQXU if QUU is the posi-
tive definite matrix and the control constraints are neglected. If
not, the special techniques are required. However, the optimal
control policy can be still expressed as Eq.(30). Appendix D
shows the strategy to solve the constrained DDP.

The left hand side of Eq.(29) is also expanded as

V∗k (Xk) ≃ V∗k,0 + V∗Tk,xδXk +
1
2
δXT

k V∗k,xxδXk. (31)

Substituting Eq.(30) to Eq.(29) and comparing the terms of
the same order of δXk yield the following equations

V∗k,0 = Q0 + QT
Uαk +

1
2
αT

k Quuαk (32)

V∗Tk,x = QT
X + QT

Uβk + α
T
k QT

XU + α
T
k QUUβk (33)

V∗k,xx = QXX + QXUβk + β
T
k QT

XU + β
T
k QUUβk (34)

These quadratically expanded coefficients of V∗k (Xk) is recur-
sively used to find the optimal control policies αk−1 and βk−1 at
(k − 1)-st stage. Starting from the terminal cost function as the
terminal condition

V∗N+1(XN+1) =
2n∑
i=0

W j
mΦN+1(X j

N+1), (35)

the backward sweep process finds the optimal control policies
(αk,βk), k = 1, ...,N along the reference trajectory (X̄k, Ūk).
3.3.4. Forward Sweep

The forward sweep process updates the reference trajectory
(X̄k, Ūk) by using the optimal control policies (αk,βk). The for-
ward sweep process can simply propagate the trajectory be-
cause the optimal control policies have the feedback control
terms βk and Eq.(12) gives the dynamical system of the sigma
points Xk is given as the deterministic system.
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Table 1.: Configuration of Numerical Example.
Parameters Settings
Time of Flight TToF = 756 days
Segment N = 60; i.e., ∆t = 12.6 days
Gravity coef. GM = 1.327 × 1011 km3/s2

Acceleration magn. uUB = 4.15 × 10−4 m/s2

Initial condition [Rx,1,Ry,1] = [1.00, 0.00] a.u.
[Vx,1,Vy,1] = [0.00, 29.8] (km/s)

Final condition [Rx,N+1,Ry,N+1] = [2.24,−1.99] (km)
[Vx,N+1,Vy,N+1] = [11.4, 12.9] (km/s)

Standard deviation σr = 0.00 (km)
σv = 9.42 × 10−3 (km/s)

Weight cu = 1.0
c1 = 1.0 × 103, c2 = 1.0 × 103

c3 = 1.0 × 103, c4 = 1.0 × 103

4. Numerical Example

This section presents a numerical example to demonstrate
that the Tube Stochastic Differential Dynamic Programming
(TSDDP) yields robust low-thrust trajectory. The problem is to
find the optimal control policies to minimize the expected delta-
v and terminal distance from the target. Monte-Carlo simulation
shows that SDDP trajectory obtains good robustness against
disturbances, and the approximation by the Unscented Trans-
form (UT) is close to the Monte Carlo results.

4.1. Statement of Problem
For the state vector x =

[
rx, ry, vx, vy

]T ∈ R4 and the control
vector u = [ux, uy]T ∈ U ⊂ R2, where

U :=
{
u ∈ R2 : ∥u∥ ≤ uUB

}
, (36)

the deterministic dynamical system is described as a planar two-
body problem with respect to the Sun

d
dt


rx
ry
vx
vy

 =


vx
vy

−GM · rx/(r2
x + r2

y)
3
2

−GM · ry/(r2
x + r2

y)
3
2

 +


0
0
ux
uy

 (37)

where GM is the gravity constant of the Sun. Because TSDDP
is formulated with discrete-time dynamical systems, Eq.(37) is
discretized by the Runge-Kutta 4-th order method. Using the
discretized dynamical system fk(·) : R4×R2 → R4, the discrete-
time stochastic dynamical equation can be expressed as follows

xk+1 = fk(xk,uk) + wk, k = 1, ...,N (38)

where xk,uk and wk are the discretized state vector, control vec-
tor, and disturbance vector, respectively. The disturbance vector
wk is a random variable, whose covariance matrix is defined as

Rk =

[
σ2

r · I2×2 O2×2
O2×2 σ2

v · I2×2

]
(39)

where O2×2 ∈ R2×2 is a null matrix, I2×2 ∈ R2×2 is an identity
matrix, and the standard variation σr and σv use the number in
Table 1.

The stochastic optimal control problem to minimize the ex-
pected delta-v is stated as follows. Given the initial condition
and final condition, let us find the stochastic optimal control

Fig. 2.: DDP and TSDDP nominal trajectories.

Fig. 3.: DDP and TSDDP nominal control profiles.

policy {U∗1,U∗2, ...,U∗N} to minimize the expected-value of the
cost-to-go function constructed by

Lk(xk,uk) = cu∥uk∥δt (40)

ΦN+1(xN+1) = c1(rx,N+1 − Rx,N+1)2 + c2(ry,N+1 − Ry,N+1)2

+ c3(vx,N+1 − Rx,N+1)2 + c4(vy,N+1 − Ry,N+1)2 (41)

where the weights cu, c1, ..., c4 are tuned as shown in Table 1.
Note that the current version of TSDDP cannot include termi-
nal constraints, which are difficult to impose stably because the
boundary constraint is violated by the random perturbation. Fu-
ture work will extend TSDDP to handle the terminal boundary
condition by using, for example, the disturbance invariant set in
the field of Robust Model Predictive Control.17)

4.2. Numerical Results of Nominal Trajectories
We have solved both the non-disturbed optimal control prob-

lem by DDP and disturbed stochastic optimal control problem
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by TSDDP in order to show the difference. Figures 2 and
3 illustrate both the nominal trajectories and control profiles.
The nominal control profile of TSDDP is different from one of
DDP, and this difference contributes to improving the robust-
ness against uncertainties in TSDDP. The control norm of TS-
DDP represents that the first thrusting arc is not actively con-
strained. This result indicates that TSDDP achieves the solution
of the constraint tightening model predictive control,12) and it
retains a “margin” in the optimization for future feedback con-
trol. The future work should make the control profile smooth
by introducing analytical derivatives of state transition matrix30)

and the conjugate Unscented Transform.31)

4.3. Optimal Control Policy
TSDDP renders the optimal control vectors Uk at the sigma

points, and therefore the control policy hk(·) should be created
by interpolating these control vectors Uk. Let us adopt the linear
interpolant to create the control policy.17)

Fig. 4.: DDP Trajectories.

Fig. 5.: DDP control profiles.

For Uk = {U0
k ,U1

k , ...,U2n
k }, whereU j

k is associated with the
sigma points X j

k, the control policy is defined as

hk(x) =
2n∑
j=0

λ j(x)U j
k (42)

where λ(x) = [λ0(x), λ1(x), ..., λ2n(x)]T is a least square solu-
tion of

2n∑
j=0

λ j(x)X j
k = x (43)

subject to

2n∑
j=0

λ j = 1. (44)

Fig. 6.: TSDDP Trajectories (Monte-Carlo).

Fig. 7.: TSDDP control profiles.
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4.4. Evaluation by Monte-Carlo Method
This section demonstrates the robustness of TSDDP solution

by the Monte-Carlo method. The Monte-Carlo simulation ran-
domly adds the disturbance in the dynamical system, and the
optimal control policy {hk} gives feedback to the perturbed tra-
jectory. The details of the Monte-Carlo method are described
below.

For every k-th stage

1. Given the state vector xk as a deterministic value, compute
λ(xk) by Eqs. (43) and (44)

2. Compute the control vector uk through the control policy
hk(xk) in Eq.(42).

3. Select a sample of the random disturbance wk, whose co-
variance is defined in Eq.(39), and compute xk+1 with
given xk,uk, and wk through Eq.(38).

DDP also produces the optimal control policies hk(xk) includ-
ing the feedback against perturbations. For the Monte-Carlo
simulation with the DDP trajectory, the optimal control policies
hk(xk) in the procedure 2 should be replaced as

uk = hk(xk) = ūk + βk(xk − x̄k) (45)

where ūk and x̄k are the nominal control and state vector, re-
spectively.

Figures 4 and 6 plot 500 samples of the trajectories obtained
by the Monte-Carlo simulation. As drawn in Fig. 4, the most
of the DDP trajectories cannot cancel the perturbation and do
not satisfy the terminal boundary condition, while most of the
TSDDP trajectories cancel the perturbations, as shown in Fig.
6. The control profiles are illustrated in Figs. 5 and 7. The
control profiles of DDP are diverged around the final phase be-
cause the perturbations are too large to compensate, but those of
the TSDDP can correct the perturbations by adjusting the thrust
vectors.

Figure 8 shows the evolution of the stochastic process. The
distributions of the Monte-Carlo samples coincide with the er-
ror ellipse of the Unscented Transform very well. However,
the sample points differ from the error ellipse, for example, at
the stage k = 47 and k = 60. This difference comes from the
nonlinearity of the dynamical system. Future work should in-
troduce the conjugate Unscented Transform31) to evaluate the
stochastic distribution accurately.

5. Conclusion

This paper proposes a new method to compute optimal low-
thrust trajectories taking into account disturbances. The method
is Tube Stochastic Differential Dynamic Programming (TS-
DDP), which is based on Stochastic Differential Dynamic Pro-
gramming (SDDP) and inspired by the tube model predictive
control. The proposed algorithm can solve the stochastic opti-
mal control problem with control constraints by the tube cre-
ated by the sigma points, and TSDDP can efficiently compute
the stochastic optimal control problem by the Unscented Trans-
form (UT). The Monte-Carlo simulation shows that the SDDP
trajectories have more robustness to disturbances than the DDP
trajectories, and the approximation by UT is accurate enough to
achieve the robust low-thrust trajectory.
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AppendixA Unscented Transform

The Unscented Transform (UT) is a mathematical function
to estimate the probability distribution as a Gaussian distribu-
tion. The UT refers the behaviors of the representative points,
which is called sigma points, through the nonlinear transforma-
tion.Let us introduce the random variable x ∈ Rn and the non-
linear transformation f (·) : Rn → Rm. For given y = f (x) and
x ∼ N(µx, Px), the UT estimate the mean value and covariance
of y, i.e. µy and Py where y ∼ N(µy, Py).

Let us define the set of the sigma points with respect to x as
X = [X0,X1, ...,X2n] ∈ Rn(2n+1) , where

X0 = µx, (46)

X j = µx +
( √

(n + λ)Px

)
j
, j = 1, 2, ..., n, (47)

Xn+ j = µx −
( √

(n + λ)Px

)
j
, j = 1, 2, ..., n, (48)

λ := α2(n + κ) − n, and (·) j represents the j-th column vector of
the matrix.

The transformed sigma-points is therefore

Y j = f (X j), j = 0, ..., 2n (49)

and the set of the transformed points are Y =
The UT derives the approximated mean value and covariance

by taking the weighted sum of the transformed sigma points as

µy =
2n∑
j=0

W j
mY j (50)

Py =
2n∑
j=0

W j
c

{
Y j − µy

} {
Y j − µy

}T
(51)

where

W0
m =

λ

n + λ
, (52)

W j
m =

1
2(n + λ)

, j = 1, ..., 2n, (53)

W0
c = W0

m + (1 − α2 + β), (54)

W j
c = W j

m, j = 1, ..., 2n, (55)

and α ∈ (0, 1], β, κ ∈ (0,∞) are arbitrary parameters. β should
be 2.0 for Gaussian distribution.

Equations (46) to (48) derives the mapping φσ from b[x] to
X, and Eqs. (50) to (55) derives the mapping φb from Y to b[y]
as

X = φσ(b[x]), (56)
b[y] = φb(Y). (57)
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(a) k = 12 (b) k = 20 (c) k = 29

(d) k = 47 (e) k = 51 (f) k = 60

Fig. 8.: Evolution of stochastic process (k: stage, blue ellipse: 3-σ, blue circles: Sigma points).

AppendixB Dynamical System with A Priori Information

Given a priori information Xk ∈ Rn(2n+1) and the control vec-
tor Uk ∈ Rm(2n+1) corresponding to the state vectors Xk, the
propagated sigma points Xk+1 ∈ Rn(2n+1) are computed by

Xk+1 = Fk(Xk,Uk, Rk) (58)

where Rk is the covariance matrix of disturbance vectors wk and
the nonlinear mapping Fk : Rn(2n+1)×Rm(2n+1)×Rn×n → Rn(2n+1)

can be derived as follows.
Let us introduce the non-disturbed state vectors zk+1 and its

sigma points Zk+1 = [Z0
k+1, ...,Z2n

k+1] ∈ Rn(2n+1) as such that

Z0
k+1 = fk(X0

k ,U0
k) (59)

Z1
k+1 = fk(X1

k ,U1
k) (60)

· · · (61)

Z2n
k+1 = fk(X2n

k ,U2n
k ) (62)

The mean value and covariance of the non-disturbed state
vector zk+1 is derived by the nonlinear mapping φb as

Zk+1
φb7−→ (µk+1, P̃k+1) := b[zk+1] (63)

The mean value and covariance of the disturbed state vector
xk+1 is therefore

b[xk+1] := (µk+1, Pk+1) = (µk+1, P̃k+1 + Rk) (64)

Finally, the nonlinear mapping φσ derives the propagated sigma
points Xk+1

b[xk+1]
φσ7−→ Xk+1 (65)

AppendixC Coefficients of Quadratic Form of TSDDP

The quadratically expanded Bellman’s equation for TSDDP
can be described as the quadratic form as shown in Eq.(29)

V∗k (Xk) = min
δUk

{
Q0 +

[
QT

X QT
U

] [δXk
δUk

]
+

1
2

[
δXT

k δUT
k

] [QXX QXU
QT

XU QUU

] [
δXk
δUk

]}
(66)

These coefficients are

Q0 =

2n∑
j=0

W j
mq j

0 (67)

QX =


W0

mq0
x
...

W2n
m q2n

x

 (68)

QU =


W0

mq0
u
...

W2n
m q2n

u

 (69)

QXX =


W0

mq0
xx O
. . .

O W2n
m q2n

xx

 (70)

QXU =


W0

mq0
xu O
. . .

O W2n
m q2n

xu

 (71)

QUU =


W0

mq0
uu O
. . .

O W2n
m q2n

uu

 (72)
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and

q j
0 = Lk,0 + Ak+1 + BT

k+1 fk,0 +
1
2

f T
k,0Ck+1 fk,0 (73)

q jT
x = LT

x,k + (BT
k+1 + f T

k,0Ck+1) f T
x,k (74)

q jT
u = LT

u,k + (BT
k+1 + f T

k,0Ck+1) f T
u,k (75)

q j
xx = Lxx,k + (BT

k+1 + f T
k,0Ck+1) ⋆ fxx,k + fx,kCk+1 f T

x,k (76)

q j
xu = Lxu,k + (BT

k+1 + f T
k,0Ck+1) ⋆ fxu,k + fx,kCk+1 f T

u,k (77)

q j
uu = Luu,k + (BT

k+1 + f T
k,0Ck+1) ⋆ fuu,k + fu,kCk+1 f T

u,k (78)

where the operator ⋆ is defined as (a ⋆ b)i j =
∑

p apbi jp and

Ak+1 = V∗k+1,0 +

2n∑
p=0

V pT
k+1,x

(
W p

k − X̄
p
k+1

)
+

2n∑
p=0

2n∑
q=0

(
W pT

k − X̄
pT
k+1

)
V pq

k+1,xx

(
Wq

k − X̄
q
k+1

)
Bk+1 =

2n∑
p=0

V p
k+1,x +

2n∑
p=0

2n∑
q=0

(
W pT

k − X̄
pT
k+1

)
V pq

k+1,xx (79)

Ck+1 =

2n∑
p=0

2n∑
q=0

V pq
k+1,xx (80)

AppendixD Constrained Differential Dynamic Program-
mingAlgorithm

Let us find the optimal linear control policy δU∗k = αk+βkδXk

by solving the following constrained quadratic programming

min
δUk

{
Q0 +

[
QT

X QT
U

] [δXk
δUk

]
+

1
2

[
δXT

k δUT
k

] [QXX QXU
QT

XU QUU

] [
δXk
δUk

]}
(81)

subject to

G0 + GUδUk ≤ 0 (82)

Murray et.al.28) and Yakowitz29) have proposed the algorithm
to solve this problem. The first step solves the quadratic pro-
gramming with assuming δXk = 0

min
δUk

{
QT

UδUk + δUT
k QUUδUk

}
(83)

subject to

G0 + GUδUk ≤ 0 (84)

The second step evaluates whether the constraints are active
or inactive, and assume that the active constraints will be active
even if we consider δXk , 0, and vice versa. Therefore, we can
obtain the optimal linear control policy δU∗k = αk + βkδXk from

min
δUk

{
Q0 +

[
QT

X QT
U

] [δXk
δUk

]
+

1
2

[
δXT

k δUT
k

] [QXX QXU
QT

XU QUU

] [
δXk
δUk

]}
(85)

subject to

Ĝ0 + ĜUδUk = 0 (86)

where Ĝ0 and Ĝu are that for active constraints.
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