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 Further exploring our solar system is continuously becoming more challenging, thus gravity-assists and low-thrust 
propulsion are typical mission enablers. Combining both has the potential to improve performance even more. Typically, 
optimization for low-thrust gravity-assist missions is conducted only for the trajectory. To improve results, it is however 
desirable to include finding the gravity-assist in the optimization. This paper presents a method, able to evaluate a large 
number of mission candidates, defined by gravity-assist maneuvers and the trajectories in between, with the gravity-assist 
partner as one control variable. A heuristic search is conducted under application of a shape based trajectory model. The 
paper explains the structure of the control variables and their repercussions on the optimization and presents the initial 
results obtained for three major questions: Is the method overall usable? Can the search space be pruned with constraints 
based on the maximum obtainable Δv and the pool of possible gravity-assist partners? Can evolutionary algorithms be used 
to optimize such missions with the given method? The basic method has been effective in finding optimal gravity-assist 
partners for single-gravity-assist missions and shows potential for multi-gravity-assist missions as well. Derived from the 
optimization performance some conclusions about the search space topography are drawn. 
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Nomenclature 
 

a :  semi-major axis (of an elliptical orbit),  
   resp. coefficient of trajectory model 

b :  coefficient of trajectory model 
c :  coefficient of trajectory model 
Cj :  Jacobi integral 
Cj* :  modified Jacobi integral  
d :  coefficient of trajectory model 
δ :  turning angle/ deflection of velocity 
e :  eccentricity, resp. coefficient of  

   trajectory model 
f :  coefficient of trajectory model 
F :  number for weighting of mutation 
g :  coefficient of trajectory model, number  

   of generation 
Δv :  velocity change of a mission 
i :  inclination 
μ :  gravitational parameter 
n :  population number 
R :  orbital distance from bary-center 
 𝑇𝑇�⃗  :  thrust acceleration (vector) 
θ :  trajectory angle, describing progress 

 𝑉𝑉�⃗  :  velocity (vector) 
 𝑥⃗𝑥 :  solution candidate (vector) 
  

 Subscripts 
0 :  initial property 
i :  population number  
pl :  planet’s property 
r1,…  :  random population number 

 

1.  Introduction 
 
 Ever since the spectacular Voyager and Pioneer missions, 
gravity assists1) are a typical method to improve mission 
performance or are even mission enablers. More recent 
examples are Rosetta, Hayabusa and Dawn, missions 
targeting small bodies in various regions of the solar system. 
 Due to their excellent efficiency, made evident by specific 
impulses above 1000 s2), low-thrust propulsion likewise can 
act as mission enabler and in general improves mission 
performance. 
 Combining both has the potential of improving mission 
performance even further, thus allowing missions with large 
Δv demands to be conducted with a manageable amount of 
propellant, just like Dawn and Hayabusa. 
 The nature of low-thrust trajectories, however, makes their 
optimization more challenging than for impulsive thrusters. 
For impulsive thrusters, any maneuver is defined by three 
dimensions: two thrust angles and the thrust magnitude.3) 
Following from the respective energy state after a maneuver, 
the subsequent trajectory is defined and set (not considering 
perturbation forces at this point). For a low-thrust mission, for 
each point in time, these three dimensions exist likewise. 
Because time is continuous and infinite, i.e. an infinite amount 
of points in time describe any trajectory or part of it, the 
solution space of the control variables associated with the 
low-thrust trajectory is also infinite.4) 
 As for many optimization problems, the search space 
topography is unknown and therefore typically heuristic 
methods are used for optimizing low-thrust trajectories.3) 
 For optimization of low-thrust gravity-assist trajectories, the 
sequence of gravity-assist partners (i.e. planets or moons) is 
typically fed into the optimizer and not part of the 
optimization process.5,6) Therefore, it requires a new method 
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of incorporating such gravity-assist partners as part of the 
optimization to facilitate a complete and thorough 
examination of the search space and not restrict the search on 
certain areas. Such a method further allows analysis and 
review of the complete search space topography. 
 This paper proposes a new method potentially capable of 
examining the whole search space. As a first step to find a 
suitable way of optimizing and planning low-thrust 
gravity-assist sequences, methods of sequencing 
impulsive-mission gravity assists have been reviewed, which 
led to the application of Tisserand’s Criterion for mapping 
sequences. In this paper it is shown that this energy relation 
cannot be used for missions under continuous (low) thrust and 
an alternative method is proposed. The steps to derive this 
method and preliminary results have been published in Ref. 7) 
to 9). This paper presents an update on the results and method. 
For further discussion, the formulations assume that the 
gravity-assist perspective is regarding Sun, planet and a 
spacecraft. In a more general perspective these terms are 
interchangeable with central body, gravity-assist partner and 
gravity-assist body. For clarity however the previous 
mentioned perspective is used in formulations, omitting other 
possible scenarios, which is not meant to represent lack of 
general validity of the statements.    
 
2.  Tisserand’s Criterion Use for Low-Thrust Missions 
 
A prominent method for mapping out gravity-assist 

sequences of impulsive missions are so called Tisserand 
graphs. These graphs link a heliocentric orbit’s energy (resp. 
orbital period, which are both just depending on the orbit’s 
semi-major axis) and pericenter distance with the 
planetcentric orbital energy expressed by the hyperbolic 
excess velocity during a flyby. They have been developed by 
two independent research groups,10,11) and are based on the 
energy relation called Tisserand’s Criterion. 
 This relation has been formulated by Felix Tisserand in the 
19th century, to identify comets he observed before and after a 
close encounter with Jupiter.12) It is a form of the Jacobi 
integral and is written as:  
 

𝐶𝐶𝐽𝐽 =
𝑅𝑅𝑝𝑝𝑝𝑝
𝑎𝑎 + 2�

𝑎𝑎(1 − 𝑒𝑒2)
𝑅𝑅𝑝𝑝𝑝𝑝

cos 𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, (1) 

where Rpl is the solar distance of the planet, a the semi-major 
axis of the spacecraft and e and i its eccentricity and 
inclination respectively. It should be noted that in many 
formulations of Tisserand’s Criterion, the semi-major axis a is 
scaled to the solar distance of the planet, which then does not 
appear visibly. 
 This equation describes the energy of the relative motion and 
is based on the Jacobi integral of the motion in the restricted, 
circular three-body system.13) Since it is constant, it sets a 
constraint on the orbit around the Sun after a gravity assist and 
thus the possible orbit is not arbitrarily selectable for a 
mission design, but has to fulfill Eq.(1). It is a state quantity 
and thus can be evaluated a priori. 
 The derivation of the criterion within the restricted, circular 

three-body system places it in the environment of an ideal 
case. The assumptions of the restricted, circular three-body 
system are that the involved bodies have constant masses and 
circular orbits. For the derivation of Tisserand’s Criterion it is 
also assumed that the distance to the planet is large and 
therefore its gravitational influence – once past the gravity 
assist – is small in comparison to the Sun’s influence. And 
most importantly it is assumed that only gravitation is acting 
in this system. These assumptions are not congruent with the 
real solar system, especially not in the context of a thrusting 
spacecraft. The premise of only gravitation acting in the 
system is especially violated by missions applying low-thrust 
propulsion continuously.  
While an impulsive maneuver places a spacecraft on a fixed 

trajectory once the maneuver is took place, continuous thrust 
is associated with a continuous change of orbital energy and 
thus the trajectory.  
 The deviation of the actual solar system and application of 
thrust from the ideal case have been analyzed in previous 
papers. Besides the effect of thrust, the strongest effect can be 
attributed to non-circular orbits of the planets around the Sun, 
mostly for Jupiter. Deviations in the numerical value for 
Tisserand’s Criterion of up to 25% have numerically been 
determined by a search with random orbital parameters for a 
sample spacecraft.7) Allover however, the energy input by the 
continuous thrust is the strongest deviation as it can easily 
reach about 80% of the total energy for typical missions (e.g. 
from Earth to Jupiter).8) Consequently the effect of the thrust 
cannot be disregarded as the application of Tisserand’s 
Criterion would suggest, even though natural errors of up to 
25% have been found. 
Therefore, the application of Tisserand’s Criterion requires 

to regard the low-thrust effect in the criterion itself. With 
similar steps as for the original criterion, a correction term can 
be formulated, leading to a modified Jacobi integral for the 
motion under thrust (note this formulation applies for any 
magnitude of thrust and is not restricted to low-thrust 
propulsion):8) 

𝐶𝐶𝑗𝑗∗ = 𝐶𝐶𝑗𝑗 + 2�𝑉𝑉�⃗ ∙ 𝑇𝑇�⃗ 𝑑𝑑𝑑𝑑. (2) 

The Jacobi Integral Cj is modified by an integral of the vector 
product of velocity 𝑉𝑉�⃗  and thrust acceleration 𝑇𝑇�⃗ . While 
further simplifications are possible, Eq. (2) contains in any 
case a modified term, which is no state quantity. To evaluate it, 
the actually trajectory, especially the thrust and velocity 
histories need to be known. The thrust can be assumed to be 
e.g. tangential or parallel to the velocity vector and constant, 
but the velocity vector history is depending on the actual 
trajectory. Assumptions about the velocity and also thrusting 
time interval (𝑑𝑑𝑑𝑑) would already define the trajectory, which 
then would not be optimal (only by accident).  
Over the course of a trajectory, Eq. (2) continuously changes 

its value due to the correction term. Consequently it is no 
longer a clear constraint on possible orbits. A priori the 
possible gravity assists cannot be mapped out.8) 
 Tisserand’s Criterion is therefore not applicable for 
low-thrust mission planning in a similar manner as for 
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impulsive missions. While it can still be regarded as true for 
the actual gravity assist, any long duration – resulting in a 
non-negligible value for Eq. (2) – of the thrusting (in 
comparison to the overall mission time) is a unneglectable 
violation of the criterion’s premises. 
 Therefore an elegant planning of gravity assists analogously 
to the impulsive maneuver case, is not possible. The search 
for the sequence has to occur heuristically instead. 
   
3.  Optimization Variables and Method  
 
 As explained in Section 2, the methods used for impulsive 
mission sequencing cannot be used, an alternative is necessary. 
To define a new method, the respective variables associated 
with gravity assists are reviewed. The optimization variables 
for a gravity-assist mission include those of the trajectory 
model, controlling thrust and thus the outcome of the 
trajectory. In addition, the gravity assist(s) add further 
variables for definition of the actual maneuver, e.g. the 
deflection (turning angle) δ. 
 For the purpose of this paper, a planar shape-based model 
developed by Wall and Conway14) has been applied to define 
the trajectory. This model uses a polynomial to approximate a 
low-thrust trajectory in the form of:14) 

𝑅𝑅(𝛩𝛩) =  
1

𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝛩𝛩2 + 𝑑𝑑𝛩𝛩3 + 𝑒𝑒𝛩𝛩4 + 𝑓𝑓𝛩𝛩5 + 𝑔𝑔𝛩𝛩6 
(3) 

where θ is the angle describing the progress on the trajectory 
(similar but not identical to the true anomaly, as θ is 0 at the 
start of the trajectory and can continue up to a value 
depending on the target bodies position at arrival) and a to g 
are coefficients used to adapt the polynomial to constraints, 
e.g. the departures state (described by the velocity and 
position vectors). The simplicity of the model allows a fast 
evaluation of a large number of trajectories in a short amount 
of time. It is an approximation, circumventing the need for 
propagation and integration.   
 For the purpose of this work, each mission has been divided 
into segments and each segment described by a polynomial as 
given in Eq. (3). The segments are defined by an initial state 
and a final state, containing the respective body, hyperbolic 
excess velocity and deflection for a gravity-assist encounter. 
Several segments, depending on the amount of gravity-assist 
partners, then describe a whole mission. The first segment of 
the mission contains the starting body (providing the position) 
and velocity and the last segment’s final body is the mission’s 
target body. Depending on whether or not it is a flyby or a 
rendezvous the hyperbolic excess velocity has a value unequal 
to or equal to zero. 
 
3.1.  Control Variables of the Problem 
 The described trajectory model uses the variables Number or 
Revolutions (around the Sun), Nrev, Time of Flight, ToF, and 
Launch Date, LD, to control the trajectory (i.e. they defined 
the coefficients a to g14)). Nrev basically sets a constraint on 
thrust. The coefficients in Eq. (3) are calculated based on 
mission constraints, e.g. arrival date, and match the trajectory 
to its mission purpose, e.g. the respective arrival body at a 

specific time (defined by launch date plus flight time).  
 Each mission is defined by the variables Mission Time of 
Flight, MToF, Mission Launch Date, MLD, and Mission 
Number of Revolutions, MNrev. As the bodies are the 
“handover points” between segments, a segment’s final body 
is the next segment’s initial body. Its arrival date is the next 
segment’s launch date and so on. Also the segments’ variables 
are not independent of the mission variables. The sum of all 
segment’s ToF values has to add up to the MToF, for 
example.  
 The variable describing the respective gravity-assist partner, 
is simply an integer number, where Mercury is represented by 
the value 1, Venus by 2, Earth by 3 and so on.  
 However, the variables describing the segment’s gravity 
assist are again not independent of the mission as such. A 
flight time fitting for a transfer to Mars would be not very 
suitable to reach Jupiter, for example. These variables are 
sensitive to the variable of the gravity-assist partner and this 
variable is discreet. Thus it has a strong influence on the 
variables describing the gravity assist.  
 These are the hyperbolic excess velocity (in all coordinates, 
which are x and y here) and the turning angle, transforming 
the velocity vector from its incoming direction to its outgoing 
direction (which then modifies the heliocentric velocity 
vector).  
Therefore, two kinds of variables are defined: global and 

local. The former are freely selected and can be used for 
evolutionary search methods, whereas the latter cannot be 
freely selected due to their interdependency with other 
variables and describe the gravity-assist situation. They are 
reinitiated for each step in the search.      
 
3.2.  Search Method 
 With the variable structure as presented above, the following 
steps for the optimization are applied:9) 
 

1. Set constraints for mission (e.g. starting body), 
2. optimize a no-gravity-assist trajectory (one segment) 

as benchmark for the search,  
3. create a population of solution candidates for each 

value of the number of gravity-assists from 1 to a 
(user specified) maximum number, with random 
initial values for all variables, where: 

a. constraints and variable interrelations are 
observed to create a valid mission 
sequence, 

b. gravity-assist effect is considered by 
application of the turning angle on the 
planetcentric approach/ departure velocity 
(note this is the assumption of energy 
conservation),  

4. optimize the solution candidates within each 
population, recombination of mission global 
variables (see 3.1) occurs, mission local variables 
are set in dependence to global and local variables, 

5. compare best solutions of all populations (incl. the 
no-gravity-assist benchmark) to find final solution. 
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The usage of populations defined by the 
number of mission segments allows 
exchange of variable values between the 
solutions within a population as 
applicable for evolutionary algorithms 
and the benchmarking ensures that a 
selected gravity-assist trajectory is not 
worse performing than a 
non-gravity-assist trajectory. 
 
 
4.  Calculation Examples  
 
 To investigate the usefulness of the 
method, calculations have been 
conducted, investigating different 
algorithms and settings. For the 
calculations shown here, the example 
mission has been a transfer from Earth 
to Jupiter.  
 More details can be found in Ref. 9). 
 
4.1. Investigating Differential Evolution 
  One algorithm that has been tested, was Differential 
Evolution, due to its robustness.15) The major investigated 
question was if an evolutionary algorithm can be applied to 
the method in Section 3.2, despite the fact that not all 
variables can be used evolutionary (see Section 3.1). Also, the 
influence of the population size on the solution quality and if 
the results have been reliable, i.e. can be found repeatedly, has 
been analyzed.  
Differential Evolution creates a mutation vector out of three 

existing solutions according to the pattern: 
 

𝑥⃗𝑥𝑖𝑖
𝑔𝑔+1 =  𝑥⃗𝑥𝑟𝑟1

𝑔𝑔 + 𝐹𝐹 ∙ �𝑥⃗𝑥𝑟𝑟2
𝑔𝑔 − 𝑥⃗𝑥𝑟𝑟3

𝑔𝑔 �, (4) 

here g represents the number of the generation, i the index of 
the vector (from 1 to n, with n being the number of solution 
candidates), r1 to r3 random indexes and F is a real, constant 
factor ϵ [0,2], called differential weight. Variations of this 
definition include a larger number of vectors used for creating 
the difference vector.  
 Out of this mutation vector, a trial vector is created, where 
for each vector entry it is randomly determined (via the so 
called crossover constant) whether or not the mutated variable 
is accepted. At least for one entry this occurs automatically, 
ensuring that always a new solution is created out of an 
existing one. Details can be found in Ref 15). 
 
4.1.1.  Settings 
  The stopping criterion has been 1000 generations resp. four 
generations without replacement in the whole population. The 
launch date window has been 360 days, the flight time interval 
1000 days, the crossover constant 0.75, the differential 
weight 1 and the maximum number of gravity assists has 
been 2. Population size has been varied between 50, 200 and 
500, with 10 calculations each. 

 
4.1.2.  Results 
  The average results for all population sizes are shown in 

Fig. 1. It can be seen that the no-gravity-assist solutions 
(1 segment) do not change for different population sizes, 
whereas for gravity-assist missions the solution quality 
increases, i.e. the Δv decreases. Overall the best solution 
obtained has been 12.1 km/s for a single-gravity-assist 
trajectory (2 segments), for a gravity-assist at Earth. This 
solution is given in Fig. 2. It can be seen that initially the 
spacecraft remains close to Earth’s heliocentric orbit, before 
using a flyby at Earth to leave on an outwards course towards 
Jupiter.  
 For a population size of 200 and 500 the single gravity-assist 
missions always produced the same gravity-assist encounter: 
Earth at an encounter date of 56481 MJD (21.84 standard 
deviation), including the best solution.  
 Multi-gravity-assist missions produced no such unique 
encounter, however the majority of missions favored Earth as 
first gravity assist partner and Mars as second.  
 The number of generations never reached the limit of 1000. 
For no-gravity-assist missions, the generation number has 
been on average about 130 for all three population sizes, for 
single-gravity-assist missions it has been 86, 251.3 and 582 
for the population sizes of 50, 200 and 500. For 
multi-gravity-assists they have been 93.6, 342.2 and 580.   
 
4.2.  Calculations Investigating Constraints  
  To further improve obtained results, it was also investigated 
which constraints on the search space can be useful. A simple 
analysis can reveal that the maximum obtainable Δvmax for a 
gravity-assist is:8) 
 

Δ𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = �
𝜇𝜇𝑝𝑝𝑝𝑝
𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝

. (5) 

 

 
Fig. 1: The average results for calculations with Differential Evolution and their standard deviation. 
Resulting mission Δv over number of segments for 50 (red, diamond), 200 (green, triangle) and 500 
(circle) population members.  
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It depends on the gravitational parameter μpl of the respective 
planet and the pericenter distance Rper of the respective flyby 
trajectory. The hyperbolic excess velocity for which this 
maximum occurs is identical to Δvmax: 
  

v∞,𝑚𝑚𝑚𝑚𝑚𝑚𝛥𝛥𝑣𝑣 = �
𝜇𝜇𝑝𝑝𝑝𝑝
𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝

. (6) 

 This means, once the flyby pericenter distance is determined, 
the maximum obtainable Δvmax is immediately clear.  
 Therefore, it is possible to restrict the search into regions 
around this maximum, to ensure a large gain from each 
gravity assist and thus reduce the number of gravity assists 
(and thus likely flight time). However there is no guarantee 
that a locally “optimized” gravity-assist outcome leads to an 
overall best sequence. Therefore it has been tested, whether or 
not this constraint improves solution quality. 
 Likewise it has been tested if it is beneficial to the solution 
quality, to restrict the selection of gravity-assist partners to the 
vicinity of the current segment’s planet and prevent extensive 
“jumping” from one planet to the other. The variable of the 
gravity-assist partner identification is thus limited to a certain 
change, e.g. an increase or decrease maximum of one. 
 
4.2.1.  Settings 
  Calculations have been conducted with Differential 
Evolution, a population size of 100 and similar mission 
settings as before (see Section 4.1.2), including 1 to 2 
gravity-assists. The constraints using the “region” around 
Δvmax has been varied in 10% steps from 0 to 100%, the 
constraint regarding the partner pool has been varied between 
1 and 2 in both directions, i.e. inwards and outwards. In a 
further set of calculations the respective best results have been 
combined, i.e. a region of 20% and a constraint of 1 step in- 
and outwards. 
 
4.2.2.  Results 
  The calculation results have been between 14.2 and 
15.9 km/s on average for one-gravity-assist missions, whereas 
the standard deviation was reduced by 65% (down to 348 m/s) 
compared to not applying the constraint when using a region 
of 20%, whereas the mission Δv was lowered by 190 m/s. 
Using a region of 40% led to a standard deviation of 448 m/s 
and a mission Δv improvement of on average 360 m/s vs. the 
calculations not using the constraint. 
 Applying a constraint regarding the planet partner pool did 
not show a clear behavior. The best result when only using the 
constraint regarding partner pool, occurred for a restriction of 
2 in both directions, leading to an average Δv of 14.2 km/s 
with a standard deviation of 1.22 km/s.   
 
5.  Discussion  
 Regarding single-gravity-assists the usage of the proposed 
method showed significant improvement of the mission Δv, in 
the best case of up to 20%. Similar improvement has not been 
shown for multi-gravity-assists. 
 
 

5.1.1.  Performance of Evolutionary Algorithm 
  In general, there has been a significant improvement of the 
mission Δv by using the global variables of MTOF, MNrev, 
MLD and the gravity-assist partner ID for evolutionary 
optimization. It has been shown that an increase of population 
size also leads to an improvement of the solution quality, 
which is linked to the increase of diversity. A larger 
population increases the amount of variable information that 
can be used for evolving the solutions and therefore solutions 
improve. Also the standard deviation is reduced, i.e. the 
reliability of finding similar results. Therefore, the 
convergence to the global optimum is ensured, instead of a 
local optimum. This interpretation is further supported by the 
increase in used generations for increasing population size. 
 The increase of the population size, leading to an increase of 
available variable information, means that there is a larger 
chance to find solution improvement and thus replacement. 
Therefore the optimization runs for more generations than 
before. 
 The success regarding solution improvement on 
one-gravity-assist solutions over no-gravity-assist solutions, 
shows that the global variables are suited for evolutionary 
search and thus have a certain dominance in the problem. 
However, their influence expectedly decreases with an 
increasing number of gravity-assists, because of the real 
valued variables, associated with the gravity-assists, added to 
the problem, e.g. the hyperbolic excess velocity. 
 It becomes more difficult for the algorithm to find useful and 
beneficial information. A further obstacle is that only the 
global variables are used for evolution. Local variables are 
reinitiated for each iteration. This means that there is 
likelihood that possibly beneficial global variable values are 
not retained, unless combined with a good variable set for the 

 
Fig. 2: The best obtained trajectory for an Earth-Jupiter mission 
(12.1 km/s mission Δv), with a single gravity assist at Earth. The first 
segment is shown in red, the second in blue, ending at Jupiter. The 
planetary orbits are depicted in dotted lines for reference.  
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local variables. The chance for such a good combination 
increases with the population size and therefore an increasing 
population size leads to better solutions.  
But also the search for multi-gravity-assist mission shows 

solution improvement to the same order of magnitude as the 
no-gravity-assist solution, but cannot improve it.  
 
5.1.2.  Performance of Constraints 
  The usage of the described constraints is not always leading 
to better solutions, but it reduces the standard deviation. This 
means the effect is not finding better solutions, but more 
similar solutions. This is expected – finding similar solutions 
results from constraining the search space to certain areas. 
This removes very bad results from the evaluation, but also 
potentially very good results. The effect is similar, but not the 
same, as for an increase of population size. Such an increase 
also means an increase in computation time, therefore using 
the constraints can lead to time savings. On the other hand, the 
constraints have to be carefully evaluated and tested out 
before usage, to ensure that it does not prevent convergence to 
the optimal solution.  
 
5.1.3.  Search Space Topography 
  Especially the decrease of solution quality with increasing 
numbers of gravity-assists, gives a hint on the search space 
topography. The increase means the probability to find good 
variable combinations drops, as the number of variables 
increases as well. However the possible fitness improvement, 
due to more Δv gain by several gravity assists, means that the 
peak of the optimum is also larger, yet the width is narrower, 
due to the reduced probability of finding beneficial variable 
combinations. This is illustrated in Fig. 3. 
 
6.  Outlook 
 
The presented method has only been applied planary and was 

successful mostly for single gravity assists. Consequently the 
reliability of the optimization needs to be improved, i.e. its 
convergence.  

 Similarly, the trajectory model needs to be enhanced to 
involve all three dimension to allow more meaningful 
missions, e.g. also covering polar orbits or small body 
missions.  
 
7.  Conclusion 
   

The results of an optimization method for low-thrust 
gravity-assist sequences have been shown. They have 
produced a Δv improvement of more than 20% for 
single-gravity-assist missions, but could not exceed 
no-gravity-assist solutions for multi-gravity-assist missions. 
Therefore, method improvement is necessary as well as an 
enhancement to three dimensions. 
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Fig. 3: A sketch of a 2D projection of search space topography 
regarding fitness over possible variable values, showing differences in 
steepness based on small numbers of gravity-assists (red/ dashed line) 
and large numbers of gravity-assists (blue/ solid line).  
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