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Satellite dynamics is described by a nonlinear differential equation. Most of recent studies about attitude control have used non-

linear controllers. However, with these controllers, control performance is ignored in most cases. To overcome this problem, this paper

applies the linear parameter-varying (LPV) control theory to the attitude control for a spacecraft with reaction wheels (RWs). The LPV

control theory can provide a gain-scheduled (GS) controller by using linear matrix inequalities (LMIs) for the mixedH2/H∞ control

which guarantees optimality and robustness at the same time. And also, two types of regional pole placement (RPP) constraints are

considered. Through some numerical examples, the effectiveness of these two types of RPP constraints are demonstrated.
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Nomenclature

J : inertia matrix of the spacecraft
Iws : inertia of wheel spin axis
q : quaternion (Euler Parameters)
ω : angular velocity vector of the spacecraft
Ω : wheel spin rate vector
Gs : spin axis matrix
B : body-fixed frame
N : inertial frame
ρ : scheduling parameter vector

Subscripts
0 : initial
e : error
d : desired

Superscripts
× : skew-symmetric

1. Introduction

In recent years, attitude control of spacecraft has been stud-
ied extensively. They deal with several kinds of actuators such
as momentum exchange devices (MEDs) and external torque
generators (e. g. gas jets or magnetic torquers). External
torque generators have disadvantages such as limited resources
or small torque. MEDs have been used for attitude control of
spacecraft as actuators, in which they do not require fuel. Since
reaction wheels (RWs) can generate control torque precisely,
RWs in MEDs are often used for attitude control of spacecraft.
Therefore, in this paper, we mainly focus on RWs to realize
3-axis attitude control.

Most of recent studies use Lyapunov function-based con-
trollers to realize attitude control.1)- 3) With Lyapunov function-
based controllers, overall stability of attitude control is always
guaranteed, however, control performance is hard to evaluate.
To overcome this problem, few studies4)- 7) attained 3-axis atti-
tude control with Linear Parameter-Varying (LPV) control the-

ory.8)- 10) LPV control theory can provide a gain-scheduled
(GS) controller by using linear matrix inequalities (LMIs) for
the mixedH2/H∞ control which guarantees optimality and ro-
bustness at the same time. However, this controller design deals
with frequency-domain aspects and sometimes provide little
transient behavior. By using regional pole placement (RPP)
constraint, some research11)- 15) solves this problem. This pa-
per considers two types of RPP constraints to improve control
performance.

The rest of this paper is organized as follows. In Section 2,
we show a brief overview of the dynamics and the kinematics
of a spacecraft. In Section 3, the generalized LPV model of
spacecraft dynamics with RWs shall be established. Section 4
presents two types of RPP constraints to design the GS con-
troller while considering the control performance. In Section 5,
some numerical simulation results are given and the effective-
ness of two types of RPP constraints are demonstrated. Finally,
Section 6 concludes the paper.

2. Spacecraft Model

In this paper, we deal with a spacecraft with RWs as shown
in Fig. 1. In this section, a dynamics equation of a spacecraft
with RWs is presented. After that, a kinematics equation based
on the modified Rodrigues parameters (MRPs) is described.

2.1. Dynamics
The spacecraft considered in this paper is assumed to be a

rigid body. Using the definition in Nomenclature, the total an-
gular momentum of a spacecraft with RWs is given as follows:

H = Jω + Iws(GsΩ) (1)

where

Gs =


1 0 0 −1/

√
3

0 1 0 −1/
√

3
0 0 1 −1/

√
3

 . (2)



Taking the body-fixed time derivative, the dynamics of a space-
craft is given by

Ḣ + ω×H = L, (3)

where the vectorL represents the sum of all the external torques
experienced by the spacecraft and the notationx× denotes the
following skew-symmetric matrix:

x× :=

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 , ∀x = [x1 x2 x3]T . (4)

Substituting Eq. (1) into the first term of Eq. (3), we have

Jω̇ +GsIwsΩ̇ + ω
×H = L. (5)

This is the dynamics of a spacecraft with RWs.
2.2. Kinematics

Spacecraft attitude is given by the orientation of the body-
fixed frameB with respect to the inertial frameN . It is known
that three kinematic parameters are enough to describe the atti-
tude. As such parameters, in this paper, the modified Rodrigues
parameters (MRPs) are chosen.16) The MRP vectorσ is de-
fined in terms of the Euler parameters as the transformation

σi =
βi

1+ β0
i = 1,2,3. (6)

The inverse transformation is given by

β0 =
1− σTσ

1+ σTσ
, βi =

2σi

1+ σTσ
, i = 1,2,3. (7)

Using the principal rotation axis vectorêand the rotation angle
ϕ, the MRPs are given by

σ = tan
(
ϕ

4

)
ê. (8)

For such MRPs, the singular points are given atθ = ±2π. How-
ever, these singularities can be avoided to introduce the dual
MRP method that consists of the conventional MRP and the
shadow MRP.16) The kinematic equation based on the error
MRPsσe is given by

σ̇e = H(σe)ωe (9a)

H(σe) =
1
4

[
(1− σT

eσe)I3 + 2σ×e + 2σeσ
T
e

]
. (9b)

Fig. 1. Tripod configuration of four RWs.

3. LPV Modeling

By introducing the error angular velocityωe (see Appendix
A) and using Jacobian linearization of Eqs. (5) and (9) around
the equilibrium point (ωeeq = 0, Ω̇eq = 0, σeeq = 0), the lin-
earized model of a spacecraft with RWs is described as follows:[

ω̇e
σ̇e

]
=

[
A(ρ) 0
1
4 I3 0

] [
ωe
σe

]
+

[
B
0

]
u +
[
E
0

]
w, (10)

whereEw is the disturbance term,

A(ρ) = IwsJ−1ρ× (11)

B = −IwsJ−1 (12)

u = GsΩ̇ (13)

with

ρ := GsΩ =


Ω1 − 1√

3
Ω4

Ω2 − 1√
3
Ω4

Ω3 − 1√
3
Ω4

 . (14)

Setting the state variablex := [ωT
e σ

T
e ]T , the state-space repre-

sentation of Eq. (10) is rewritten as follows:

ẋ = Ae(ρ)x + Beu + Eew. (15)

The Jacobian matrices are defined as

Ae(ρ) :=

[
A(ρ) 0
1
4 I3 0

]
, Be :=

[
B
0

]
, Ee :=

[
E
0

]
. (16)

The generalized plant for Eq. (15) is defined as follows:{
ẋ = Ae(ρ)x + Beu + Eew

z= Cx+ Du
(17)

where the coefficient matrix set (C, D) is normally selected such
that they normally satisfy the conditionCT D = 0, DT D > 0,
and wherew andzare the disturbance input vector and the per-
formance output vector for the simple LPV model in Eq. (15),
respectively. This controller is given by

u = −K(ρ)x. (18)

The LPV system and the GS controller are expressed by the
following polytopic representation:

Ae(ρ) =
p∑

i=1

λi(ρ)Aei, (19)

K(ρ) =
p∑

i=1

λi(ρ)Ki , (20)

λi(ρ) ≥ 0,
p∑

i=1

λi(ρ) = 1, (21)

wherep denotes the number of vertices. In this case,p is equal
to 8 (= 23).

4. GS Controller Synthesis

In this section, three types of GS controllers are designed.



4.1. Controller Synthesis without RPP Constraints
Let us introduce the following mixedH2/H∞ LMI prob-

lem:8)

inf
Wi , X, Z

[Trace (Z)] subject to (22a)

ΨH2 > 0, Ψ′H2 < 0, (22b)
ΨH∞ < 0, (22c)

for all 1 ≤ i ≤ p,

where

ΨH2 =

[
X ∗
ET

e Z

]
,

Ψ′H2 =

[
(AeiX − BeWi) + ( • )T ∗

CX − DWi −I

]
,

ΨH∞ =

(AeiX − EeWi) + ( • )T XCT −Wi DT Ee
∗ −γI D
∗ ∗ −γI

 ,
Eqs. (22a) and (22b) guarantee theH2 performance and
Eq. (22c) gives theH∞ constraint. Using the optimal solution
setsX, Wi to the problem of Eqs. (22), the extreme controllers
Ki at each vertex of the operation range are given by

Ki =Wi X−1, 1 ≤ i ≤ p. (23)

Then, the GS controller is constructed by substituting Eq. (23)
into Eq. (20).

Note that the common Lyapunov solutionX > 0 was used in
the past GS controller design and resulted in conservatism. As
an alternative, we use another method,10) in which the distinct
Lyapunov solutionsXi > 0 are adopted. Then, we have

inf
Wi , Xi , Z i

[Trace (Z i)] subject to (24a)

Ψ̃H2 > 0, Ψ̃′H2 < 0, (24b)

Ψ̃H∞ < 0, (24c)

for each 1≤ i ≤ p,

where

Ψ̃H2 =

[
Xi ∗
ET

e Z i

]
Ψ̃′H2 =

[
(AeiXi − BeWi) + ( • )T ∗

CXi − DWi −I

]

Ψ̃H∞ =

(AeiXi − EeWi) + ( • )T XiCT −Wi DT Ee
∗ −γI D
∗ ∗ −γI

 .
Using the optimal solution sets (Xi ,Wi) to the problem of
Eqs. (24), less conservative extreme controllers can be obtained.
The extreme controllers are given by

Ki =Wi X−1
i , 1 ≤ i ≤ p. (25)

By using these extreme controllers, a GS controller is again
constructed as in Eq. (20). In order to guarantee overall stability
and control performance in a whole operation range, we seek a

common Lyapunov solutionXc > 0 that satisfies the following
LMIs:

inf
Xc, Z

[Trace (Z)] subject to (26a)

Ψ̄H2 > 0, Ψ̄′H2 < 0, (26b)

Ψ̄H∞ < 0, (26c)

for all 1 ≤ i ≤ p,

where

Ψ̄H2 =

[
Xc ∗
ET Z

]
,

Ψ̄′H2 =

[
(Aei − BeKi)Xc + ( • )T ∗

(C− DKi)Xc −I

]
,

Ψ̄H∞ =

(Aei − EeKi)Xc + ( • )T XiCT − Ki XcDT Ee
∗ −γI D
∗ ∗ −γI

 .
4.2. Controller synthesis with RPP Constraints # 1

Region # 111)，15) is the setS(α, r,Θ) of complex numbers
x+ jy such that

x < −α < 0, |x+ jy| < r, tanΘx < −|y| (27)

as shown in Fig. 2. Confining the closed-loop poles to this re-
gion ensure a minimum decay rateα, a minimum damping ratio
ζ = cosΘ, an undamped natural frequencyωd < r sinθ and a
damped natural frequencyωn < r. This is turn bounds the max-
imum overshoot, the frequency of oscillatory modes, the delay
time, the rise time, and the settling time. LMIs for the mixed
H2/H∞ control with RPP Constraints #1 are given by

inf
Wi , Xi , Z i

[Trace (Z i)] subject to (28a)

Ψ̃H2 > 0, Ψ̃′H2 < 0, (28b)

Ψ̃H∞ < 0, (28c)

(AeiXi − BeWi) + ( • )T + 2αXi < 0, (28d)[
−rXi AeiXi − BeWi
∗ −rX

]
< 0, (28e)[

Φi (Θ) Φ′i (Θ)
∗ Φi (Θ)

]
< 0, (28f)

for each 1≤ i ≤ p,

Fig. 2. Regional pole placement #1.



where

Φi (Θ) = sinΘ
{
(AeiXi − BeWi) + ( • )T

}
(29)

Φ′i (Θ) = cosΘ
{
(AeiXi − BeWi) − ( • )T

}
. (30)

Eqs. (28d)-(28f) are described as RPP Constraints #1. In or-
der to guarantee overall stability and control performance in a
whole operation range, we seek a common Lyapunov solution
Xc > 0 that satisfies the following LMIs:

inf
Xc, Z

[Trace (Z)] subject to (31a)

Ψ̄H2 > 0, Ψ̄′H2 < 0, (31b)

Ψ̄H∞ < 0, (31c)

(Aei − BeKi)Xc + ( • )T + 2αXc < 0, (31d)[
−rX (Aei − BeKi)Xc
∗ −rXc

]
< 0, (31e)[

Φ̄i (Θ) Φ̄′i (Θ)
∗ Φ̄i (Θ)

]
< 0, (31f)

for all 1 ≤ i ≤ p,

where

Φ̄i (Θ) = sinΘ
{
(Aei − BeKi)Xc + ( • )T

}
(32)

Φ̄′i (Θ) = cosΘ
{
(Aei − BeKi)Xc − ( • )T

}
. (33)

4.3. Controller synthesis with RPP Constraints # 2
Region # 214) consider circle LMI regionD:

Dq,r = {x+ jy ∈ C : (x+ q)2 + y2 < r ′2} (34)

centered at (−q, 0) and with radiusr ′ > 0, where the character-
istic function is given by

fD(z) =

[
−r ′ z+ q

z̄+ q −r ′

]
(35)

As shown in Fig. 3, ifλ = −ζωn + jωd is a complex pole
lying in Dq,r with damped ratioζ, undamped natural frequency

ωn, damped natural frequencyωd,thenζ =
√

1−
(

r ′
r ′+q

)2
, ωn <

q + r, andωd < r. Therefore, this circle region puts a lower
bound on both exponential decay rate and the damping ratio of
the closed-loop response, and this is very common in practical
control design.

Fig. 3. Regional pole placement #2.

inf
Wi , Xi , Z i

[Trace (Z i)] subject to (36a)

Ψ̃H2 > 0, Ψ̃′H2 < 0, (36b)

Ψ̃H∞ < 0, (36c)[
−r ′Xi qXi + (AeiXi − BeWi)
∗ −r ′Xi

]
< 0 (36d)

for each 1≤ i ≤ p.

In order to guarantee overall stability and control performance
in a whole operation range, we seek a common Lyapunov solu-
tion Xc > 0 that satisfies the following LMIs:

inf
Xc, Z

[Trace (Z)] subject to (37a)

Ψ̄H2 > 0, Ψ̄′H2 < 0, (37b)

Ψ̄H∞ < 0, (37c)[
−r ′Xc qXc + (Aei − BeKi)Xc
∗ −r ′Xc

]
< 0, (37d)

for all 1 ≤ i ≤ p,

Note that from Fig. 3, it has the following constraint:

r ′ = qsinΘ. (38)

5. Numerical Simulation

This section presents some numerical simulations of the at-
titude tracking problem given by the satellite in a near-polar
orbit found in References.17)，18) The pointing axis is required
to track a ground station and the spacecraft is required to ro-
tate about this pointing vector so that the solar panel axis is
perpendicular to the spacecraft-sun axis. We present numerical
simulations with three types of GS controllers including in GS
controller without RPP constraints, with RPP constraints #1,
and with RPP constraints #2.

The simulation parameters, the initial conditions (three
cases) are given in Table 1. The controller design parameters
C, D and the disturbance coefficient matrixEe are given by

C =

5× I3 03×3
03×3 I3
04×3 04×3

 , D =
[

06×4
0.02× I4

]
,

Ee =

[
10−6 × diag[6 9 6]

03×3

]
. (39)

Note that the disturbance coefficient matrix is determined by
maximum value of the disturbance torque. The orbital elements
or the disturbance torque are written in Appendix B.

Table 1. Simulation parameters.

Symbol Value Unit
J diag[10 10 8] [kgm2]
Iws 0.002 [kgm2]
ωe(0) (Case 1) [0.02 − 0.01 0.02]T [rad/s]
σe(0) (Case 1) [0.2 − 0.2 − 0.6]T –
ωe(0) (Case 2) [−0.05 0.04 − 0.1]T [rad/s]
σe(0) (Case 2) [0.3 − 0.3 0.6]T –
ωe(0) (Case 3) [−0.03 − 0.03 − 0.03]T [rad/s]
σe(0) (Case 3) [−0.4 0.3 − 0.4]T –
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Fig. 4. Parameters of RPP #1 (Case 1).
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Fig. 5. Parameter of RPP #2 (Case 1).

The steering law in this paper is given as follows:

Ω̇ = GT
s (GsGT

s )−1u. (40)

It is known that preferred damping ratio range is given by
0.6 < ζ < 0.8. In this paper,Θ in RPP #1 and RPP #2 is
given by 45 deg (in this case,ζ = 0.73). Using this parameter
Θ, unknown parameters are represented by onlyα, r in RPP #1
andr ′ in RPP #2. This paper decides these unknown parameters
α, r, r ′ by simulation results in Case 1. Figures 4 and 5 show the
relationship between the unknown parameters and convergence
time of attaining 3-axis attitude control. From these figures, the
minimum time convergence points is given and the parameters
α, r, r ′ are decided as

α = 0.3, r = 5, r ′ = 0.8.

The simulation result in Case 1 by using the GS controller with-
out RPP constraints are shown in Fig. 6. The simulation results
in Case 1 by using the GS controller with RPP #1 and RPP #2
are shown in Figs. 7 and 8, respectively. Figure 9 shows pole
placement results of these controllers in Case 1. And Table 2
shows the convergence time of simulation results. From these
figures and table, the convergence time by using the GS con-
troller with RPP are shorter than that by using the GS controller
without RPP. Then, the effectiveness of the GS controller with
RPP is demonstrated. Regarding RPP #1 and RPP #2, these
control performance are almost the same from Figs. 7, 8 and
Table 2. From the practical point of view, RPP #2 is easily to
decide the parameter and it is easy-to-use constraints.

Table 2. Convergence time [s].

- H2/H∞ RPP #1 RPP #2
Case 1 308.05 78.58 78.27
Case 2 278.94 93.08 94.01
Case 3 324.47 85.60 89.54
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Fig. 6. Attitude control without RPP (Case 1).
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Fig. 7. Attitude control with RPP #1 (Case 1).

0 50 100 150 200

0.1

0.05

0

0.05

Time [s]

ω
e

[r
a
d

/s
]

Error angular velocity

0 50 100 150 200
0.2

0

0.2

0.4

0.6

Time [s]

σ
e

Error MRPs

ω
ex

ω
ey

ω
ez

σ
e1

σ
e2

σ
e3

Fig. 8. Attitude control with RPP #2 (Case 1).
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6. Conclusion

In this paper, an LPV model for 3-axis attitude control of a
spacecraft with RWs has been established. Based on this LPV
model, three types of GS controllers have been developed by us-
ing LMIs for the mixedH2/H∞ control with/without regional
pole placement constraints. Through some numerical exam-
ples, the efficiency of the regional pole placement constraints is
demonstrated. As a result, an easy-to-use regional pole place-
ment constraint is proposed.
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Appendix A: Error angular velocity

To introduce the reference angular velocity vectorωR/N of
the reference frameR relative toN , the error angular velocity
ωe is defined by

ωe = ω − [BR]ωR/N . (41)

The body-fixed frame time derivative ofωe are given by

ω̇e = ω̇ − ([BR]ω̇R/N − ω×[BR]ωR/N ). (42)

Appendix B: Orbital element and disturbance torque

Keplerian elements are shown in Table 3.17)，18) Note that
n,M0, ω

′,Ω′, i,e are mean motion, mean anomaly, argument
of perigee, right ascension of the ascending node, inclination
and eccentricity, respectively. The disturbance torque19) expe-
rienced by aerodynamics, solar pressure, magnetic torque, and
other environmental factors is assumed by

L =

4× 10−6 + 2× 10−6 sin(nt)
6× 10−6 + 3× 10−6 sin(nt)
3× 10−6 + 3× 10−6 sin(nt)

 . (43)

Table 3. Orbital elements.
Symbol Value Unit
n 14.57788549 [rev/day]
M0 234.7460 [deg]
ω′ 125.5766 [deg]
Ω′ 132.8782 [deg]
i 86.5318 [deg]
e 0.00216220 –
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