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Satellite dynamics is described by a nonlinedfedential equation. Most of recent studies about attitude control have used non-
linear controllers. However, with these controllers, control performance is ignored in most cases. To overcome this problem, this paper
applies the linear parameter-varying (LPV) control theory to the attitude control for a spacecraft with reaction wheels (RWs). The LPV
control theory can provide a gain-scheduled (GS) controller by using linear matrix inequalities (LMIs) for the#ixeth control
which guarantees optimality and robustness at the same time. And also, two types of regional pole placement (RPP) constraints are
considered. Through some numerical examples, fileetveness of these two types of RPP constraints are demonstrated.

Key Words: Attitude Control, RW, LMI, Regional Pole Constraint

Nomenclature ory.8-10 | PV control theory can provide a gain-scheduled
(GS) controller by using linear matrix inequalities (LMIs) for
J :  inertia matrix of the spacecraft the mixedH,/H.,. control which guarantees optimality and ro-
lws :inertia of wheel spin axis bustness at the same time. However, this controller design deals
q : quaternion (Euler Parameters) with frequency-domain aspects and sometimes provide little
w : angular velocity vector of the spacecraft transient behavior. By using regional pole placement (RPP)
Q : wheel spin rate vector constraint, some researth 19 solves this problem. This pa-
Gs I spin axis matrix per considers two types of RPP constraints to improve control
B . bOdy-fixed frame performance_
N : inertial frame The rest of this paper is organized as follows. In Section 2,
Iy : scheduling parameter vector we show a brief overview of the dynamics and the kinematics
Subscripts of a spacecraft. In Section 3, the generalized LPV model of
0 ©initial spacecraft dynamics with RWs shall be established. Section 4
e © error presents two types of RPP constraints to design the GS con-
d - desired troller while considering the control performance. In Section 5,

some numerical simulation results are given and tiectve-
ness of two types of RPP constraints are demonstrated. Finally,
Section 6 concludes the paper.

Superscripts
X . skew-symmetric

1. Introduction 2. Spacecraft Model
In recent years, attitude control of spacecraft has been stud-

. . ) . In this paper, we deal with a spacecraft with RWs as shown
ied extensively. They deal with several kinds of actuators such. _. ; . . .
in Fig. 1. In this section, a dynamics equation of a spacecraft

asnm:)r?erntum exchange_ ciewcrefn(MrI]E?is) tar;d eftem?zlxtfrr?]u?vith RWs is presented. After that, a kinematics equation based
generators (€. g. gas !e S or magnetic to qug ?)' €M, the modified Rodrigues parameters (MRPS) is described.
torque generators have disadvantages such as limited resources
or small torque. MEDs have been used for attitude control of .
. . . . .1. Dynamics
spacecraft as actuators, in which they do not require fuel. Since . S .
; ) The spacecraft considered in this paper is assumed to be a
reaction wheels (RWs) can generate control torque precisely,. . . T
RWSs in MEDs are often d for attitud ntrol of aft tigid body. Using the definition in Nomenclature, the total an-
S . s a.e often used o .a ude control 0 spacecg " gular momentum of a spacecraft with RWs is given as follows:
Therefore, in this paper, we mainly focus on RWs to realize
3-axis attitude control.
Most of recent studies use Lyapunov function-based con-
trollers to realize attitude contrdi: 3 With Lyapunov function-
based controllers, overall stability of attitude control is always Where
guaranteed, however, control performance is hard to evaluate. 10
To overcome this problem, few studi®s” attained 3-axis atti- Ge=10 1 0 -1 V3 2)
tude control with Linear Parameter-Varying (LPV) control the- s 0 0 '

H = Jow + l,5(GsQ) 1)



Taking the body-fixed time derivative, the dynamics of a space-3. LPV Modeling
craft is given by
H+wH=L 3) By introducing the error angular velocity. (see Appendix
A) and using Jacobian linearization of Egs. (5) and (9) around
where the vectok represents the sum of all the external torques the equilibrium point @, = 0, Qeq = 0, 07¢,, = 0), the lin-
experienced by the spacecraft and the notatiomlenotes the  earized model of a spacecraft with RWs is described as follows:
following skew-symmetric matrix:

A 0
0 —-X3 X [ ] _(Ip) ] +g’u+ ol® (20)
= x3 0 -xq } =[x % x3]".  (4) 8 Te
X x 0 whereEw is the disturbance term,
Substituting Eq. (1) into the first term of Eq. (3), we have
gEq () . } q ( ) A(p) — st\]flpx (11)
Jw + Ggl,sQ + 0 H = L. (5) B=—l,J" (12)
This is the dynamics of a spacecraft with RWs. u= GSQ (13)
2.2. Kinematics
Spacecraft attitude is given by the orientation of the body- with
fixed frameB with respect to the inertial fram&'. It is known 0.-1l0o
that three kinematic parameters are enough to describe the atti- ! \{5 4
tude. As such parameters, in this paper, the modified Rodrigues pi=GQ =~ ?Q“ : (14)
parameters (MRPs) are chos¥#h. The MRP vectorr is de- Q3 — 50
fined in terms of the Euler parameters as the transformation
5 Setting the state variabbe:= [w! o]T, the state-space repre-
o = ﬁ i=123 (6)  sentation of Eq. (10) is rewritten as follows:
0
The inverse transformation is given by X = Ae(p)X + Bel + Eew. (15)
1-o" 20 . i i i
Bo = oo = T L i=123  (7) The Jacobian matrices are defined as
l+o0To l+o0To Alp) 0O B E
Using the principal rotation axis vectérand the rotation angle Ac(p) = [ O]’ Be = [0} Ee = [O] (16)
¢, the MRPs are given by
P\ - The generalized plant for Eq. (15) is defined as follows:
= tan( )e (8)
X = Ae(p)X + Beu + E
For such MRPs, the singular points are givef at+2z. How- {z _ C)e((f)Du € e a7

ever, these singularities can be avoided to introduce the dual
MRP method that consists of the conventional MRP and thewhere the cofficient matrix setc D) is norma”y selected such
shadow MRP) The kinematic equation based on the error that they normally satisfy the conditic®™ D = 0, DD > 0,

MRPsg is given by and wheraw andz are the disturbance input vector and the per-
e = H(O’e)we (9a) formance output vector for the simple LPV model in Eq. (15),
respectively. This controller is given by
H(o 1-0lodls + 205 + 2060 9b
(0e) = [( oe)ls+20% +20e0% | (9b) " = Ko, (18)
S

The LPV system and the GS controller are expressed by the
following polytopic representation:

p
Adp) = ) Ai(p)Aei (19)
i=1
p
K(p) = " Ailp)K, (20)
i=1
p
() =0, ) Ailp) =1, (21)
i=1

wherep denotes the number of vertices. In this cgsis equal
to 8 (= 2°).

4. GS Controller Synthesis

Fig. 1. Tripod configuration of four RWs.

In this section, three types of GS controllers are designed.



common Lyapunov solutioX. > 0 that satisfies the following

4.1. Controller Synthesis without RPP Constraints LMls:
Let us introduce the following mixed,/H., LMI prob- . .
lem:®) g 2/ P )l(nfz [Trace (Z)] subjectto (26a)
inf _[Trace (Z)] subjectto (22a) Pha >0, Wi <0, (26b)
Wi, X, Z Phe < 0, (26¢)
Pz >0, Wi, <0, (22b) forall1<i<p,
Yo < 0, (22¢c)
forall1<i<p, where
— [ X =
where Whz = E% z|
g [ X G = |(Aei=BeK)Xc+ (0 )T =
2T B Z) H2= | (C- DKj)Xc -1’
g _ [(AeX =BW)+ (o )T« _ [(Aei— EeK)Xc+ (o )T XiCT-KiX.D" Ee
H2 = CX - DW, -1 Wheo = * 'l D| :
- % * —
(AeX — EM) +( o )T XCT—W,DT E, - 4
Yo = * -l D |, 4.2. Controller synthesis with RPP Constraints # 1
* * -l Region # 11D 19 js the setS(a, r, ®) of complex numbers

X + jy such that
Eqgs. (22a) and (22b) guarantee thé performance and
Eq. (22c) gives théH,, constraint. Using the optimal solution X<-a<0, [x+jyl <r, tan®x < —Jy| (27)
setsX, W; to the problem of Egs. (22), the extreme controllers

K; at each vertex of the operation range are given by as shown in Fig. 2. Confining the closed-loop poles to this re-

gion ensure a minimum decay ratea minimum damping ratio
Ki=WX?1 1<i<p (23) ¢ = cosO, an undamped natural frequenoy < rsing and a
damped natural frequeney, < r. This is turn bounds the max-

Then, the GS controller is constructed by substituting Eq. (23)imum overshoot, the frequency of oscillatory modes, the delay
time, the rise time, and the settling time. LMIs for the mixed

into Eq. (20).
Note that the common Lyapunov solutidh> 0 was used in ~ H2/H. control with RPP Constraints #1 are given by
the past GS controller design and resulted in conservatism. As . _ .
an alternative, we use another methi§tlin which the distinct W.IQ.]c Z [Trace (2i)] subjectto (e82)
Lyapunov solutions(; > 0 are adopted. Then, we have ¥ >0, \il'Hz <0, (28b)
inf_ [Trace (Z;)] subjectto (24a) Pheo <0, (28¢)
V’Yi»xi,zi N (AeiXi — BeWi) + (@ )T +2aX; <0, (28d)
Yz > 0, ¥y <0, (24b) X AeiXi - BWn| (28¢)
‘PHoo < O, (24C) * -rX
foreach 1<i < p, ®; (@) @ (©)
. _
h [ . ‘PIi (@)} <0, (28f)
where foreach I<i < p,
~ B [ Xi *
WYho = »Eg Z, Im
Gy = |(AaXi = BMW) + (0 )T
2 = | CX; - DW, -1
3 [(AeiXi — EW) + (o )T XCT-WDT Ee
Yoo = * -l D ?
* * —)/| émax wd

04 Re

Using the optimal solution setsX{,W;) to the problem of
Egs. (24), less conservative extreme controllers can be obtained.

The extreme controllers are given by -a
Ki=WX™? 1<i<p (25)
By using these extreme controllers, a GS controller is again o ﬁi?&"&?

constructed as in Eqg. (20). In order to guarantee overall stability

. . Fig. 2. Regional pole placement #1.
and control performance in a whole operation range, we seek a 9 g polep



where

@; (©) = SiNO {(AciX; - BW,) + (o )T} (29) o, Inf_[Trace(Z)] subjectto (36a)
@] (©) = cosO {(AeiXi — BeW) — ()T}, (30) P2 >0, ¥, <0, (36b)
Eqgs. (28d)-(28f) are described as RPP Constraints #1. In or- Yheo <0, (36¢)
der to guarantee overall stability and control performance in a —'Xi  gXi + (AeiXi — BeW)
. . v <0 (36d)
whole operation range, we seek a common Lyapunov solution * =1’ X;
X¢ > 0 that satisfies the following LMIs: foreach 1< i < p.
)i(nfz [Trace (Z)] subjectto (31a) In order to guarantee overall stability and control performance
= — in a whole operation range, we seek a common Lyapunov solu-
Pz >0, Wy, <0, (31b)  4ion X¢ > 0 that satisfies the following LMIs:
Fheo <, (31c) inf [Trace (Z)] subject to (37a)
(Asi — BeKi)Xc + (o )T +2aX. <0,  (31d) Xe 2 A )
|:_rx (Aei - B)EKI)XC:| < 0’ (316) \EHZ > O’ ‘PI-|2 < 0’ (37b)
* —TAc Yheo <0, (37¢)
D, (®) ‘I_)" (®) 1" Xe qxc + (Aei - BeKi)Xc
[ X (I)Ii ©) <0, (31f) . “Xe <0, (37d)
foralll1<i<p, forall1<i<p,
where Note that from Fig. 3, it has the following constraint:
@; (©) = sin®{(Aci — BeK)Xc+ (o)} (32) I’ = gsin®. (38)

@] () = coSO {(Aei —~ BeK)Xc— (0 )T}, (33) N
5. Numerical Simulation
4.3. Controller synthesis with RPP Constraints # 2
Region # 24 consider circle LMI regiorD: This section presents some numerical simulations of the at-
Dor = {X+jy € C: (x+ q)2 " yz <r7?) (34) titut;le track.ing problem given by the .sa’FeIIite !n a near.-polar
orbit found in Reference$” '8 The pointing axis is required
centered at{q, 0) and with radius’ > 0, where the character- to track a ground station and the spacecraft is required to ro-
istic function is given by tate about this pointing vector so that the solar panel axis is
perpendicular to the spacecraft-sun axis. We present numerical
(35) simulations with three types of GS controllers including in GS
controller without RPP constraints, with RPP constraints #1,
As shown in Fig. 3, ifl = —fwy + jwq is a complex pole  and with RPP constraints #2.
lying in Dg, with damped rati@, undamped natural frequency The simulation parameters, the initial conditions (three

wn, damped natural frequeneys,then = /1_ (r_)z o < cases) are given in Table 1. The controller design parameters
n e _\r+g) 00 C, D and the disturbance cfieient matrixEe are given by
gq+r, andwy < r. Therefore, this circle region puts a lower

bound on both exponential decay rate and the damping ratio of
the closed-loop response, and this is very common in practical C=
control design.

- z+q

(@ = zZ+q -r

5x1 3 03><3
O3z I3
04><3 04><3

€|

s

_ 06><4
» D= [0.02>< s

1075 x diag[6 9 6

Im 03x3

]] . (39)

Note that the disturbance dieient matrix is determined by
¥ maximum value of the disturbance torque. The orbital elements
‘ or the disturbance torque are written in Appendix B.

Table 1. Simulation parameters.

1 max
3 e Symbol Value Unit
| J diag[10 10 8] [kgm?]
™ Re lws 0.002 [kgm?]
we(0) (Case 1)| [0.02 —0.01 002]" [rad/s]
o+(0) (Case 1)| [0.2 —0.2 — 0.6]T -
we(0) (Case 2)| [-0.05004 —0.1]" [rad/s]
7+(0) (Case 2)| [0.3 —0.306]" -
o we(0) (Case 3)| [-0.03 —0.03 — 0.03]" | [rad/s]
o4(0) (Case 3)| [-0.403 — 0.4] -

Fig. 3. Regional pole placement #2.
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The steering law in this paper is given as follows:

Q = GI(GG!)u. (40)

It is known that preferred damping ratio range is given by
0.6 < ¢ < 0.8. In this paper® in RPP #1 and RPP #2 is
given by 45 deg (in this casé,= 0.73). Using this parameter
®, unknown parameters are represented by antyin RPP #1
andr’ in RPP #2. This paper decides these unknown parameters
a,r,r’ by simulation results in Case 1. Figures 4 and 5 show the
relationship between the unknown parameters and convergence
time of attaining 3-axis attitude control. From these figures, the
minimum time convergence points is given and the parameters
a,r,r’ are decided as

=03, r=5 r =08.

The simulation result in Case 1 by using the GS controller with-
out RPP constraints are shown in Fig. 6. The simulation results
in Case 1 by using the GS controller with RPP #1 and RPP #2
are shown in Figs. 7 and 8, respectively. Figure 9 shows pole
placement results of these controllers in Case 1. And Table 2
shows the convergence time of simulation results. From these
figures and table, the convergence time by using the GS con-
troller with RPP are shorter than that by using the GS controller
without RPP. Then, thefkectiveness of the GS controller with
RPP is demonstrated. Regarding RPP #1 and RPP #2, these
control performance are almost the same from Figs. 7, 8 and
Table 2. From the practical point of view, RPP #2 is easily to
decide the parameter and it is easy-to-use constraints.

w [rad/s]

e

e

w [rad/s]

w [rad/s]
e

Table 2. Convergence time [s].

- Ho/Hs | RPP #1| RPP #2
Case 1| 308.05 | 78.58 78.27
Case 2| 278.94 | 93.08 94.01
Case 3| 324.47 | 85.60 89.54
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Fig. 6. Attitude control without RPP (Case 1).
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Error angular velocity
0.05 "
0 /\f
i 7 R
—0.051 %7 7 ex |{
B .
—0.1f - YN
ez
0 50 100 150 200
Time [s]
Error MRPs
0.6~ T
0.4 et
B =0
02PN, j
‘\;A/ O
0 L
-0.2 - - -
50 100 150 200
Time [s]

Fig. 8. Attitude control with RPP #2 (Case 1).



Linear Parameter-Varying Systems: A Design Examplegtomat-
L ‘ ‘ ‘ ‘ ica, 31(1995), pp. 1251-1261.

Py ) 10) Shimomura, T., Kubotani, T.: Gain-Scheduled Control under Com-
mon Lyapunov Functions: Conservatism Revisitethceedings of
2005 American Control Conferenc2005, pp. 870-875.
¢ 11) Chilali, M., Gahinet, P.:H. Design with Pole Placement Con-
O without RPP ¢ ° straints: An LMI Approach|EEE Transactions on Automatic Con-

*  with RPP#1 CES trol, 41 (1996), pp. 358-367.
¢ with RPP#2 o ° 12) Chilali, M., Gahinet, P., Apkarian, P.: Robust Pole Placement in
¢ LMI Regions,|IEEE Transactions on Automatic Contrdi4 (1999),
pp. 2257-2270.
13) Rao, P., S,, Sen, |.: Robust Pole Placement Stabilizer Design using
Linear Matrix InequalitieslEEE Transactions on Power SysterhS
—ost ‘ ‘ : ‘ (2000), pp. 313-319.
-0.5 -0.4 -0.3 -0.2 -0.1 0 14) Hong, S., K., Nam, Y.: Stable Fuzzy Control System Design with
Re Pole-Placement Constraint: An LMI ApproacBpmputers in In-
Fig.9. Pole placement (Case 1). dustry, 51(2003), pp. 1-11.
15) Shimomura, T., Fujii, T. : Multiobjective Control Design via Suc-
cessive Over-Bounding of Quadratic Ternhst. J. Robust Nonlin.

0.5

Im
=l

6. Conclusion Contr, 15(2005), pp. 363-381.

In this paper, an LPV model for 3-axis attitude control of a

16) Schaub, H., Junkins, J., L.: Stereographic Orientation Parameters for
Attitude Dynamics: A Generalization of the Rodrigues Parameters,
Journal of the Astronautical Scienceg! (1996), pp. 1-19.

spacecraft with RWs has been established. Based on this LPV17)  Tsiotras, P., Shen, H., Hall, C.,: Satellite Attitude Control and Power
model, three types of GS controllers have been developed by us- Tracking with EnergyMomentum WheelsJournal of Guidance,
ing LMIs for the mixed?,/H., control withywithout regional Control, and Dynamics24 (2001), pp. 23-34.

pole placement constraints. Through some numerical exam-
ples, the ficiency of the regional pole placement constraints is

18) Yoon, H., Tsiotras, P.,; Spacecraft Adaptive Attitude and Power
Tracking with Variable Speed Control Moment Gyroscopks)r-
nal of Guidance, Control, and Dynamij5 (2002), pp. 1081-1090.

demonstrated. As a result, an easy-to-use regional pole placeig)  sidi, M.: Spacecraft Dynamics and Control, A Practical Engineering
ment constraint is proposed. Approach, Cambridge Univ. Press, New York, (1997).

Acknowledgments Appendix A:  Error angular velocity

This work was supported by JSPS Grant-in-Aid for Scientific 10 introduce the reference angular velocity veatgyy of
Research Grant Numbers 15J11371 and (C)15K06149. the reference framg relative toN, the error angular velocity

1)

2)

3)

4)

5)

6)

7

8)

9)

we is defined by
References we = W — [BRlwg/x - (41)

Tsiotras, P.: Stabilization and Optimality Results for the Attitude The body-fixed frame time derivative af, are given by

Control ProblemJournal of Guidance, Control, and Dynamjd<9 . . .
(1996), pp. 772-779. we = 0 — ([BRlwg N — 0 [BRlwg/N). (42)

Yoon, H., Tsiotras, P.: Spacecraft Line-of-Sight Control Using a

Single Variable-Speed Control Moment Gydournal of Guidance, . . .
Control, and Dynamic29 (2006), pp. 1295-1308. Appendix B:  Orbital element and disturbance torque

Schaub, H., Lappas, V., J.: Redundant Reaction Wheel Torque Dis- . . 18)
tribution Yielding Instantaneouk; Power-Optimal Attitude Con- Keplerian elements are shown in Table3. Note that

trol, Journal of Guidance, Control, and Dynamjc82 (2009), n, Mo, w’,Y',i,€ are mean motion, mean anomaly, argument
pp. 1269-1276. of perigee, right ascension of the ascending node, inclination
Kwon, S., Shimomura, T., Okubo, H.: Pointing control of spacecraft and eccentricity, respectively. The disturbance tof§uexpe-

using two SGCMGs via LPV modeling theorficta Astronautica  rjenced by aerodynamics, solar pressure, magnetic torque, and

68(2011), pp. 1168-1175. th : tal fact . db
Sasaki, T., Shimomura, T. : Attitude Control of A Spacecraft with other environmental factors 1s assumed by

A Double-Gimbal Variable-Speed Control Moment Gyro via LPV 4x 106 +2x10° sin(nt)
Control TheoryAdvances in the Astronautical SciencEs3(2015), _ 6 6

bp. 707-723. L=|6x 106 +3x 106 s!n(nt) . (43)
Sasaki, T., Shimomura, T., Kanata, S. : Spacecraft Attitude Control 3x107°+3x10° S'n(nt)
with RWs via LPV Control Theory: Comparison of Two fBrent

Methods in One FrameworRransactions of The Japan Society for Table 3. Orbital elements.
Aeronautical and Space Sciences, Aerospace Technology,Jipan Symbol | Value Unit
(2016), pp. 15-20. _ _ n 1457788549| [rev/day]
Sasaki, T., Shimomura, T. : Gain-Scheduled Coyttekring De- M 5347460 a

sign for a Spacecraft with Variable-Speed Control Moment Gy- 0 - [deg]
ros, Journal of Control, Measurement, and System Integratidh w’ 1255766 [deg]
(2017), pp. 1-6. Q 1328782 [deg]
Khargonekar, P., P., Rotea, M., A.:Mixetd/H., Control: A Convex i 86,5318 [deg]
Optimization Approach|EEE Transactions on Automatic Contyol

36(1991), pp. 824-837. e 0.00216220 | -

Apkarian, P., Gahinet, P., Becker, G.cSelf-Sched#edControl of



	ISTSProgramNumber: 
	0: 
	6024197169003612: ISTS-2017-d-150／ISSFD-2017-150




