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Abstract 

 

In this study, a new atmospheric drag prediction method for spacecraft using machine learning 

is proposed. In the proposed method, a machine learning model is constructed with the orbital 

decay rate of each spacecraft and the space environment factors having a strong influence on 

the upper atmosphere. To demonstrate the effectiveness of the proposed method, the analysis 

of two satellites, ALOS-2 and GCOM-W1, is conducted. The results show that the proposed 

method based on machine learning can predict the atmospheric drag with a relatively good 

accuracy.  
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Introduction 
 

Spacecraft orbit prediction with high accuracy can make satellite operation service more 

efficient and reduce the security risk posed by the re-entry of massive space debris objects. 

Spacecraft at low Earth orbit (LEO) less than an altitude of 1000 km encounter an effect of 

acceleration due to atmospheric drag. Realizing spacecraft orbit prediction with high accuracy 

requires knowledge about the atmospheric drag of each spacecraft, which is calculated based 

on the atmospheric density around the spacecraft and the ballistic coefficient (Cd*A/M). 

However, there is little observation information about the atmosphere at an altitude 100 km or 

higher where most spacecraft exist, and the ballistic coefficient of most spacecraft in orbit is 

not well-known. Therefore, it is usually difficult to predict atmospheric drag [1], although many 

kinds of research such as in [2, 3] have made progress to improve prediction accuracy. 

 

In this study, a new atmospheric drag prediction method for spacecraft using machine learning 

is proposed. The proposed method aims to predict the atmospheric drag on spacecraft only by 

using information about the space environment, which strongly affects the upper atmospheric 

density. The proposed method generates satellite-specific models by machine learning. Creating 

the model for each satellite make us not to handle the uncertainty information, such as Cd or 

A/M, for each satellite.  

 

Method 

 

In this study, a new atmospheric drag prediction method for spacecraft using machine learning 

is proposed. In this study, a model is used to predict the orbital decay rate (Adot), which denotes 

the semi-major axis change rate per day due to the atmospheric drag. The model is expressed 

in Eqn 1. 
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𝐴𝑑𝑜𝑡𝑡+𝑁 = 𝑓(𝑋𝑡−𝑇|𝑡), (1) 

 

Here, X is the space environment information, subscript t is the current date and time, t-T on the 

right side of Eqn 1 is the date before T day (for example, T = 1 means one day ago ), t + N on 

the left side of Eqn 1 is the estimated future date (for example, N = 1 is one day after). In other 

words, Eqn 1 expresses the prediction of Adot after N days using space environment 

information up to T days before. 

 

The creation of model f in Eqn 1 is the same as solving the multivariate regression problem. 

Various methods are available as solutions, although identifying the best method prior to its 

application to the data is difficult. Therefore, the four methods, elastic net, random forest, 

Gaussian process regression, and neural network, are applied, and the method with the highest 

prediction accuracy is selected. 

 

The proposed approach is mainly constructed with the following three elements: 

1. Spacecraft orbit information database 

2. Space environment information database 

3. Atmospheric drag modeling technique 
 

Spacecraft orbit information database 
 

At present, the time-series Adot data of 21 JAXA’s satellites has been organized as the 

spacecraft orbit information database. The Adot data of each satellite was derived from 

definitive orbit, which was estimated by the JAXA Space Tracking and Communications Center 

(STCC). As another source of the spacecraft orbit information database, two-line element (TLE) 

is made available for easy access by the scientific community. However, the accuracy of such 

information is low compared with that of definitive orbit provided by JAXA. As the first step 

to demonstrate the effectiveness of the proposed method, time-series Adot data from JAXA is 

employed as the source of the database. 

 

In this study, the two satellites listed in Table 1 were selected to demonstrate the effectiveness 

of the proposed method. Table 1 lists the three satellites to be analyzed, the controlled mean 

altitude of each satellite, the data period of each satellite. 

 

Table 1: Satellites to be analyzed 

 

Satellite name Mean altitude Data period 

ALOS-2 630 km 2014/5/24 – 2017/12/31 

GCOM-W1 700 km 2012/5/17 – 2017/12/31 

 

Space environment information database 

 

Table 2 lists the 11 space environment factors in the database. The solar activity index (F10.7, 

etc.) and the geomagnetic activity index (Ap, etc.) are widely known factors that have a strong 

influence on upper atmospheric density. In addition, there are various other factors as space 

environment information that may possibly influence the atmospheric drag on spacecraft. 

Therefore, space environmental factors that may affect upper atmospheric density even slightly 

are included in the database. Moreover, some of the space environmental factors listed in Table 

2 are transformed or split by ground trajectory of satellites or latitude when creating a machine 

learning model. 
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Table 2: Factors in the space environment information database 

 

Name Source 

Solar activity index NOAA 

Geomagnetic activity index NOAA 

Total electron content International GNSS Service 

Moon age N/A 

Sun distance N/A 

Proton flux JAXA 

Reflectance MODIS 

Brightness temperature MODIS 

Temperature at 10 mbar JRA 

Relative humidity at 300 mbar JRA 

Cloud amount JRA 

 

Atmospheric drag modeling technique 

 

First, the model structure should be determined. We use the space environment information up 

to 83 days ago as the explanatory variables of model f in Eqn 1. In this study, the models of two 

cases are created—the nowcast model and the forecast model. The nowcast model employs 

Adot at present as the object variable, and the forecast model employs Adot at one day after. 

The models of both cases are shown in Eqns 2 and 3, respectively. 

 

𝐴𝑑𝑜𝑡𝑡 = 𝑓(𝑋𝑡−83|𝑡), (2) 

𝐴𝑑𝑜𝑡𝑡+1 = 𝑓(𝑋𝑡−83|𝑡), (3) 

 

In machine learning, it is necessary to pay attention to the overfitting problem. This problem 

results in poor performance of the machine learning model. An overfitted model cannot 

accurately estimate unknown data other than the learned data. There are several approaches to 

avoiding the overfitting problem. The typical approach is to reduce explanatory variables from 

the machine learning model. As more than 1000 explanatory variables are used in this study, 

there may be an overfitting problem. 

 

In this study, the elastic net and the random forest were employed to reduce the explanatory 

variables from the machine learning model. The elastic net can drive many coefficients of 

explanatory variables to zero by solving the linear regression model with the L1 and L2 norm 

penalties. In addition, the random forest can estimate the index of importance for each 

explanatory variable by ensemble learning. 

 

The modeling process is described as follows: The first step is to determine the model structure 

as shown in Eqns 2 and 3. Then the data is divided into two parts: data for learning and data for 

testing (prediction). Next, four machine learning methods are sequentially applied to the 

learning data. The first machine learning method is the elastic net. The elastic net can create the 

model and identify the effective explanatory variables for model prediction by driving the 

coefficients of noneffective explanatory variables to zero. The second machine learning method 

is the random forest. The random forest is applied to the data for learning, and the explanatory 

variables whose coefficients are not zero-driven by the elastic net are used for creating the 

model. The random forest can create the model and also extract the importance of the 

explanatory variables. In this study, explanatory variables whose importance exceeds 1% of the 

top importance are extracted as the effective explanatory variables for prediction. The third and 

fourth machine learning methods are Gaussian process regression and the neural network, 
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respectively. Two machine learning models are created with only the extracted important 

explanatory variables.  Finally, the random forest is applied to the data again, and this step is 

called the re-random forest. At this step, only the extracted important explanatory variables are 

employed to create the model, unlike the random forest of the second step. Here, the 

hyperparameters of each method are optimized using the cross-validation method or other 

optimization methods, such as the quasi-Newton method. After the creation of models for each 

method, each model is applied to the data for prediction, and the sum of absolute error between 

each model’s prediction result and the data for prediction is calculated. Finally, the model with 

the smallest error is selected as the best model. 

 

The modeling process can be summarized as follows: 

1. Determine the model structure. 

2. Divide the data for learning and prediction. 

3. Start to learn the model by each method for learning data. 

A) Elastic net 

① Create model 𝑓1 by using 𝑋. 
② Reduce the number of explanatory variables of model 𝑋 → 𝑋1. 

B) Random forest 

① Create model 𝑓2 by using 𝑋1. 

② Reduce the number of explanatory variables of model 𝑋1 → 𝑋2. 
C) Gaussian process regression 

① Create model 𝑓3 by using 𝑋2. 
D) Neural network 

① Create model 𝑓4 by using 𝑋2. 
E) Re-random forest 

① Create model 𝑓5 by using 𝑋2. 

4. Calculate the sum of absolute error between the data for prediction and each model’s 

prediction result. 

5. Determine the model with the smallest error as the best model 𝑓𝑏𝑒𝑠𝑡. 
 

Results and Discussion 
 

This section presents the model prediction results and discussion for each satellite. The machine 

learning models of all the satellites are created from start date of each satellite data to August 

31, 2017. Then the machine learning models are applied to test data from September 1, 2017 to 

show the effectiveness of the machine learning models. 

 

First, a comparison of the orbital decay rates of the ALOS-2 satellite between the model 

predictions and the observations is shown in Figs. 1 and 2. In both figures, (a) shows the time-

series data, and (b) shows the histogram of relative error between the prediction and observation 

of each day. In (a), the dotted-dashed line shows the observation, and the colored line shows 

the prediction by the machine learning model. The best machine learning models in the two 

cases were the random forest. 

 

The comparison between Fig. 1 and Fig. 2 shows that the nowcast model has a relatively good 

agreement with the observation compared to the forecast model. In addition, it is confirmed that 

the relative error of the nowcast model (-45% − +40%) is smaller than that of the forecast model 

(-72% − +57%). Moreover, the results show that the maximum relative error was recorded in 

early September 2017 when a solar flare occurred. 
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(a) Time-series (b) Histogram 

Fig 1: Comparison of orbital decay rates between nowcast model predictions and observations 

of the ALOS-2 satellite 

 

  
(a) Time-series (b) Histogram 

Fig 2: Comparison of orbital decay rates between forecast model predictions and observations 

of the ALOS-2 satellite 

 

Next, the results of the GCOM-W1 satellite are shown in Figs. 3 and 4. The best machine 

learning models in the two cases were the re-random forest and the random forest, respectively. 

 

As in the results of the ALOS-2 satellite, the nowcast model has a relatively good agreement 

with the observation compared to the forecast model. In addition, it is confirmed that the relative 

error of the nowcast model (-15% − +98%) is smaller than that of the forecast model (-20% − 

+159%). Moreover, the results show that the maximum relative error was recorded in early 

September 2017 when a solar flare occurred, as in the results of the ALOS-2 satellite. 

 

  
(a) Nowcast (b) Histogram 

Fig 3: Comparison of orbital decay rates between nowcast model predictions and observations 

of the GCOM-W1 satellite 
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(a) Nowcast (b) Histogram 

Fig 4: Comparison of orbital decay rates between forecast model predictions and observations 

of the GCOM-W1 satellite 

 
Conclusion 

 

In this study, a new atmospheric drag prediction method for spacecraft using machine learning 

was proposed. In the proposed method, a machine learning model was constructed with the 

space environment factors having a strong influence on the upper atmospheric density as 

explanatory variables and the orbital decay rate of each spacecraft as the objective variable. To 

demonstrate the effectiveness of the proposed method, a space environment information 

database was constructed, and the analysis of two satellites was conducted.  

 

The results showed that the proposed method could predict the orbital decay rates of the satellite 

with relatively good accuracy. However, the prediction accuracy of the proposed method was 

still not enough for real applications. In addition, the results showed that the proposed method 

failed to predict the orbital decay rate of the satellite when the solar flare occurred.  

 

These observations suggest that the proposed method should be improved. Therefore, we have 

two plans. The first plan is to store new space environmental factors, which may have sensitive 

to the orbital decay rate of the satellite more, to the space environment information database, 

because there is a possibility that the space environmental factors stored in the current space 

information database are enough. The second plan is to utilize prediction values of space 

environmental factors in the proposed method, because the proposed method with only space 

environment information to date fails to predict the orbital decay rate of the satellite on the day 

occuring intense atmospheric fluctuations like solar flare. 
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