
PEER REVIEW

Optimizations of Autonomous Orbit Determination for a

Deep-Space CubeSat 

Normal Paper X

Boris Segret 1,3, Daniel Hestroffer 2, Gary Quinsac 3, Marco Agnan 4, Jordan Vannitsen 4,5, and Benoît Mosser 3

1 LabEx ESEP, Paris Observatory, PSL Université Paris, 5 pl.Jules Janssen, 92195 Meudon Cedex, France
2 IMCCE, CNRS, Paris Observatory, PSL Université Paris, 77 av. Denfert Rochereau, 75014 Paris, France.
3 LESIA, CNRS, Paris Observatory, PSL Université Paris, 5 pl.Jules Janssen, 92195 Meudon Cedex, France

4 ODYSSEUS Space Inc., 6F., No.508, Dongning Rd., East Dist., Tainan City 701, Taiwan (R.O.C.)
5 Department of Aeronautics and Astronautics, National Cheng Kung University, Daxue Road, 70101 Tainan City, Taiwan (R.O.C.).

Abstract

Deep-space missions with an autonomous navigation are desirable, but ground navigation and

communications  are  usually  preferred.  The  increasing  number  of  deep-space  CubeSats  is

raising the question again. We have considered a possible on-board orbit determination for a

CubeSat  with  limited  optical  capabilities  and  CPU resources.  Our  results  show a  global

performance of 200 km accuracy at 1-σ in all directions,  in less than 1 flying day, in the

context of an autonomous cruise from Earth to Mars:. We first present a covariance analysis

that guides the optimisations and the numeric stability. As we see that a limiting factor is the

availability  of  optical  targets,  we open  the  way to an  optimised  observation  strategy,  its

mathematical context and two notional configurations still in cruise context. Such a strategy

still needs to be defined. Further improvements in the architecture of the orbit determination

will also allow an application in new contexts, like the proximity operations at an asteroid.
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Introduction

Future deep-space CubeSats will need to keep their operations at low cost and an autonomous

Guidance, Navigation and Control (GNC) would obviously contribute. However, despite early

attempts like the DEEP SPACE 1 mission [1], the navigation is mainly performed from the

ground and relies on an expensive Deep Space Network (DSN). More propositions to deep

space  will  involve  CubeSats  (e.g.  ESA’s  Hera,  Estonian  multi-asteroid  touring,  Italian

LUMIO from Earth-Moon L2). Some autonomy is desirable, at least between successive DSN

tracking slots. We have developed an In-Flight Orbit Determination (IFOD) for deep-space

CubeSat that relies on optical measurements of foreground objects in front of background

stars. The IFOD produces an estimate of the shift of the spacecraft with respect to a reference

trajectory stored on-board. The concept was presented in [2] in the context of a cruise from

Earth to Mars. The first section reminds the method and presents the latest results. The second

section describes the optimisation procedure. Then, the third section introduces the problem

of optimised observable targets with notional geometries that could be used to assess in real

time the interest of multiple possible targets.

1 – Asynchronous triangulation feeding a Kalman filter

BIRDY-T is  a  novel technology for  an autonomous GNC at  nano/micro-satellite scale.  It

covers IFOD, micro-propulsion and on-board computation of trajectory correction maneuvers.

The major requirement for IFOD is to rely on a single small optical device to be successively

18th Australian Aerospace Congress, 24-28 February 2018, Melbourne



PEER REVIEW

pointed  to  foreground  objects  in  order  to  provide  low  resolution  measurements  of  their

individual directions (Fig.1).

As presented in [2], an "Object Tracker" (OT) produces measurements that are processed in

an asynchronous triangulation (AT), which feeds a basic linear Kalman Filter (KF). The OT is

an optical  device with image-processing: the direction of a foreground object of the solar

system is determined wrt distant stars in the background. It uses a multiple cross-correlation

algorithm that improves the estimated direction, i.e. its variance-covariance matrix (or simply

“covariance”).  The AT needs a  set  of  5  measurements  and runs a  weighted least-squares

method (3  measurements  being  not  enough  since  they  are  obtained  successively  and  not

simultaneously). It yields an estimate of the state vector [ξ] of the moving observer, i.e. the

CubeSat:  [ξ]  is  a  9x1-element  vector  that  quantifies  the “shifts” in location,  velocity  and

acceleration of the actual trajectory TA as compared with a reference trajectory TR stored on-

board. The state vector is modelled as a random variable Ξ with a normal distribution (N). Its

estimate and its covariance then write:

Ξ = N ([ξ̂ ], (BT .W .B)	1)
[ξ̂ ]=(BT .W.B)	1 .(BT .W). [Y]

with [ξ ]=(
⃗δ r ini

⃗δ v ini

δ⃗ a
) (1)

[B]=[[Bj] dtj .[Bj]
dt j
2

2
.[Bj]

⋮ ⋮ ⋮ ]
j=1. .5

[Bj]=
1
ρ j .[sin λ j/cosφ j 	cosλ j/cosφ j 0

cos λ j. sinφ j sin λ j .sinφ j 	cosφ j
] (2)

where [Y] is the 10x1 vector of a set of 5 measurements (2 angles per measurement), [W] is

the weight matrix, i.e. the inverse of the 10x10 combined covariance given by the OT, [B] is

the 10x9 Jacobian of the problem, (ρj, λj, φj) are the coordinates of the j-th foreground object

as seen from TR at tj and dtj=(tj-tini) with tini the date of estimate of [ξ]. The 5 corresponding

successive points of the observer derive from the propagation of initial conditions given by

the state vector [ξ]. Then the AT is repeated and feeds a linear KF to improve the estimate of

[ξ] over the time. The IFOD assumes first that the problem can be linearized due to small

parallaxes of the observations between TR and TA and second that the acceleration difference

between TR and TA can be approximated by a constant vector δ⃗ a  during any single set of 5

measurements, corresponding to a locally constant gradient (valid in cruise context).

Results are assessed for an Earth-to-Mars cruise scenario with planets Earth, Mars, Jupiter and

asteroid Ceres as foreground objects. Two trajectories are simulated: a reference one, TR, and

an actual one, TA, that differs from TR after a retrograde ΔV of 1 m/s is applied at the start of

the journey (maximum ΔV due to the jettisoning of the CubeSat from the host launcher). TA

is reconstructed by the IFOD from optical measurements of the foreground objects only, as

seen from TA, simulated with a Gaussian noise of 0.2” standard deviation (OT requirement). 
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Fig. 1: Asynchronous triangulation. Optical measurements of foreground

bodies from successive points of view allowing the triangulation.
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In most cases, with the newest settings and improvements,  TA is reconstructed transversely

with 1-σ residuals between -50 and +150 km transversely and  ±200 km longitudinally. The

convergence of the KF takes less than 1 day, only 0.5 day in the best case when starting at day

110 (Fig.2), with large excursions at start. However some strong residuals are visible, here

and there, most likely expressing a non-sufficient system modelling in the linear KF as well as

in the linear AT. Also reported in [2], the output accuracy varies proportionally to the optical

accuracy, other things being equal, and first depends on the sequence of optical targets.

2 – Analysis tools and numeric settings

A covariance analysis is  performed to mitigate the numerical  instability and to assess the

performance. Most of the settings presented in this section are inspired by Simon, 2006 [3].

Covariance propagation and analysis

Monte-Carlo simulations (MC) were performed in [2] initially but could not provide reliable

uncertainties because they do not capture the bias of the method. An IFOD process is run

every 5 days of the scenario by re-initializing the KF, then the AT and the KF are monitored

for a given number of iterations that allow the convergence of the KF (Fig.3). The covariance

of the KF, noted [Pk
+] after the k-th iteration, cannot ensure the convergence by itself, due to

the possible bias at start. However, the IFOD process ensures convergence in less than 1 day

and a 3-σ accuracy better than 600 km in all directions.

We monitor the trace of [Pk
+] as it is a good metric of the overall uncertainties and of the KF

behaviour. Indeed [Pk
+] is a square symmetric matrix, then its trace is equal to the sum of its

eigenvalues  and an orthonormal  basis of eigenvectors  can transform [Pk
+]  into a  diagonal

matrix of these eigenvalues. Then tr([Pk
+]) is equal to the sum of the variances of independent

uncorrelated new random variables built from linear combinations of the parameters of [uk
+].

That is why tr([Pk
+]) is central in Kalman filtering whose core is to minimize tr([Pk

+]) at every

iteration and whose goal is to decrease tr([Pk
+]) over successive iterations. The OT produces

the covariance of the direction of each observed target resulting from the stars available in the

background of the sensor’s field of view. The AT produces [ξ] from the problem inversion

and also its covariance (see Eq.(1)). The AT then feeds the KF with this “observable” and its

covariance, often noted [vk] and [Qk] in Kalman filtering, directly taken from the AT:
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Fig. 2: Residuals for AT and KF, over the full cruise scenario (top-left), detailed KF behavior

over 1.5 day when re-started at day 110 (top-right, bottom left & right)
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[vk ]=[ ξ̂ ]9 x1 and [Qk ]9 x9 = (B
T
.W .B)	1  (3)

Compared to [2], this propagation is improved by the transmission of the full state vector and

covariance resulting from AT, instead of the position part only (first 3 parameters of [ξ]).

Indeed, the KF is robust against high covariances for  ⃗δ v ini  and δ⃗ a  in ^[ξ ] , the additional

information even helps the learning stage of the filter to quickly converge.

The traces of the covariance in AT and in KF can be compared to assess the added-value of

the KF over time. For AT performance over an entire scenario, however, we chose to show at

a given date the average and the standard deviation of AT during each full IFOD process

finishing at  that  date.  For  a  detailed  analysis  of  a  given IFOD process,  the traces  of  the

covariances of AT and KF are monitored as shown in figure  4. There, the trace for AT is

expected to remain flat when the geometry does not evolve (same observation sequences,

same uncertainties).

Kalman Filter tuning

The numerical stability has been investigated and improved for the IFOD. The ephemerides of

planets as well as TR and TA trajectories’ sampling have been taken with sufficient accuracy

to avoid effects related to numerical limits. A dimensionless approach has been set up, based

on a so-called “condition number” defined as the ratio of the most extreme singular values of

a matrix, then Cov([ξ])k in AT and Pk in KF are monitored. Also, in order to avoid instabilities

after inverting a matrix M that is symmetric by nature, it was first transformed into (M+MT)/2.

Eventually,  the KF at each IFOD process is initialised with the first  ([ξ],  Cov([ξ]) of the

process and the model uncertainty for acceleration is set at 0.01 mm/s² isotropically.

3 – To a strategy that selects the best next measurement

The observation sequence of targets is a top driver of the IFOD performance: it ensures more

or less stability, convergence, accuracy or bias, and reveals a most preferred scheduling to
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Fig. 4: Square-root of the covariances (in km) during AT (left) and

KF (right), at day 110 of the cruise scenario.
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perform the IFOD. From equation (1), we see that the AT’s Jacobian [B] is made of 5 smaller

2x3 blocks [Bj] that link the spherical coordinates (ρj, λj, φj) of the j-th foreground object to

the observer’s location. A deeper analysis of [B] is beyond the scope of this paper. An attempt

at  finding the  geometry  of  foreground  bodies  that  best  constrains  [ξ],  i.e.  minimising its

covariance (BT.W.B)-1, is to find a set of 5 targets that minimises its trace, or maximizes the

trace of its inverse BT.W.B, that simplifies, after developing, as follows:

Max ( tr(BT . W.B))=Max(∑
j=1

5

(1+dtj
2+dtj

4/2) .
tr (Ωj

	1)

ρ j
2 ) =

if isotropic σ opt

Max(∑j=1
5

(1+dtj
2+dtj

4/2). 1
ρ j
2) (4)

where  diag{Ωj
-1}j=1..5 = W,  Ωj being  the  covariances  given  by  the  Object  Tracker.  The

condition is even simpler with an isotropic optical uncertainty σopt.  This means the longest

possible  sequence  with  the  closest  possible  objects,  of  course  within  the  limits  of  the

modelling, in terms of linearisation (constant  δ⃗ a , small parallaxes) and rank (9 unknowns,

Another attempt is to intuitively define an ideal, purely notional geometry. Thereby, the AT

should be better constrained with large (TR, TA) parallaxes from multiple sectors on the sky.

Two geometries are considered (Fig.5): a “wheel-shape” with 5 points regularly spaced on the

bisector plan of the segment [R,A], points of TR and TA, offering a parallaxis α; a “diabolo-

shape” with 3 points on the bisector plan plus 2 points on the orbital plane on TA side. The

parallaxes α are set to keep the linearisation error much smaller than the optical accuracy σopt

(0.2”=9.7x10-7 rad). After sin(α) at the 3rd order, we set α = 0.48° (0.0083 rad). The IFOD is

run in the Earth-Mars scenario with notional foreground objects defined by these geometries

at  every  time  step.  Results  for  the  whole  scenario  are  shown  in  Fig.6.  In  the  “wheel”

geometry,  the AT is poorly efficient  but  the KF converges  in a few iterations down to a

residual of 15±15 km at 3-σ (±5 km, 1-σ). In the “diabolo” geometry, although the AT seems

efficient  at  each  IFOD process,  with  residuals  below 25±25 km at  1-σ,  both AT and KF

converge  strictly  the  same  way  (estimates  and  covariances)  from  typical  residuals  of

20 km±0.5 km at 1-σ, down to non 0-residual slowly. These results are good insight of the

best possible IFOD performances. Thus, there would be an improvement potential due to the

geometry by a factor of 10 with the current architecture.

The parallaxes are set to their maximum, typical distances becoming shorter than in a realistic

cruise scenario (few 0.01 AUs instead of AUs). Still, these notional geometries were built to

keep  the  modelled  system linear,  although  pushed  to  the  limits.  Hence,  the  unexplained
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behaviours  may result  from a non-constant  δ⃗ a  during AT.  These attempts  show that  an

analytical study of [B] is required to properly assess the interest of possible targets.

Conclusion

We have assumed a possible CubeSat architecture that offers successive optical measurements

at  low  accuracy  with  limited  computation  capabilities.  The  IFOD  process  shows  a  fair

performance with a simple linear Kalman filter. It converges in 0.5 day and is optimised in a

cruise context for its current architecture. The covariance analysis is well adapted while the

Monte-Carlo  simulations  reached  some  limits  and  were  CPU-consuming.  Some

improvements are possible: adding new parameters in the state vector, namely a TR-TA time-

shift and even a varying delta-acceleration δ⃗ a , processing the filter after every measurement

instead of every batch of 5 measurements, upgrading to an unscented Kalman filter. These

will  improve  the  performance  in  cruise  but  also  pave  the  way  to  use  the  IFOD in  new

contexts, like proximity operations at an asteroid.

The observation sequence determines, more than anything, the IFOD performance. An on-the-

fly criterion to decide what will be the next best optical targets to observe is desirable but

challenging: it requires an analytical  investigation of the AT’s Jacobian. But it  could take

advantage of the many asteroids that are available in all directions of the ecliptic plane.
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Fig. 6: Residuals for Earth-to-Mars cruise with notional geometries in wheel-shape (left),

diabolo-shape (right), AT results in green, KF in red.


