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ABSTRACT

The system entry problem entails the capture of a spacecraft about a planet by way of maneuver(s) or
flyby(s) of a satellite(s), or both. Generally, a global search for an optimal interplanetary transfer results in
a fixed arrival date and a nearly fixed incoming excess velocity, both in terms of magnitude and asymptote
inertial direction. This search opens a trade space, usually explored numerically, and involves the complex-
ities and relative benefits of satellite-aided capture. Within this trade space, in the case of the Jovian system,
a balance is sought between the capture maneuver magnitude and radiation dose. This paper introduces
the analytical equations necessary to solve the phase-free singly-aided and doubly-aided capture problems,
with a focus on the doubly-aided capture problem in the Jovian system. An analytical approximation for
the required phasing is derived and the implications of the Laplace resonance are discussed. Analytical ap-
proximations are used to seamlessly seed a multiple-shooting algorithm in order to arrive at the converged
high-fidelity solution space for the Europa Clipper Mission.

Efforts to develop the analytical approximation stem from a desire to rapidly identify enabling trajecto-
ries and possible Av cost/savings. The assumptions made in this study reduce the design space to a small
region of interest by automatically omitting infeasible solutions. Key assumptions of the phase-free ap-
proximation are listed as follows: 1) Orbits of the moons are circular. 2) The maneuver is applied at the
planetary periapsis. 3) The maneuver is tangential to the velocity 4) Zero sphere-of-influence flybys are
modeled. 5) The flybys minimize energy with respect to Jupiter. 6) The asymptote into the system is fixed.
7) A flyby-maneuver-flyby sequence is assumed.

The flyby-maneuver-flyby sequence is the most likely for a finite excess velocity declination with respect
to the central body. In other sequences, the first flyby must zero the inclination with respect the orbital
plane of the moons. The phase-free doubly-aided solution is analytically calculated in seven steps with an
estimation for the phasing comprising the seventh: 1) Select a value for the perijove radius after the first
flyby. 2) Define the location of the node of the incoming hyperbola such that the hyperbola intersects the
orbit of the first flyby body. 3) Calculate the orbital elements of the incoming hyperbola, subject to the
node, asymptote, and perijove constraints. 4) Based on a B-plane target that minimizes energy, calculate the
orbital elements after the first flyby. 5) Find the orbital elements after the maneuver subject to the node and
tangential maneuver constraints. 6) Based on a B-plane target that minimizes energy, calculate the orbital
elements after the second flyby. 7) Calculate the time of flight of each segment to provide a relative and
absolute phasing guess. The phase-free singly aided solution is constructed as follows: 1) Follow steps 1-4



for the doubly-aided problem. 2) Compute the maneuver that yields the desired orbital period. 3) Calculate
the time of flight of each segment to provide the phasing guess for the flyby moon.

The phase-free results for every flyby combination in the Jovian system are summarized in Fig. 1(a).
The resonant conditions provide a set of advantages and disadvantages over the non-resonant solutions: 1)
For a given phase-free solution, if the phasing condition is not satisfied, then the solution will never exist
for that specific interplanetary trajectory. 2) For a given phase-free solution, if the phasing condition is
satisfied, then it will always repeat at the appropriate number of synodic periods over a timescale much
smaller than the orbital period of Jupiter. Therefore, in the resonant moon situation, a given arrival epoch
will immediately rule out sets of phase-free solutions. This behavior is especially desirable for practical
considerations such as finding trajectory configurations that yield suitable communications access. The
resonance pattern for Io and Ganymede is represented in Fig. 1(b), while a high-fidelity solution with the
sequence lo-maneuver-Ganymede, converged from the analytical estimation, appears in Fig. 2.
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Figure 1: The Phase-Free Trade Space and the lo-Ganymede Resonance
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Figure 2: High-Fidelity Solution Seeded from the Analytical Estimation



