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Abstract: We investigate the performance of a generalized linear mixed model in predicting the
Probabilities of Collision (Pc) for conjunction events. Specifically, we apply this model to the log10
transformation of these probabilities and argue that this transformation yields values that can
be considered bounded in practice. Additionally, this bounded random variable, after scaling, is
zero-inflated. Consequently, we model these values using the zero-inflated Beta distribution, and
utilize the Bayesian paradigm and the mixed model framework to borrow information from past and
current events. This provides a natural way to model the data and provides a basis for answering
questions of interest, such as what is the likelihood of observing a probability of collision equal to
the effective value of zero on a subsequent observation.
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1. Introduction

The problem of deciding whether to maneuver a satellite that is in conjunction with another space
object is often not straightforward, and a serious threat involves the deliberation and cooperation
of various parties[1]. Quantifying the risk for any such conjunction is generally accomplished
through the use of the predicted miss distance at time of closest approach (TCA) and the calculated
probability of collision (Pc) at that same time. These measurements are generally taken beginning
up to a week before TCA and continue until the opportunity for any active remediation of risk
has passed. The calculated Pc values are affected by the uncertainty in the positions of the space
objects, an uncertainty that generally decreases as one approaches TCA. This decrease in uncertainty
eventually yields a decrease in Pc for most events, although the rate and manner of decrease is
different for each.

In a recent paper, we investigated the use of a simple method for determining whether any given
event’s current Pc value is likely to be the peak Pc value for the entire event.[2] We found that this
method was relatively successful and thus that some trend analysis in Pc value is possible. Though
the model was competent at peak prediction, it did not have the sophistication to capture the overall
behavior of the Pc values in all cases; and that one of the main causes of its difficulties was the large
number of Pc values equal to essentially zero. In this paper, we propose a more sophisticated model
designed to capture more such nuances of the data and which we ultimately test for prediction of Pc
values. We also propose a simple method, which we name the “Look-Up Method,” as a baseline
against which to evaluate model performance. The Look-Up Method is intended to represent how
an analyst might make intuitive judgments regarding the progression of Pc values over time.
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2. Methods for Trending in Probability of Collision

2.1. Calculating the Probability of Collision

The basic procedure for calculating the probability of collision between two space objects is to obtain
positions and position covariances propagated to TCA, and, using this information, to determine the
probability of the two objects’ passing within a stated small distance of each other. One generally
makes assumptions of Gaussian uncertainty distributions, rectilinear motion in the neighborhood
of the conjunction, and uncorrelated covariance matrices in order to reduce the problem to a more
manageable two-dimensional formulation.[3] Alfano[4] and others have noted that this probability
measure tends to follow a canonical progression of measured increase and then untimately rapid
decrease in Pc as uncertainty in the satellite’s positional data decreases, a trend that was examined
in our previous paper.

We seek to model the path of the Pc values for any event as a set of observations for a subject in a
mixed model. In contrast to the previous paper in which our main focus was peak prediction, here
our ultimate goal is to predict the value of the next observed Pc measurement, although it is hoped
that a robust peak prediction capability may flow from this. To verify the accuracy of our model,
we test it against both a large archive of past conjunction information and the “Look Up” approach
mentioned previously.

2.2. Data

When modeling the trend in Pc values, one is generally concerned with changes in order of mag-
nitude; thus one generally models log10 Pc as opposed to the observed Pc values. This poses an
interesting statistical question, namely the distribution of log10 Pc values. Distribution selection
is more obvious for the Pc values, as they are bounded between 0 and 1; thus a statistical mod-
eler generally would choose a beta distribution to model these values (although there are a few
other less commonly used distributions, such as the simplex distribution, that could be deployed).
Theoretically, there is no lower bound on log10 Pc values, as Pc values can be arbitrarily close to
zero. Operationally, however, one often considers Pc values below 1E-10 to be effectively 0. To
account for this effective terminus in Pc, in our previous efforts we “floored” the log10 Pc values
at -10, so that the large number of small log10 Pc values did not overly influence the model. This
simplification allows one to focus inference on the operationally relevant log10 Pc values, which
tend to be around -5 and greater. We follow suit here, flooring all log10 Pc values at -10. Therefore,
even in modeling the log10 Pc values, we have bounded data (between -10 and 0) that are “inflated,”
meaning that there are a notable number of points on the boundary of the defined interval–points
that may be just beyond what is representable by a hypothesized distribution over that interval. In
this case, the data are -10-inflated, but when the variable is rescaled to fit the Beta distribution, the
data are zero-inflated. Such a situation can be accommodated by the zero-inflated beta distribution;
the form of the equation and basic definitions are given below, with more elaborate discussion of
the parameters and their meaning provided in subsequent sections:
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f (y|µ,φ , p) = (1− p)
Γ(φ)

Γ(µφ)Γ((1−µ)φ)
yµφ−1(1− y)(1−µ)φ−1I(0,1)(y)+ pI[0](y). (1)

Here, IA(·) is the indicator function, so that the first term corresponds to values of y falling between
0 and 1 (or logPc values falling between -10 and 0) and the second term corresponds to values equal
to 0 (or logPc values equal to -10). The parameter µ is the mean of the Beta distribution, which
will be modeled in the Generalized Linear Model (GLM) framework, and the parameter φ is the
corresponding dispersion parameter, which is a measure of variability. The parameter p can be
interpreted to be the probability that one observes a 0 (that is, a logPc of -10).

Additionally, as noted previously, the Pc values for each event tend ultimately to decrease with time
but at a different rate in each conjunction. This suggests approaching the problem within a mixed
model framework, allowing random terms for each conjunction. This is a natural approach to take,
as the data are longitudinal in nature: one observes an overall trend in time; yet each subject (in this
case, each conjunction) deviates somewhat from this trend, and observations within a subject are
correlated with each other. In Figure 1, we visualize the longitudinal nature of the data. We plot the
log10 Pc values of ten events over time, with each events’ values connected by a line; and we also
plot these values versus the ratio of combined covariance radius to miss distance. This plot exposes
the canonical trend in Pc development: as the event moves closer to TCA, the covariance shrinks,
bringing this ratio slowly to a peak and then a marked drop-off.

It is clear that the trend is more pronounced for the ratio of covariance radius to miss distance.
Unfortunately, as was discussed in our previous paper, this value is not monotonically increasing or
decreasing with time (due to unpredictable changes in the covariance size and the estimate of the
mean miss distance between the two satellites as the event develops); so despite its closer linkage
to the root phenomenology of the situation, it is actually a less desirable independent variable for
performing trending and prediction. Therefore, as previously, model construction for Pc trending
and prediction will use time to TCA as the independent variable.

We can visualize the trend of the log10 Pc values over time by considering a two-dimensional
histogram, shown in Figure 2. Recall that we have replaced all log10 Pc values below -10 with -10.
This figure indicates that the probability of observing a Pc value of 1E-10 or lower increases as one
approaches TCA. In fact, at 2 days to TCA, about 40% of events observed have a Pc of 1E-10 or
lower. At 7 days until TCA, the most observed value is about -5, which becomes less frequent over
time, as more events observe a log10 Pc of -10. Interestingly, -5 seems to be the most likely value
when one does not observe a -10, regardless of the time. We can use this information to construct
prior information for the model in Equation (1), as the increase of observed -10 values gives us an
idea of how p behaves over time, and the observed mode of -5 of the log10 Pc values above -10 gives
us some information about the mean of the Beta distribution.

3. The Bayesian Beta Regression Model

To model a beta-distribution random variable with reference to a covariate (such as time), it is
best to use a GLM. Although GLM’s for all other members of the exponential family (Normal,
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Gamma, etc.) have been developed since 1972[5], the GLM for the beta distribution is relatively
new, being introduced in 2001[6]. The reason for this late development is due to the fact that one
must reparametrize the beta distribution in order to model the mean adequately, an expansion that
was not explored until recently. We provide the derivation here for completeness. The probability
density function (pdf) of a random variable X with a beta distribution is generally given as

f (x|α,β ) =
Γ(α +β )

Γ(α)Γ(β )
xα−1(1− x)β−1,

where Γ(·) is the gamma function. The mean of this distriubtion is E(X) = α

α+β
. GLM’s are

generally specified by setting some function g(µ) of the mean equal to a linear combination of
covariates. For instance, logistic regression uses the logit link g(µ) = log( µ

1−µ
), which is then set

equal to a linear combination of covariates, e.g. β0 +β1X , where X is a covariate, such as time.
However, as the beta distribution is specified, it is unclear how to model the mean. To facilitate
direct modeling of the mean, let µ = α

α+β
and φ = α +β . Then we can rewrite the beta pdf as

f (x|µ,φ) = Γ(φ)

Γ(µφ)Γ((1−µ)φ)
xµφ−1(1− x)(1−µ)φ−1.

Now we may model the mean µ directly. For instance, we may choose the logit link and model

log
(

µ

1−µ

)
= β0 +β1xi j + ...+βpxp

i j,

so that the log-odds of the mean has a linear relationship to X . Various link functions are possible,
such as the probit link, the complementary log-log link, and the log link. Our simulations have
shown that there is no significant advantage in choosing one over the other, so we proceed with the
logit link, as it is comparatively easy to interpret.

Recall that for each conjunction, one observes a different progression of Pc values. Sometimes the
Pc values drop off quickly well prior to TCA, other times they drop off much nearer TCA, and
sometimes not at all. To model such a behavior, we include a random intercept for each event as
follows. Let µi j be the mean of the jth Pc value in the ith event, scaled to be between 0 and 1. Since
we have log10 Pc values bounded between -10 and 0, a suitable transformation is µi j = E(Yi j)/10+1,
where Yi j is the log10 Pc value of the jth Pc value in the ith event. We may consider the model

log
(

µi j

1−µi j

)
= β0 +β1ti j + ...+βpt p

i j +bi,

where bi is the random intercept for the ith event, and ti j is the time until TCA of the jth Pc value
within the same event. One may additionally consider a random slope or other random effects for
higher order terms.

Recall that in Equation (1) we also introduced the parameter p. This parameter controls what
percentage of the time we observe a zero. In our case, since about a third of our data are zeros,
p might be close to 1/3. However, we also know that the closer an event approaches TCA, the
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more likely one is to observe a Pc value that is 0. As a result, we can also let p depend on our
covariate. Since it is a probability, this parameter is also bounded between 0 and 1, so we can also
use a logit link function here (or any of the other aforementioned link functions). Additionally, we
may consider a random term for this model for each event, as the probability of observing a zero is
higher for some events than others. Thus, we may consider a regression such as

log
(

p
1− p

)
= α0 +α1ti j + ...+αpt p

i j +ai,

which is similar to the regression for µ above. Again, if we wish we can consider other random
terms, i.e., a random slope.

3.1. Model Selection

Given below are some selected results from an exploratory model selection. To evaluate the relative
merits of different levels of model complexity, we use the penalized deviance construct[7], where
lower values indicate a better fit. Specifically, D(θ) is defined as the “Bayesian Deviance,” with
form

D(θ) =−2log p(y|θ)+2log f (y), (2)

where p(y|θ) is the likelihood of y given θ and f (y) is the saturated model, where f (y) =
p{y|E(Y ) = y}. We can rewrite D(θ) as

D(θ) =−2(log p(y|θ)− log f (y)) , (3)

which shows that D(θ) is -2 times the difference between the fitted model and the saturated model.
Put simply, D(θ) measures how well a model has fit the data relative to a model that fits the data
perfectly. We estimate D(θ) with D(θ), which can be written as

D(θ) = D(θ̄)+ pD, (4)

where pD = D(θ)−D(θ̄). The estimate D(θ) is known as the penalized deviance, as it is computed
as the sum of D(θ̄), the mean deviance, and pD, the penalty term. The term D(θ̄) measures how
well a model fits the data, with lower values indicating better fit, and the term pD penalizes this fit
for more parameters, where higher values indicates a larger penalty. The penalty term pD is also
known as the effective number of parameters, so that one may interpret this term as an estimate
of how many parameters the model is actually estimating in order to describe the data. This is to
account for the expected outcome of models with more parameters fitting the data better and thus
potentially over-fitting the data.

Given in Table 1 is the calculated mean deviance, penalty, and consequent penalized deviance for
various models. This is provided in order to justify the selection of our final model, as we chose
the model with the lowest penalized deviance. The variables Yc and Yd represent the continuous
and discrete parts of the model given in Equation (1), respectively. That is, Yc are the values
produced by the beta distribution, and Yd are the 0-1 variables that either indicate a zero (1) or a
continuous variable (0). All added complexities are in addition to the baseline linear model specified
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in equations (5-12) below. Let Yi j be the jth scaled log10 Pc value of the ith event. Also, let ti j be the
corresponding time until TCA (in days).

Yi j ∼ f (yi j|µi j,φi j, p) (5)

log
(

µi j

1−µi j

)
= β0 +β1ti j +bi (6)

bi ∼ N(0,τb) (7)
τb ∼ Gamma(0.001,0.001) (8)

log
(

pi j

1− pi j

)
= α0 +α1ti j +ai (9)

ai ∼ N(0,τa) (10)
τa ∼ Gamma(0.001,0.001), (11)

βk,αk ∼ Normal(0,1), k = 0,1,2. (12)

Table 1 shows that adding a random slope to either Yc or Yd did not produce a better fit, nor did
specifying a correlation between the random effects:

Model Mean Deviance Penalty Pen. Deviance
Linear -17.23 74.93 57.7

Quad Term for Yc -23.02 77.32 54.31
Quad Term for Yd -26.78 76.45 49.67

Quad Term for Yc and Yd -32.52 79.23 46.71
QuadTerm for both, RanSlope for Yc -31.12 81.07 49.95
QuadTerm for both, RanSlope for Yd -36.91 85.54 47.63

Cubic Term for Yc -31.89 81.1 49.21
Quadratic, linear for phi -27.76 80.87 53.11

Table 1. Model Selection Output

Based on these results, we propose the following final form of the model:
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Yi j ∼ f (yi j|µi j,φi j, p) (13)

log
(

µi j

1−µi j

)
= β0 +β1ti j +β2t2

i j +bi (14)

bi ∼ N(0,τb) (15)
τb ∼ Gamma(0.001,0.001) (16)

log
(

pi j

1− pi j

)
= α0 +α1ti j +α2t2

i j +ai (17)

ai ∼ N(0,τa) (18)
τa ∼ Gamma(0.001,0.001), (19)

βk,αk ∼ Normal(0,1) k = 0,1,2. (20)

3.2. Inference

3.2.1. Inference for a new data point

Let θ = (α0,α1,α2,β0,β1,β2,φ ,τa,τb)
′
. Suppose one has data y and one wishes to predict y∗ =

logPc at a new data point at time t∗. One can make an inference on y∗ by using the predictive
distribution

g(y∗|x∗,y) =
∫

Θ

g(y∗|θ ,x∗,y)π(θ |y)dθ ,

which can be estimated by using the posterior samples of a Markov Chain Monte Carlo (MCMC)
simulation. t∗ can be a future time for which estimating the Pc would be desirable, or it can be set
to the time of the next received Pc value in order to evaluate the model’s predictive power through
residual analysis. In conducting evaluations within the latter paradigm, we construct a 95% credible
interval for y∗ and check to see if the actual value of y is contained in the interval. The percentage of
credible intervals which contain the true y value is known as coverage. If the coverage is close to the
nominal value of 95%, we can assume that these predictions are reliable. These predictions are made
starting with the second Pc observation for each event, as was done in our previously-referenced
efforts.

3.2.2. Issues of Identifiability

The model proposed in equations (13)-(20) has a total of 7 parameters and 2 random effects, which
suggests one must estimate a total of 9 quantities in order to make inferences and hence predictions.
However, this issue can be ameliorated by using informative priors in a Bayesian framework.
To acquire these informative priors, we run the proposed model on a training dataset of a large
number of events, which are not used for model evaluation. We use the posterior distribution of
the parameters as informative prior distributions by matching sample moments of the posterior
samples with its prior distribution family. We do this for all of the population-level parameters,
which are phi, αk, and βk for k = 0,1,2. Then we are left with two parameters to estimate, the
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random intercepts ai and bi. Because we make predictions beginning with the second observation,
these parameters are identifiable when making inference on a single event.

Motivated by the large number of events in our testing data set, we investigated whether prediction
could be improved by making inferences on more than one event at once. In order to test this,
we followed the mean squared prediction error (MSPE) when making predictions on one event,
5 events, 10 events, and 25 events. Including more events did not improve the MSPE, likely due
to the fact that, in reference to a single event, other events contribute only to the population-level
parameters, which are already well known due to the informative prior distributions. Thus, it is
quite adequate to make predictions on a single event at a time.

4. The Look-Up Method

4.1. Intuition

As a basis of comparison to our Beta regression model, we propose a simple alternative model,
which we call the “Look-Up Method.” The Look-Up Method is based on the common expectation
that, when one observes an event with relatively high Pc values, one can suppose this event to
behave similarly to other events with other similarly high values. In order to formalize this intuitive
approach into an explicit model, we need to establish how high “relatively high” is. A natural way
to quantify this notion is in terms of quantiles. That is, we expect events with logPc values in the
qth quantile to behave similarly to other events with logPc values in the qth quantile. The method
we describe below is similar to methods involving “look-up tables,” where one has quantiles for
various scenarios and can look up the probability of an event within the table.

4.2. Method

Let x and y be the time and Pc value from the most recent observation. Furthermore, let xnew and ynew

represent the time of prediction and the true Pc value at this time. The algorithm for the Look-Up
Method is as follows

Algorithm
1. Choose an historical data set Yh such that the events contained in Y are believed to behave

similarly to the event of interest.
2. Choose a window w.
3. Calculate the empirical CDF F̂(y) of the logPc values in the interval (x−w,x+w).
4. Calculate the sample quantile q̂ of y
5. Calculate the empirical CDF F̂(y) of the logPc values in the interval (xnew−w,xnew +w).
6. Predict ynew to be q̂(xnew)

We find that w = 0.5 days to be a reasonable window length, as it is a serviceable adjudication
between compressing the time-span enough to contain data for only a single developmental stage
yet be broad enough to allow a reasonable amount of sampling. This length depends on how much
prior data is at hand, as w may need to be larger for datasets which are less dense at the time of
interest. Note that this method only predicts an estimate of ynew and does not by default generate a
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prediction interval or any other confidence information.

The method above is simple: find the sample quantile of the observed Pc value at the given time,
and assume that future Pc values will be at the exact same quantile. While simplicity has its virtues,
in statistical analysis simple models often discard potentially useful information. For instance, the
predictions are made based only on the sample quantile of the most recent observation and make no
use of previous observations within the given event. However, one could argue that the most recent
observation is the most (or only) meaningful observation, and thus one should make inferences
based on this value rather than more immediate past values.

4.3. Prediction Intervals

As noted above, the Look-Up Method does not automatically generate prediction intervals; this is a
consequence of the method making no distributional assumptions. However, one may still construct
prediction intervals via bootstrapping or cross-validation[8]. These methods have been formally
compared[9], and the results from this investigation indicate that estimators based on Repeated
Cross Validation (RCV) tend to outperform other estimators (e.g., bootstrap estimators). As a result,
we implement RCV to generate prediction intervals. The method was initially proposed by Burman
(1989)[10], which describes the algorithm in detail.

5. Measures of an Effective Model

In this section we discuss the manner in which we will compare our two models. We focus on
model fit and decision-making performance.

5.1. Model Fit

The main concern in building predictive models is fitting the data well enough to predict new
observations accurately. In order to quantify model fit performance, we check the bias, prediction
errors, and upper bounds of the proposed models. Specifically, we would like our models to be
unbiased, so that the prediction errors are centered at zero. Secondly, we check to see if the
prediction intervals are bigger or smaller for different times, predicted values, and prediction
intervals. Lastly, we check to see that our upper bounds have the correct coverage.

5.1.1. An Aside: Coverage from an Initial Simulation

In an initial exploratory simulation, we found that 97.5% prediction intervals constructed in the Beta
model had 86% coverage. Though coverage with real data is often lower than the nominal rate, this
coverage level is low enough to bring into question the model’s operational utility. In investigating
this phenomenon more deeply, we found that dividing the evaluation data into three parts, a high-,
medium-, and low-risk group, ameliorated the issue of low coverage. Specifically, if an event had
a high (above -4) logPc value by 3 days’ time to TCA , we called it high-risk. If an event had a
medium (between -7 and -4) logPc value by 3 days’ time to TCA, we called it medium-risk. If an
event had a low (below -7) logPc value by 3 days’ time to TCA, we called it low-risk. We shall refer
to the high-, medium-, and low-risk groups as Red, Yellow, and Green hereafter.
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Incidentally, the fact that our model performed well when the data were separated into different
risk groups supports the notion that the logPc value behaves differently depending on the quantile
it inhabits. In terms of the Beta regression model, this successfuul stratification of data implies
that the population-level trend is different for these different risk groups, which counsels that they
ought to be modeled separately. In future work, we plan to explore more rigorously exactly how
one should define these different risk groups. For the simulations presented in this paper, these
definitions worked well and possess the additional advantage of aligning closely with thresholds
presently in use operationally for categorizing conjunction event severity.

5.2. Decision-Making Efficacy

5.2.1. Framework

In order to assess our models within the framework of making decisions about whether to continue
active monitoring of a conjunction event, we implement a simple decision-making paradigm
and study its properties in both models. Because the typical period for conjunction assessment
operational decision-making occurs 2-3 days; time to TCA, we focus on this region of the data.
Specifically, we make predictions at 2 days’ time to TCA and take a decision based on this prediction.
Let ŷ2 be an estimate of the logPc predicted to occur at 2 days’ time to TCA. We will make the
decision that the logPc values will remain above the threshold θ after 2 days; time to TCA if

ỹ2 > θ (21)

and will make the decision that the logPc values will fall below the threshold θ otherwise. To couch
this in the hypothesis testing framework, we write

H0 : ỹ2 < θ vs. H1 : ỹ2 > θ , (22)

so that rejecting H0 is synonymous with claiming the logPc will remain high. In our simulations,
we set θ =−5 for the Red group and θ =−7 for the Yellow group. Note that while -7 is the lower
bound for being in the Yellow group at 3 days’ time to TCA, -5 is below -4, the corresponding
lower bound for the Red group. A lower threshold was chosen as these events are generally of much
higher concern, thus one prefers an extra order magnitude of certainty before claiming the event is
at a lower risk level. In order to explore this trade-off fully, we examined various quantiles of the
distribution of ỹ2, which we describe below.

5.2.2. Type I and Type II Errors

As with most decision-making frameworks, our framework can admit Type I and Type II errors.
The hypothesis in (22) is framed in terms of the event of a Pc value remaining high, as this is the
event we are most concerned with. A Type I error in this case is the incorrect assertion of a high Pc
value (i.e., a false alarm), and a Type II error is a the more worrisome incorrect prediction of a low
value (i.e., a missed detection). Thus, while we may find it acceptable to trigger an alarm when the
logPc value has actually dropped off, it is almost never acceptable to miss detecting a high logPc
value. Of course, we can make our system as powerful against missed detections as we want, with
the trade off of triggering more false alarms. It is worth noting that a false alarm for a high value is
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the same thing as missed detection for a value which has dropped off. Ideally, we would like to
have an alarm that detects high values and low values with a high degree of accuracy. However,
since we are more concerned with high values, we seek to quantify how often, if ever, can we detect
these low values while still maintaining the high accuracy needed for detecting the high values.

6. Numerical Results

6.1. Data

The datasets previously mentioned for tuning (i.e., setting the parameters for the informative prior
distributions) and testing the model was taken from the NASA Conjunction Analysis and Risk
Assessment historical Conjunction Message database. For the Yellow group, five hundred events’
worth of data from calendar year 2013 was used for model tuning (the “training” dataset), and the
tuned model was evaluated against approximately 2000 events from 2014 (the “validation” dataset);
so there was no overlap in terms of time-period or actual data between the two datasets. For the Red
group, 82 events were used for training and 70 were used for testing (this data set is far smaller, as
these kinds of events are more rare). Data were taken from conjunctions against primaries in the
orbital region defined by a perigee height between 500 and 750 km and an eccentricity less than
0.25. As mentioned perviously, data flooring at a log10 Pc value of -10 was performed on the dataset.
To qualify for use in tuning or evaluation, an event must have had at least two CDMs with a log10 Pc
greater than -10.

6.2. Simulation Setup

As described earlier, to train our Beta distribution model, we perform a Bayesian analysis on
the training data using non-informative priors. We determine the distribution parameters for the
informative priors used in the test data by matching the first and second moments of the observed
distributions to the hypothesized prior distributions. These informative priors are then used in the
predictive simulations with the validation dataset. All MCMC inference is conducted using the
JAGS (“Just Another Gibbs Sampler”)[11] software suite.

The simulation procedure for a given event is as follows. We attempt to make predictions for the
peak y value only after the second received Pc calculation. We are interested in estimating the next
logPc value, which we predict by using the time at which it was observed. The predicted value
is taken to be the mode of the posterior predictive distribution. In this context, it is important to
use the posterior mode as opposed to the posterior mean, as the posterior predictive distribution is
generally bimodal, with some mass at -10 and the remaining density between -10 and 0, inducing
another peak. Thus, we choose the “most likely value” as opposed to the mean. The predictions
using the Look-Up Method are performed in the straightforward manner described in section 4.2.

To further assess model fit, we also track a two-sided 95% credible interval for each prediction.
We utilize the upper bound from the credible set for checking coverage. This is also done for the
Look-Up Method, though here the interval is a confidence interval and is calculated using repeated
cross-validation. In addition to coverage, we are also interested in how many of these upper bounds
are low enough to be “useful”. That is, we would like to know how many of these lower bounds are
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lower than the lower threshold of the Yellow and Red groups.

6.3. Results

Below we discuss model fit for a simulation run on the Red data set. The decision-making efficacy
is discussed relative to the Yellow data set.

6.3.1. Coverage

The upper bounds we constructed for both the Beta and Look-Up models achieved 97.6% and 97.4%
coverage, respectively. The fact that these both achieve the nominal coverage of 97.5% suggests that
both models have been specified properly and are reliable in creating prediction intervals. Figure
3 shows the relationship of these upper bounds with time to TCA. Notice that because the upper
bounds were found via cross-validation for the Look-Up Method, they do not always conform to
the distribution of the data and can yield physically-impossible positive values. Also, the Look-Up
Method method is better at detecting a logPc of -10, and thus one observes many upper bounds at
-7.2 (the 97.5% upper bound on errors was 2.8).

Figure 4 plots the probability densities of these upper bounds on top of each other. Again, we see
the positive upper bounds from the Look-Up Method, as well as a large density of lower bounds
between -8 and -6. These figures highlight deficiencies in both models: in the Look-Up Method
some upper bounds are above 0, and in the Beta Regression method not enough upper bounds are in
the -10 to -7 (Green) region.

6.3.2. Prediction Errors

To get a better understanding of the model fit, we can inspect the prediction errors. Figure 5 shows
the prediction errors plotted against time. In both cases, they are unbiased (have essentially zero
means) and may increase slightly in variability near TCA. Again, we can see that the Look-Up
Method is competent at detecting logPc values, as evidenced by the large number of residuals equal
to 0. This is the case of a -10 being predicted by a -10.

We also examine predictive performance as a function of prediction interval. Figure 6 shows the
residuals against the time until the predicted value. Most of the predictions are made within a
day, suggesting that most event updates occur in this time frame. There seems to be no real trend,
except possibly a slight decrease in variability as the time between the current observation and the
prediction goes to 0, which is to be expected.

Next, we explore the relationship between the residuals and the actual logPc value. It is apparent
from Figure 7 that both models are somewhat biased. This bias is a result of the nature of the data
and the models: it is impossible to observe a value below -10, and in both models is impossible to
predict a value below -10. Thus, when one errs in these cases, one always errs high. The residuals
from the Look-Up Method are somewhat better behaved in this setting, leveling out to a mean of
zero around an actual logPc value of about -5 or -4. The Beta regression residuals do not level off in
this way until an actual logPc value of about -3 or -2.
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Figures 8 and 9 show a few more diagnostics for the residuals. It is worth noting that in Figure 9,
there are a large number of prediction errors that are 0 for the Look-Up Method and that are large
negative prediction errors in the Beta regression model. This alignment again has to do with the
Look-Up Method correctly identifying the logPc values of -10.

6.3.3. Making Decisions

Figure 10 is a Receiver Operating Characteristic (ROC)-like curve demonstrating the properties of
the alarm system for detecting a high value in the Yellow group. Here, our threshold is θ = −7.
Notice that while the Beta model has a smaller distance between the correct detection of a high
value and a false alarm, the Look-Up Method is less able to detect high events correctly. In practice,
one would like to have an extremely high (say, 90-99%) rate of correctly detecting high events.
Though the Look-Up Method is a potentially more useful alarm system at lower rates of correctly
detecting a high value (it triggers fewer false alarms relative to the Beta model), its inability to
correctly detect high values makes it virtually unusable in practice.

To further visualize this phenomenon, consider Figure 11. This is an ROC curve which plots the
results of Figure 10 in a classic true positive vs. false alarm setting. Again, here a true positive is a
correct detection of a high event. As we are interested in 90-99% correct detection of high events,
we consider the upper right-hand portion of the graph. Notice that the Beta model has numerous
points in this region (with false alarm rates ranging from about 70-100%), while the Look-Up
Method only has one point: 100% true positives with 100% false alarms. That is, one triggers an
alarm for every event. The Beta model has many points in this region, and they are all above y = x,
indicating that the model correctly identifies a high value more often than triggering a false alarm.

It should be noted that in Figure 11 that the lower left-hand portion of the graph indicates that,
because of the relative performance of the true positive and false alarm rate, the Look-Up Method
is a better alarm system in this region. This improved performance corresponds to the 0th to 20th
percentile region from Figure 10, which have a higher rate of correctly detecting a high value.
Although we are not interested in this area of the graph as the probability of detection is too low to
be useful, it is worth noting that this again shows that the Look-Up Method has some advantages
relative to the Beta model, indicating that possibly an even better model could be constructed.

Lastly, one may wonder why the Look-Up Method is unable to correctly detect high values at a
higher rate than shown. This is likely due to the fact that the method is ad-hoc, and thus there is no
guarantee that the model will produce meaningful predictions or prediction intervals.

7. Conclusion and Future Work

In this paper, we have presented two models for predicting future logPc values in conjunction
assessments. The Look-Up Method was proposed as a reference method, and clearly has many
desirable properties. The method is fast to compute an relatively easy to implement if one has
sufficient data. One of the major drawbacks of this method is that it is ad-hoc, so it may be difficult
to justify theoretically. Consequently, though this method had better prediction errors and other
useful properties, the model was not able to be used in a decision-making context in a meaningful
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way. The Look-Up Method can be recommended as a quick way to make relatively accurate
predictions, but one should be cautious in using it to make decisions without further development.

The Beta Regression method was proposed to handle the bounded nature of the data. Including a
model for the excess -10 values proved useful, though the model often is conservative in predicting
a -10 value. Thus, more exploration needs to be done to borrow strength across these two models,
in the hopes of achieving tighter prediction intervals and ultimately better decision making. Though
the model is inferior in some ways to the Look-Up Method, it ultimately performs better in a
decision-making context and therefore can be operationally useful. Its theoretical underpinning
allows one to make probabilistic statements about future events, which have been validated through
simulation. Furthermore, the theoretical underpinning allows one to construct meaningful prediction
intervals of any size, resulting in an ability to make decisions at various true positive and false alarm
levels. This model would thus give operators the ability to forecast accurately and with confidence,
especially knowing what the characteristics of the alarm system are (shown through simulation),
although it would need to be determined whether a classified with such a large false-alarm rate
would actually be operationally useful.

Our future work is focused on exploring the findings from these simulations more in order to
construct a more powerful predictive model. This paper has shown that the quantile of the current
observation is a useful piece of information, and we believe including it as a covariate or threshold
mechanism could lead to better results. We also continue to explore methods for longitudinal data,
thus deploying more powerful ways of borrowing information across time and events.
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Figure 3.

Figure 4.
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Figure 5.

Figure 6.
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Figure 7.

Figure 8.
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Figure 9.

Figure 10.
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Figure 11.

21


	Introduction
	Methods for Trending in Probability of Collision
	Calculating the Probability of Collision
	Data

	The Bayesian Beta Regression Model
	Model Selection
	Inference
	Inference for a new data point
	Issues of Identifiability


	The Look-Up Method
	Intuition
	Method
	Prediction Intervals

	Measures of an Effective Model
	Model Fit
	An Aside: Coverage from an Initial Simulation

	Decision-Making Efficacy
	Framework
	Type I and Type II Errors


	Numerical Results
	Data
	Simulation Setup
	Results
	Coverage
	Prediction Errors
	Making Decisions


	Conclusion and Future Work
	References

