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Abstract: ALOS-2, the Japanese state-of-the-art L-band SAR satellite, is designed to perform
autonomous precise orbit control of Earth-referenced repeating orbits for effective repeat-pass SAR
interferometry. The orbit control accuracy requirement is 500 m (95%) with respect to the reference
trajectory. Since its activation in August 2014, it has been operated normally and contributed to
ALOS-2 mission data quality improvement. This paper addresses not only evaluation results of
the achieved control performance but also experiences during one-year operation of the ALOS-2
autonomous orbit control system.
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Nomenclature

a = semi-major axis
EEE = space error, EEE = (EN ,ER)

T

eee = eccentricity vector, eee = (ex,ey)
T = (ecosω,esinω)T

i = inclination
J2 = second zonal gravity harmonic of the Earth
k = serial number of checkpoints or integer number
Ls = Mean Local Time (MLT) of the descending node
M = mean anomaly
n = mean motion
R = disturbing function or equatorial radius
rrr = position vector in WGS-84
T = nodal period
t = time
u = argument of latitude
v = velocity
x,y,z = position in WGS-84
ααα = orbital element vector, ααα =

(
T, ēeeT , ī,λ

)T

α = phase angle
γ = angle between the inertial and Earth-fixed velocity vectors
ε = error ratio, or mean obliquity of ecliptic
κ = ratio of mean anomaly n to nodal regression rate Ω̇

λ = longitude
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µ = gravitational constant
Ω = right ascension of ascending node
ω = argument of perigee or angular velocity

Subscript
cross = cross-track direction
DN = descending node
E = east
e = Earth
HM = periodic perturbation with half-month period
I = epoch of next maneuver
j = pass number
LP = periodic perturbation with long period
l = local
m = maneuver number or Moon
max = maximum
meas = measurement
min = minimum
N = normal direction of Radial-Tangential-Normal frame
R = radial direction of Radial-Tangential-Normal frame
radial = radial direction
re f = reference orbit
S = secular perturbation
SL = secular and long period perturbations
s = Sun
T = tangential direction of Radial-Tangential-Normal frame
th = threshold
tg = target
W = west
0 = epoch of computation
¯ = mean value

1. Introduction

Advanced Land Observing Satellite-2 (ALOS-2), which is a Japanese Earth observation satellite
equipped with the state-of-the-art L-band SAR instrument, has an autonomous orbit control function
for precisely keeping its trajectory within the 500-m-radius tube-shaped corridor defined in the Earth-
fixed coordinate system. This autonomous orbit control feature of ALOS-2 has been in practical use
since its activation in August 2014, and it has been a great help for precision maintenance of the
orbitand efficient daily ground operations.

Some Earth observation satellites that carry synthetic aperture radar (SAR) instruments have more
stringent requirements for precision orbit control of Earth-fixed repeating orbits than conventional
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Earth observation satellites. This requirement arises from the geometric constraints for effective
repeat-pass SAR interferometry. Tight maintenance of Earth-fixed repeating orbits ensures good
coherence between repeat-pass SAR image pairs. For this purpose, the SAR satellite must fly
within a tube-shaped corridor, the center of which is the Earth-fixed reference trajectory. The
greater the orbit control accuracy requirement, the higher the frequency of orbital maneuvers
required. In particular, the frequency significantly increases during the active solar period due
to high atmospheric density. An orbit control operation, which comprises many tasks (orbit
determination, maneuver planning, maneuver commanding and maneuver execution), imposes
a considerable workload; therefore, frequent maneuvers become a burden in everyday ground
operations. Autonomous orbit control can be a solution for this problem. The workload and
the costs of orbit control operations can be reduced by sophisticated on-board software that can
handle a series of necessary tasks in orbit control operations. Fully automatic decisions regarding
maneuvers by on-board software, however, create a new problem when the autonomous orbit control
approach is applied to practical Earth observation missions. The problem arises from unexpected
timing conflicts between maneuver executions and mission observations. If the on-board software
determines the time of a maneuver without considering mission observations, an automatic orbital
maneuver may ruin important observation opportunities.The time of a maneuver should threfore be
planned carefully so that the maneuver does not interfere with planned mission observations.

With the above issues in mind, the authors applied the autonomous orbit control approach to the
ALOS-2 mission. This applied method can achieve autonomous operations of orbit determination,
maneuver prediction, maneuver planning, and maneuver executions. Both in-plane and out-of-plane
maneuvers are planned and executed autonomously so that the satellite flies within a tube-shaped
corridor, the center of which is the Earth-fixed reference trajectory. The maneuver planning
algorithms can place the time of a maneuver so that it does not spoil the observations by using the
proposed “maneuver slot” concept.

ALOS-2 was successfully launched on May 24th 2014. Its orbit is a 628-km sun-synchronous
repeating orbit with a 14-day repeat cycle. The orbit control requirement for the radius of the
tube-shaped corridor is 500 m (95%).

The applied method has been demonstrated in practical use since its activation in August 2014. This
is the world’s first attempt to apply autonomous precision orbit control within a tube-shaped corridor
for a regular-basis operation of an Earth observation satellite. In this paper, the practical aspects of
the ALOS-2 flight dynamics operations are the primary subject of discussion. Not only the achieved
control performance but also the lessons learned from one year of actual flight dynamics operations,
such as reactions to solar activity change and debris avoidance maneuvers, are reported.

2. ALOS-2 Mission and Spacecraft

ALOS-2 has two mission objectives [1]. The first is to contribute to the disaster management
activities of the central and local governments in Japan and foreign countries by observing disaster-
stricken areas widely and in detail, regardless of the time (day or night) or the weather, and by
establishing a system to quickly obtain, process, and share observation data. The second objective
is to promote data utilization in various fields with constant observation data to meet user needs.
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This includes 1) continuous monitoring of social infrastructures such as roads, railroad tracks, and
bridges, 2) understanding agricultural conditions, and 3) global monitoring of tropical rain forests
to identify carbon sinks. ALOS-2 carries the state-of-the-art L-band SAR instrument PALSAR-2,
which enables the capture of wide and high-resolution observation data of the Earth’s surface.

Figure 1. ALOS-2 in-orbit configuration.

The key parameters of ALOS-2 related to autonomous orbit control are shown in Table 1. Its
orbit is a 628-km sun-synchronous repeating orbit with a 14-day repeat cycle. The orbit control
requirement for the radius of the tube-shaped control window is 500 m (95%). The on-board
GPS receiver provides accurate real-time orbit information, whereas the fully redundant four 4 N
hydrazine thrusters are located on one side of the spacecraft and its thrust vectors are along the
anti-velocity direction when the satellite is in the nominal local-vertical local-horizontal (LVLH)
attitude. This means that the satellite must perform 180◦ yaw-around attitude maneuvers for a
deceleration maneuver.

3. Definition of Control Problem

3.1. ALOS-2 Orbit Control Requirement

SAR repeat-pass interferometry imposes tight restrictions on the orbit control, requiring a tube-
shaped control window with a radius ranging from 50 to 1000 m. SAR interferometry is a technique
that exploits pairs of SAR data acquired by two observations over the same ground target and
extracts the phase difference of the data pair to yield the heights of the observed terrain. SAR
interferometry can be accomplished with formation flying of two SAR satellites like TanDEM-
X/TerraSAR-X [2] or by repeat-pass recurrent observations of a single SAR satellite [3]. Figure 2
shows the geometry of the repeat-pass SAR interferometry.

The perpendicular baseline is the spatial distance between the first and second observations and is
measured perpendicular to the viewing direction. This perpendicular baseline must be short enough
to achieve sufficient coherence in interferometry [4]; therefore, an SAR satellite must fly along the
same reference trajectory for each recurrent cycle. Accordingly, the repeating Earth-fixed reference
trajectory is defined for a repeat cycle and a SAR satellite must fly within the tube-shaped control
window, which centers on the reference trajectory. The orbit control margin can be imagined as a
tube defined around the spacecraft reference trajectory with a certain radius.

4



Path 2

Path 1

Perpendicular baseline

Normal (ECEF)

Radial

Surface of the 

ground

Right-side lookLeft-side look

Reference 

trajectory

Control

window

Figure 2. Geometry of repeat-pass SAR interferometry.
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Table 1. Key parameters of ALOS-2 in terms of orbit control

Parameter Value

Orbit type
Sun-synchronous

repeating orbit

Altitude 628 km
Repeat cycle 14 days, 207 orbital revolutions
Mean Local Time (MLT) 12:00 ± 15 min (at the descending node)
Satellite size Approx. 9.9 × 16.5 × 3.7 m3

Satellite mass Approx. 2 tons

Orbit control
requirement

Tube-shaped control window
less than 500 m (95%)

On-board GPS
navigation

Position 13 m max, 4.2 m typ. (95%)
Velocity 0.06 m/s max, 0.013 m/s typ. (95%)

Thrusters
Full-redundant four 4 N hydrazine thrusters

equipped along anti-velocity direction

To characterize and evaluate the control errors of the SAR orbital tube control problem rigorously,
a variable so-called space error EEE is defined and introduced [5]. The definition of the space error
is shown in Fig. 3. Both the reference trajectory and the actual trajectory of the spacecraft are
osculating orbits expressed in the Earth-Centered Earth-Fixed (ECEF) frame. In other words they
are ground-tracks projected at the altitude of the spacecraft. Equally spaced check-points are defined
on the reference trajectory. At each check-point, the evaluation plane formed by the radial and
normal (ECEF) axes is defined. The space error EEEk for the check-point k is the vector difference
on the evaluation plane, from the piercing point of the reference trajectory to that of the actual
trajectory. The space error EEE comprises its normal (ECEF) and radial components: EEE = (EN ,ER)

T .
Due to the along-track displacement between the reference and actual trajectories, the space error
should not be evaluated with positions at the same epoch (meaning the same absolute time). The
position of the reference trajectory at the check-point k: rrrre f (tk) should be compared with the
position of the actual spacecraft at the time when the actual trajectory arrives at the corresponding
evaluation plane: rrr(tk +∆t).

The orbit control requirement for the SAR spacecraft is to keep the space error EEE within a specified
deadband at every checkpoint on the reference trajectory. For the ALOS-2 mission the space error
should be less than 500 m over 95% of the time, which guarantees the proper perpendicular baseline
length for the ALOS-2 repeat-pass SAR interferometry.
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Figure 3. Definition of space error EEE.
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3.2. Reference Trajectory Parametrization

The Earth-fixed reference trajectory, which is an osculating orbit for a repeat cycle, is the target
of the autonomous orbit control. The repeat cycle of ALOS-2 is exactly 14 days, 207 orbital
revolutions. Each revolution of a repeat cycle has a unique path number, which goes from 1 to 207
in chronological order. If the reference trajectory of each repeat cycle differs from the others, the
difference directly contributes to an increase in the space error. Therefore, the reference trajectory
should be identical for each repeat cycle throughout the mission life of a satellite. This means that
any pair of reference trajectories in one orbital revolution with the same path number should be
exactly identical to each other, regardless of the repeating cycles.

The requirements for the reference trajectory of the ALOS-2 mission is as follows:

• An approx. 628 km altitude
• An exact 14 days, 207 orbital revolutions repeat cycle
• A frozen orbit
• Sun-synchronicity
• A mean local sun time of 12:00 at the descending node
• Exact repeatability of position and velocity in the ECEF frame after one repeat cycle

In order to generate the reference trajectory that satisfies the above requirements, a nonlinear
optimization problem is defined and solved with an iterative process. The basic concept and
formulation used are similar to that presented by D’Amico [6]. Propagation is repeated with small
changes in initial orbital elements until all of the requirements are achieved. The frozen orbit
eccentricity is refined using Rosengren’s algorithm [7] [6]. The obtained osculating orbit for a
repeat cycle that comprises 207 orbital revolutions is the reference trajectory.

The generated reference trajectory data is the target of the autonomous orbit control. Therefore, it
should be installed in the memory of the on-board flight computer and processed in real-time to
compute current orbit errors. However, the generated reference trajectory, which is actually a large
amount of data for the osculating ephemerides of a repeat cycle, e.g., 14 days and 207 revolutions
for the ALOS-2 case, is not suitable for on-board installation. This is because the entire reference
orbit’s ephemerides set is superfluous; moreover, it requires a large amount of on-board memory
resources. For this reason, only the essential reference orbit information required by the on-board
orbit controller, such as the longitude and mean orbital elements at the descending node, are stored
on-board. Accordingly, the orbital element vector for the orbital tube control ααα is defined as follows:

ααα j =
(
Tj, ēeeT

j , ī j,λ j
)T

(1)

where Tj is a nodal period defined as the duration between one crossing of a descending node
and the next, ēee j is a mean eccentricity vector, ī j is the mean inclination, λ j is the longitude of the
descending node, and j is the pass number. The reference orbital element vector is noted as αααre f j
and the measured orbital element vector on the on-board flight computer is noted as αααmeas j. A set
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of the reference orbital element vectors is generated on the ground for every orbital revolution of a
repeat cycle. For the ALOS-2 case, the two hundred and seven reference orbital element vectors are
prepared in total as the reference trajectory data for use on-board the satellite.

A nodal period T is used in this formulation instead of a mean semi-major axis ā, because it can
be obtained directly and accurately on-board a satellite by measuring the interval between two
successive descending node crossings. When geometrical interpretation is needed, an approximate
value of the mean semi-major axis can be computed from the value of T by means of the following
equation considering the J2 secular perturbation [8]:

T =
2π

n

{
1− 3J2

2

(
Re

ā

)2 (
3−4sin2 ī

)}
(2)

where n =
√

µe/ā3, J2 is the second zonal gravity harmonic of the Earth, and Re is the equatorial
radius of the Earth.

3.3. Control Thresholds for the ALOS-2 Mission

The error of the current orbit with respect to the reference trajectory is obtained by subtracting the
reference orbital element vector at each pass number from the measured orbital element vector as
follows:

∆ααα j = αααmeas j−αααre f j (3)

The purpose of the autonomous orbit control is to regulate the orbit error vector ∆ααα to within the
specified control thresholds. As shown in Fig. 3, the orbit error for the orbital tube control is defined
as the space error. Each element of ∆ααα contributes to the space error. The approximated mapping
function between the orbit error vector ∆ααα and the space error EEE can be described as follows:

EEE =

(
EN
ER

)
=

(
0 0 0 r sin ū r sin(ī+ γ)cos ū
1 r cos ū r sin ū 0 0

)
∆ā
∆ēx
∆ēy
∆ī
∆λ

 (4)

where γ is the angle between the inertial and Earth-fixed velocity vectors. Note that the mean
semi-major axis error ∆ā is used in the above formulation instead of the nodal period error ∆T for
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Table 2. Control Thresholds of the Orbit Error Vector for the ALOS-2 Mission

Parameter 3 σ dispersions Comment

∆ā 100 m equivalent to ∆T = 0.125 s
ā∆ēx 150 m
ā∆ēy 150 m
ā∆ī 367 m 0.003◦

ā∆λ 367 m 0.003◦

clear geometrical understanding. From this equation, it is understood that the control of the orbit
error vector ∆ααα within the specified bounds leads directly to regulation of the space error EEE.

The proper control thresholds for the orbit error vector ∆ααα can be assessed by Eq. 4. Each element
of the orbit error vector ∆ααα is dealt with as a normally distributed stochastic variable, and the three
sigma value, which corresponds to a space error of 500 m (3σ ), is chosen as the control threshold.
In Tab. 2 the computed control thresholds of ∆ααα are shown. The purpose of the autonomous orbit
control is to regulate the ∆ααα within the control thresholds in the table to maintain the required
accuracy of the orbital tube control.

4. Overview of the ALOS-2 Autonomous Orbit Control System

4.1. Architecture of the ALOS-2 Autonomous Orbit Control System

This section provides an outline of the proposed autonomous orbit control method, the architecture
of which is shown in Fig. 4. The proposed method comprises five parts.

Read GPS navigation 

data

Mean elements 

calculation

Orbit error 

calculation

Maneuver 

prediction

Maneuver slot 

selection

Delta-V calculation

Maneuver command 

registration

Start

Maneuver command 

execution

End

Reference mean 

element data

Crossing of descending node ?

Yes

No

Maneuver command 

has been registered ?

Yes
No

Occasional data 

update from 

ground operator

GPS data

Maneuver 

command

to thrusters

Autonomous orbit control algorithm

Maneuver slot 

data

A

B

C

D

E

Figure 4. Architecture of the proposed autonomous orbit control method.
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In the first part (“A” in Fig. 4), the Earth-fixed reference trajectory is generated and prepared. The
reference trajectory data is transformed into the data set of the orbit error vector for each orbital
revolution αααre f j and stored on an on-board computer.

The second part (“B” in Fig. 4) deals with on-board orbit determination and orbit error calculation.
The on-board GPS navigation solutions are processed to determine the measured orbital element
vector αααmeas j precisely, and the orbit error vector ∆ααα j with respect to the reference trajectory are
calculated. In addition, a nodal period rate Ṫ is estimated by processing historical nodal period data.

In the third part (“C” in Fig. 4), precision maneuver prediction is performed. The equation describing
the relationship between the longitude of descending node error ∆λ and the nodal period error ∆T ,
and the estimated nodal period rate Ṫ , are utilized to predict the time of the next in-plane maneuver.
The rigorous equation of the mean inclination variation which considers complex perturbations due
to the gravity of Sun and Moon is used for the timing prediction of out-of-plane maneuver.

In the fourth part (“D” in Fig. 4), the idea of allocating a maneuver slot to avoid timing conflicts
between automatically planned maneuvers and pre-planned payload data-take opportunities is
applied. The maneuver slot data is uploaded in advance by ground operators. The autonomous
on-board algorithm searches for and selects a preferable maneuver slot, which allows the on-board
algorithm to decide on the maneuver execution time autonomously without concerns over the
conflicts.

In the fifth part (“E” in Fig. 4),the on-board in-plane and out-of-plane Delta-V calculations are
conducted. The algorithm predicts future trends in errors and determines proper velocity increments
considering reduction of fuel, frequency of maneuvers and opportunities for deceleration maneuvers.

These five parts are integrated into the proposed autonomous orbit control method.

4.2. In-plane control concept

The autonomous orbit control system has to maintain the orbit control vector ∆ααα within the specified
thresholds by velocity increments induced from impulsive maneuvers. The relationship between the
velocity increments ∆vR, ∆vT , and ∆vN and desired relative orbit corrections can be described by
the simplified Gauss equations adopted to near-circular nonequatorial orbits [9][10].


∆ā
∆ēx
∆ēy
∆ī

=
1
v


0 2ā 0

sin ū 2cos ū 0
−cos ū 2sin ū 0

0 0 cos ū


∆vR

∆vT
∆vN

 (5)

The velocity increment in tangential direction: ∆vT leads to change of the mean semi-major axis ā
and the mean eccentricity vector ēee = (ēx, ēy)

T . Even the velocity increment in radial direction: ∆vR
also causes change of the mean eccentricity vector, the radial maneuver is not used for the orbit
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control, because the efficiency of a maneuver in radial direction (∆vR) to correct the eccentricity
vector is half that of a correction made in tangential direction (∆vT ). Therefore, only the tangential
maneuver is considered for the in-plane maneuvers.

It can be seen from Eq. 5 that in-plane and out-of-plane maneuvers are decoupled each other,
resulting in independent control strategies of them. Therefore, the mean inclination ī is controlled
by a maneuver in normal direction (∆vN) independently.

The variation in the longitude at the descending nodes considering only the J2 geopotential harmonic
coefficient can be described as [8],

∆λ = λ −λ0 = k1(t− t0)+
1
2

k2(t− t0)2 (6)

k1 =
1
T

(
∂λ

∂ ā
∆ā0 +

∂λ

∂ ī
∆ī0

)
(7)

k2 =
1
T

(
∂λ

∂ ā
dā
dt

+
∂λ

∂ ī
dī
dt

)
(8)

where ∆λ is the ground-track drift from the initial value λ0 where the last maneuver is performed,
over the time interval t− t0. Assuming the orbital decay rate dā

dt is constant for the interval, the
evolution of the mean semi-major axis error ∆ā is modeled as:

∆ā = ∆ā0 +
dā
dt

(t− t0) (9)

From substitution of Eq. 9 into Eq. 8, the parabolic drift profile of the longitude error ∆λ with
respect to the semi-major axis error ∆ā is found. The control of the longitude error is achieved using
this characteristic of the longitude error drift profile. The basic concept of the longitude control by
in-plane maneuvers is shown in Fig. 5.

An in-plane maneuver is planned and executed at the close point near to the eastern limit of the
longitude so that a semi-major axis error is raises from a negative value to a positive value to begin
the drift of the longitude to the west. Afterwards the longitude of the ascending node drifts along
the parabolic line on the ∆λ −∆ā plot. When the semi-major axis error decreases to zero, meaning
it reaches to the reference altitude, the drift to the west stops and the point arrives at the summit of
the parabolic line. Then it turns back to the east as the semi-major axis decreases to be negative.
Subsequently, at the close point near to the eastern limit of the longitude, an in-plane maneuver
is again executed. This sequence is repeated to regulate the longitude error within the specified
tolerances by in-plane maneuvers.

When an in-plane maneuver which raises a semi-major axis is planned, an argument of latitude for
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Figure 5. Concept of longitude control by in-plane maneuver.

execution of the maneuver is carefully selected to regulate an eccentricity vector error at the same
time. The proper argument of latitude for an in-plane maneuver uI is computed as [9],

uI = tan−1 ∆ēy

∆ēx
(10)

As a result, it can be understood that four elements of the orbit error vector (∆ā, ∆ēx, ∆ēy, and ∆λ )
can be controlled by in-plane maneuvers.

4.3. Out-of-plane control concept

The only remaining element of the orbit error vector ∆ααα to be controlled by out-of-plane maneuvers
is the inclination error ∆ī. It can be seen from Eq. 5 that the inclination correction by velocity
increments in normal direction (∆vN) becomes the most efficient when it is executed at an ascending
node (u = 0◦) or a descending node (u = 180◦). In case of ALOS-2 an ascending node is selected
for the location of out-of-plane maneuvers.

To establish an efficient control strategy of the inclination, it is important to understand major
perturbations which causes variation of it. The time derivative of inclination due to a perturbation
described by a disturbing function R can be computed by the Lagrange planetary equation [8]:

di
dt

=
1

na2
√

1− e2 sin i

(
cos i

∂R
∂ω
− ∂R

∂Ω

)
(11)

In case of the ALOS-2 orbit, the Sun and Moon third-body effects are the main cause of the variation.
By applying the disturbing function of the third-body effect [11] to Eq. 11, the time derivative of
inclination due to the third body effects is obtained. By integrating it over time, dropping trivial
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terms having a small amplitude, and arranging expressions, the variation of the mean inclination
due to gravity of Sun for a near-circular sun-synchronous orbit can be described as:

∆īs =
3
8

ns

n

{
Cs0ns∆t−

2∑
k=1

Csk

k
cos(kMs +αsk)

}
≡ ∆īs0 +∆īs1 +∆īs2

(12)

and one due to gravity of Moon can be described as:

∆īm =−3
8

µm

µm +µe

nm

n

{
2∑

k=1

Cmk0

kκm
cosk(Ω−Ωm)+

Cm2−2

2κm−2
cos(2Ω−2Ωm−2Mm +αm2−2)

}
≡ ∆īm10 +∆īm20 +∆īm2−2

(13)

Detailed expressions of coefficients for Eq. 12 and 13 are summarized in Appendix A and B
respectively. As seen in Eq. 12, there is a secular term ∆īS ≡ ∆īs0 by gravity of Sun, which is caused
by the deep resonance due to sun-synchronicity. When an eccentricity of Sun is assumed to be
small, the secular term can be approximated as [12] [13] :

∆īS = ∆īs0 =
3
8

n2
s

n
sin i(1+ cos is)2 sin(2Ls)∆t (14)

As seen from this equation the extent is strongly dependent on the Mean Local Time (MLT) of the
descending node Ls. If the MLT of a satellite orbit is close to 3:00, 9:00, 15:00, and 21:00, then
the secular drift of the mean inclination is so rapid that the mean inclination increases or decreases
monotonically. Conversely, if the MLT is close to 0:00, 6:00, 12:00, and 18:00 MLT, then the
secular drift is so small that the periodic terms in Eq. 12 and 13 become dominant. Therefore the
periodic terms are major contributors for variation of inclination for the ALOS-2 mission of which
the MLT is 12:00.

The periodic terms in Eq. 12 and 13 can be divided into two categories. One is Long Period (LP)
perturbations having one or half year periods (∆īs1, ∆īs2, ∆īm10 and ∆īm20). The other is a Half
Month (HM) perturbation (∆īm2−2). The overall variation of the mean inclination is sum of them
and the secular term, which is small for the ALOS-2 case. Therefore, the variation of the mean
inclination can be described as follows:

∆ī = ∆īS +∆īLP +∆īHM (15)
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Figure 6. Secular perturbation of inclination due to gravity of Sun.

The computed annual variation of each term and structure of the variation of inclination for the
ALOS-2 orbit are shown in Fig. 7. The maximum absolute variation of inclination due to the LP
perturbation reaches up to 3×10−3 degrees, which corresponds to 367 m at the orbital altitude. The
amplitude of the periodic inclination change due to the HM perturbation is 6×10−4 degrees, which
corresponds to 73 m. The total variation of the mean inclination should be regulated within the
control threshold specified in Tab. 2 under the perturbations consist of the LP and the HM terms.
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Figure 7. Structure of inclination perturbation for the 12:00 MLT ALOS-2 orbit.

Considering the above basic understandings of the variation of the mean inclination for the ALOS-2
orbit, a control strategy of out-of-plane maneuvers is designed. Figure 8 shows its concept. The
target value to be controlled is the monthly averaged mean inclination ∆īSL, which is obtained by
subtracting ∆īHM from ∆ī. The objective of the control is to regulate ∆īSL within ±∆īth, which is
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a threshold value set to be 2×10−3 degrees (corresponds to 245 m) for the ALOS-2 case. Note
that the sum of 245 m and 73 m, which is an amplitude of ∆īHM is less than the specified control
threshold: 367 m. The on-board software can get the current mean inclination error ∆ī(t = t0)
from on-board GPS navigation solutions and obtain the current value of ∆īSL by subtracting ∆īHM
from it. The future trend of ∆īSL can be computed as well by the on-board software using Eq. 12
and 13. When the predicted trend of ∆īSL exceeds the limit ±∆īth is the predicted time of the next
out-of-plane maneuver. The proper velocity increments of the maneuver is computed so that the
next coming extreme value of the ∆īSL trend, which is ∆īlmin or ∆īlmax in Fig. 8, coincides −∆īth or
∆īth respectively. Actually the reason why ∆īSL instead of ∆ī is used as the control target is the ease
of searching for the next maneuver timing by monitoring extreme values of its trend. Since the LP
perturbation is the linear sum of trigonometrical functions as shown in Eq. 12 and 13, it is easy to
design an on-board algorithm to find the next extreme value. As shown in Fig. 8, two out-of-plane
maneuvers, one increases and the other decreases the mean inclination, are to be executed in a year.

Time

𝛥𝑖 

Inclination 

error　

Out-of-plane

maneuvers

Figure 8. Concept of inclination control by out-of-plane maneuver.

4.4. Maneuver slot concept

Despite the autonomous orbit control representing a good solution to ease the workload, a new
problem emerges: unexpected conflicts between mission observations and maneuver executions.
The maneuver time should be planned to avoid payload data-take opportunities, thus guaranteeing
the quality of observations. In general this coordination of time-sharing between maneuvers
and observation operations has been realized by ground operators. Fully automatic decisions on
maneuvers without consideration of mission observations can cause conflicts between them. To
overcome this problem, the maneuver slot concept has been studied. The basic idea involves
informing the on-board flight computer of planned observations in advance and allowing it to select
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the preferable maneuver time autonomously from known vacant periods when no other observation
operations are planned. Figure 9 demonstrates the concept of the maneuver slot.

Argument 

of latitude
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number

of orbit

+180°

-180°

Permitted 

argument of 

latitude for 

maneuver

Allocated maneuver slot

Time for 

mission

observation

Execution

of

maneuver

Figure 9. Concept of the maneuver slot.

The white area in Fig. 9 represents the periods used for mission observations, whereas the bold rect-
angles are the maneuver slots, containing hatched areas that accommodate the permitted argument
of latitudes for orbital maneuvers. These maneuver slots are allocated by the ground operators and
the data is sent to the on-board flight computer via telecommands.

In advance, ground operators establish an observation operation plan to cover the near future.
The time span covered by the plan can be from one week to several months long. Subsequently,
ground operators allocate maneuver slots in the timeline so that the permitted argument of latitude
in a maneuver slot does not overlap with the payload data-take time. The number of allocated
maneuver slots should exceed the predicted number of maneuvers to avoid any violation of orbit
error requirements due to an unexpected rapid change in the orbital decay rate. For example, if
the interval of in-plane maneuvers is predicted to be 10 days, the preferable interval for maneuver
slots should be from 3 to 5 days. Note that the mission observation planning and the maneuver slot
allocation are performed successively by a single mission planning system. The generated dataset
of maneuver slots is sent to the on-board flight computer via telecommands.

The on-board flight computer compares the predicted time of its maneuver with the dataset of
available maneuver slots, and subsequently, selects the farthest maneuver slot which does not exceed
the predicted ideal maneuver timing tI . The argument of latitude for the maneuver is selected so
that the eccentricity vector error ∆ēee is properly regulated. Figure 10 shows how the maneuver slot
is selected.

Based on the predicted ideal time of the next maneuver tI , the dataset of available maneuver slots is
searched backward and the slot just before tI is selected. Subsequently, the argument of latitude is
determined by the predicted error of the eccentricity vector ∆ēee, meaning the revolution number and
the exact time of the next maneuver are determined.
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Figure 10. Selection of the maneuver slot.

5. ALOS-2 Flight Results of One-Year Operation

5.1. Initialization of Autonomous Orbit Control

The ALOS-2 was successfully launched on 24th May 2014 into the nominal 628-km sun-synchronous
repeating orbit with a 14-day repeat cycle. The local sun time of the descending node is 12:00. As
shown in 11, the launch date of the ALOS-2 was midway through the active period of an 11-year
solar cycle. Therefore, ALOS-2 was expected to experience a significant orbital decay rate due to
large atmospheric drag from the beginning of the operation.
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Figure 11. F10.7 solar flux, averaged value over 81 days.

The autonomous orbit control function was initially disabled. Its functionalities were carefully
validated step by step before its activation to ensure safety. The autonomy level for the ALOS-2
autonomous orbit control was selected for safety reasons. In Tab. 3, the definitions of the various
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levels are shown. The autonomy level was raised one level at a time from C to A as functional
checks of the spacecraft were performed.

Table 3. Definition of autonomy level

Autonomy level
Orbit

determination
Maneuver
planning

Maneuver
GO/NOGO

A satellite satellite satellite
B satellite satellite operator
C operator operator operator

Initial corrections for launch injection errors and insertion into the reference orbit were performed
at autonomy level C, which means that they were planned and commanded by ground operators
according to conventional maneuver operation processes.

Subsequently, various functions of the autonomous orbit control, such as on-board GPS navigation,
on-board orbit determination and error computation, on-board maneuver prediction, maneuver slot
selection, and on-board Delta-V computation were confirmed as successful by analyzing telemetry
data. Once the confirmation work was completely finished, the first maneuver by the ALOS-2
autonomous orbit control system was permitted on 28 July under autonomy level B, which means
that the ground operators had to check the proposed maneuver plan in advance and then send a GO
command to the spacecraft. When the autonomy level is B, the spacecraft does not perform the
automatically planned maneuver without the GO command from the ground.

Once the result of the first maneuver had been evaluated and deemed successful, the autonomy
level was raised to A in August. At this level, the spacecraft performs maneuvers without the GO
command from the ground operators. Since then, the ALOS-2 autonomous orbit control system has
been operated normally on a regular-basis at autonomy level A without any safety issues.

5.2. Autonomous In-Plane Orbit Control

Since the activation of the ALOS-2 autonomous orbit control system, both in-plane and out-of-plane
maneuvers have been planned and performed autonomously up until the present time (Sep. 2015).
In this section, the results of this in-plane orbit control are shown, and discussed.

Figure 12 shows the semi-major axis error ∆ā with respect to that of the reference trajectory. The
control error has been regulated to within ± 40 m, which is smaller than the ±100-m control
thresholds, except for a short duration in March 2015. As described later, the debris avoidance
maneuver was performed during this duration.

Figures 13 and 14 show the behaviors of the eccentricity vector error ā∆eee. The argument of latitude
of the in-plane maneuvers is properly selected to control the error to within the 150-m control
thresholds.
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Figure 12. Semi-major axis error ∆ā.
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Figure 13. Eccentricity vector error ∆ēx (top) and ∆ēy (bottom).
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Figure 14. Eccentricity vector error, ∆ēx−∆ēy plot.

The longitude of the descending node error ā∆λ with respect to the reference trajectory is shown
in Fig. 15 and 16. During one year of operation, we have experienced two major opportunities of
control threshold violation. One occurred in the middle of September 2014, which was shortly
after the activation of the autonomous orbit control. The cause of the violation was found to be
that some of the parameters in the on-board software were not set correctly. The parameters were
promptly fixed, and a violation for this reason has not been repeated. The other incident occurred in
the middle of March 2015. At that time, ALOS-2 performed a manual debris-avoidance maneuver.
The daily in-plane maneuvers are performed autonomously, whereas conjunction analysis that looks
for close approaches between any space objects and ALOS-2 is conducted by ground operators.
When the probability of collision is considered to be higher than a specified threshold, a manual
debris-avoidance maneuver is planned and commanded by ground operators. During the debris
avoidance operation, the autonomous orbit control function is disabled temporarily. Except for
the two incidents described previously, most of the control errors are regulated within the control
thresholds.

Figure 17 shows the behavior of the longitude of the descending node error and the semi-major axis
error before and after the debris avoidance maneuver. First, the autonomous orbit control function
was disabled. Subsequently, the semi-major axis was raised through an acceleration maneuver to
avoid the approaching space object. The longitude of the descending node then started to drift
westward. Subsequently, a deceleration maneuver was performed to lower the semi-major axis so
that the longitude of the descending node drifted back. Afterwards, the autonomous orbit control
function was reactivated. The autonomously planned maneuver raised the semi-major axis properly
so that the subsequent trajectory successfully returned to within the control thresholds. The whole
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debris avoidance operation took a week. We think that this duration was too long and should be
improved. The duration between an acceleration maneuver and a deceleration maneuver should
be shortened to reduce drifts of longitude. More efficient on-ground maneuver planning will be
considered and tried during the next opportunity.

One of the lessons learned from the actual flight operation of the autonomous orbit control system is
difficulty to dealt with a conjunction analysis operation. In recent years, many high value satellites
perform conjunction analyses and, if necessary, to execute collision avoidance maneuvers. ALOS-2
chooses this policy as well. To ensure time for the conjunction analysis, the autonomous orbit
control software of ALOS-2 has to decide the next maneuver plan and inform ground operators of
it via telemetries priori to the planned maneuver execution time. Subsequently, ground operators
make sure safety of the next maneuver by conjunction analyses. The minimum duration between
the notification of the next maneuver plan and the actual maneuver execution is six revolutions. Due
to the restriction caused by this necessity of conjunction analyses, the autonomous orbit control
system has not been operated fully autonomously in a perfect sense even when the autonomy level
is A.

Furthermore, the minimum maneuver interval is eventually limited due to the necessity of the
notification to ground operators. Therefore, it should be noted that, when the autonomous orbit
control approach is taken, a trade-off should be made between busyness of the conjunction analysis
operation on ground and achievable accuracy of the orbit control by frequent orbital maneuvers.
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Figure 15. Longitude of descending node error ā∆λ .

The orbital decay rate, as estimated by the on-board software by utilizing GPS navigation, is shown
in Fig. 18. As aforementioned the past year was in the middle of the most active period of an 11-year
solar cycle. Therefore, the orbital decay rate was large and its variation was relatively extreme.
Because the in-plane maneuvers are planned on the basis of the latest on-board estimation of the
orbital decay rate, sometimes the on-board prediction of the longitude error become inaccurate due
to a rapid jump in the orbital decay rate. This inaccuracy was actually assessed in advance so that
the orbital decay prediction error was properly set as a parameter of the on-board software. Due
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Figure 16. Longitude of descending node error (ā∆λ ) - Semi-major axis error (∆ā).
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Figure 17. Longitude of descending node error (ā∆λ ) - Semi-major axis error (∆ā) before
and after the debris avoidance maneuver on March 2014.
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to this, the longitude of the descending error has been regulated to within the control threshold as
shown in Fig. 15, even during high levels of solar activity.

The proposed autonomous orbit control method simply uses the latest orbital decay rate, which
is estimated by using real-time GPS navigation solutions, for prediction of the longitude error
evolution in the future. From the results of the actual flight, the on-board prediction error of the
orbital decay rate was found to be the greatest cause of the longitude control error. Even the strict
tuning of the orbital decay prediction error could result in the accurate control of the longitude, it
led to more or less inefficient frequent maneuver executions as well. Therefore, improvement of
the orbital decay prediction should be effective to extend in-plane maneuver intervals. On-board
atmospheric density computation using predicted space weather indices available on-line, which
should be transmitted via commands to the satellite occasionally, may achieve better results. This
approach will be investigated for future missions.

As seen in Fig. 11, the most intense solar period is now almost finished. From now on, the level of
activity should decline gradually. Therefore the absolute value of the orbital decay rate will also
gradually decrease in the future, and the frequency of in-plane maneuvers as well.
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Figure 18. On-board orbital decay rate ( ˙̄a) estimation results.

Figure 19 depicts in-plane maneuver activity from Aug. 2014-May. 2015, and a statistical summary
is shown in Tab. 4. The in-plane maneuver Delta-V ranges from 1 to 4 cm/s. On Nov. 2014, as
a conclusion of an investigation into the trend of the executed Delta-Vs and the longitude of the
descending node, it was found that the control parameters were set too conservatively to avoid
control threshold violation, which implies that too many small and frequent maneuvers were planned
and executed. For this reason, we tried to find more appropriate control parameters and set them
on 16th Nov. 2014. After this, both the Delta-V of the average maneuver and the interval between
successive maneuvers increased as shown in Tab. 4. We have evaluated this parameter change as
successful due to the larger Delta-V resulting in more efficient fuel usage and the longer maneuver
intervals leading to efficient conjunction analysis operations, with these settings being enabled
without violation of the control thresholds.
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Figure 19. In-plane maneuver activity in Aug. 2014 - May. 2015.

Table 4. In-plane maneuver summary in Aug. 2014 to May. 2015.
Before 16th Nov. 2014 After 16th Nov. 2014

Number of maneuvers 42 49
Average maneuver interval 2.4 days 3.8 days

Max. Delta-V 0.0343 m/s 0.0397 m/s
Ave. Delta-V 0.0208 m/s 0.0271 m/s
Min. Delta-V 0.0107 m/s 0.0170 m/s

Std. deviation of Delta-V 0.0058 m/s 0.0049 m/s
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In Fig. 5 the number of used and allocated maneuver slots for each month are summarized. As the
past year fell within the most solar active period, a maneuver slot was allocated for each day. It
is expected that the density of maneuver slots will decrease (ex. a maneuver slot will be allocated
every couple of days) in the future when the level of solar activity becomes much calmer. From Oct.
to Nov. 2014, the orbital decay rate was so large that the maneuver slot use rate rose to 45 %. In
contrast, from Jan. 2015 the use rate has been around 30 %. The causes of this change are believed
to be the control parameter change on 16th Nov. 2014 and the decrease in the orbital decay rate.
The positive correlation between the monthly averaged orbital decay rate and the maneuver slot use
rate can be seen in Fig. 20. We will continue to monitor the monthly use rate to evaluate the density
of the maneuver slot. If the use rate continues to be low for a substantial period, we will decrease
the density of maneuver slots to make more room for payload data-take opportunities.

Table 5. Monthly record of used and allocated maneuver slots. (Duration for debris avoid-
ance maneuver is excluded)

Month Used slots Allocated slots Use rate [%]

Sep. 2014 11 30 36.7
Oct. 2014 14 31 45.2
Nov. 2014 14 30 46.7
Dec. 2014 13 31 41.9
Jan. 2015 8 31 25.8
Feb. 2015 8 28 28.6
Mar. 2015 8 28 28.6
Apr. 2015 7 30 23.3
May. 2015 6 29 20.7
Jun. 2015 6 30 20.0
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Figure 20. Monthly averaged orbital decay rate v.s. maneuver slot use rate.

5.3. Autonomous Out-Of-Plane Orbit Control

The MLT of the descending node of ALOS-2 is 12:00. Therefore, the secular perturbation of
orbital inclination due to the gravity of the Sun is negligible. Instead, the half-monthly periodic
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perturbations due to the gravity of the Moon and Sun become dominant in terms of the inclination
drift. Due to the small secular perturbation, the frequency of inclination maneuvers for the orbit
with this MLT tends to be rather small. In the case of ALOS-2, two maneuvers per year are expected.
The trend of the inclination error since activation of the autonomous orbit control is shown in
Fig. 21 and a summary of the executed out-of-plane maneuvers is shown in Tab. 6. The first and
the second out-of-plane maneuvers were performed successfully on 21st Jan. 2015 and 18th Jun.
2015, respectively. The averaged inclination ā∆īSL is the value used as the control target by the
on-board software. As shown in Fig. 6, the out-of-plane maneuver was computed so that the future
extreme value of ā∆īSL remained between the roughly 246 m (2×10−3degrees). The amplitude of
the half-month period perturbation ā∆īHM is about 73 m. Therefore the control error ā∆ī, which is
the sum of ā∆īSL and ā∆īHM, is expected to be within the ± 367-m control thresholds to make the
spacecraft fly in the tube-shaped control window. The next out-of-plane maneuver will be performed
on 26th Jan. 2015.
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Figure 21. Inclination error ā∆ī.

Table 6. Out-of-plane maneuver record
Date Delta-V [m/s]

1st out of plane maneuver 21st Jan. 2015 0.358
2nd out of plane maneuver 18th Jun. 2015 -0.258

5.4. Orbital Tube Control Performance

The goal of the orbit control system is to make the spacecraft fly through the 500-m radius tube-
shaped control window in an Earth-fixed frame with at least a 95 % success rate. To evaluate its
performance, the actual trajectories obtained from on-board GPS navigation solutions are compared
with the Earth-fixed reference trajectory. The entire one-year orbital trajectory from Aug. 2014
to Jul. 2015 is assessed at each evaluation plane, each separated by 30◦ of argument of latitude
from the next, to evaluate the space error EEE defined in Fig. 3. A week spent on the debris-avoidance
maneuver and recovery is excluded from the evaluation, because the autonomous orbit control
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function was disabled during that period. The total number of evaluation planes is 64961. Figure
22 shows the clearest result of the space error evaluation. A dot in the plot depicts the space error
in normal and radial directions at an evaluation plane. As seen in the figure, most of the piercing
points on the evaluation plane are inside the 500-m radius circle regardless of its arguments of
latitude, except for rare violations in the normal direction. The computed probability of success is
99.7%, which far exceeds the required value of 95%. The RMS control errors are 151 and 59 m in
the cross-track and radial directions, respectively.
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Figure 22. Space error and its statistical distribution.

Table 7. Orbital tube control performance
Evaluation period From Aug. 2014 to Jul. 2015
Evaluation plane locations Every 30◦ of argument of latitude
Number of evaluation planes 64961
Success probability of 500 m orbital tube control 99.7% (Requirement: 95%)
Space error in normal direction EN (RMS) 151 m
Space error in radial direction ER (RMS) 59 m
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6. Conclusions

ALOS-2 was successfully launched on 24th May 2014. The orbit of ALOS-2 is a 628-km sun-
synchronous repeating orbit with a 14-days repeat cycle. The orbit control requirement for the
radius of the tube-shaped corridor is 500 m (95%).

The autonomous orbit control system has been demonstrated, and it has been in practical use since
its activation in August 2014. This is the worlds first attempt to apply autonomous precision orbit
control within a tube-shaped corridor for regular-basis operation of an Earth observation satellite.

The in-plane maneuvers were executed three times per week on average during the most active
solar period. The automatic operation of such frequent in-plane maneuvers greatly helps with
efficient ground operations of ALOS-2. The maneuver slot concept has been working well to
prevent conflicts between mission observations and maneuver timing, and to achieve a flexible
mission observation plan even when an autonomous maneuver planning approach is taken. The
conjunction analysis operation was found to be one of the difficulties of the autonomous orbit
control approach. When the approach is taken, a trade-off should be made between busyness of the
conjunction analysis operation on ground and achievable accuracy of the orbit control by frequent
orbital maneuvers. The out-of-plane maneuvers have also been performed autonomously.

The orbit control error with respect to the reference trajectory was evaluated. The majority of
piercing points of the actual flight path are inside the required 500-m radius circle regardless of
its argument of latitudes. The computed probability of success of the autonomous orbit control
is 99.7%, and the probability of success is far more than the required 95%. This performance
contributes to the good coherence between repeat-pass SAR image pairs of the ALOS-2 data
products. The functionality and performance of the autonomous orbit control are planned to be
monitored and evaluated continuously throughout the mission life of the ALOS-2. In particular,
the behavior of in-plane maneuvers during the coming less active solar period will be carefully
investigated.

The 500 m requirement of the ALOS-2 comes from its SAR design and differs depending on the
SAR RF frequency, antenna size, and signal bandwidth. SAR systems with higher RF frequencies
(such as C or X bands) tend to require far smaller corridor radii, such as 50-250 m, compared with
the L-band ALOS-2 SAR system, which leads to more frequent in-plane maneuvers. In addition,
the frequency of out-of-plane maneuvers dramatically changes depending on the MLT of the orbit.
Accordingly, the orbit in some MLTs requires more frequent out-of-plane maneuvers than that of
the ALOS-2. The proposed autonomous orbit control method is expected to be applicable to more
stringent control constraints and more frequent out-of-plane maneuvers. A practical conjunction
analysis operation method for the autonomous orbit control approach should be studied to realize
it. The application of this proposed method to other Earth observation satellites with different
requirements and MLTs will be investigated in the future.

29



A Coefficients to compute perturbations on inclination due to gravity of Sun
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2

e2
s

)
sin isin2 is sin2(Ls +ωs)

+
17
4

e2
s sin i(1+ cos is)2 sin2Ls

+
1
2

es cos isin is


6cos is sin(Ls +ωs)

− (1− cos is)sin(Ls +3ωs)

−7(1+ cos is)sin(Ls−ωs)


(20)

Csk =
√
(Csk cosαsk)2 +(Csk sinαsk)2 (21)

αsk = tan−1 Csk sinαsk

Csk cosαsk
(22)

B Coefficients to compute perturbations on inclination due to gravity of Moon

Cm10 =

(
1+

3
2

e2
m

)
cos isin2im (23)

Cm20 =

(
1+

3
2

e2
m

)
sin isin2 im (24)

Cm2−2 cosαm2−2 =
9
4

e2
m sin isin2 im

+

(
1
2
− 5

4
e2

m

)
sin i(1+ cos im)2 cos2ωm

(25)

Cm2−2 sinαm2−2 =−
(

1
2
− 5

4
e2

m

)
sin i(1+ cos im)2 sin2ωm (26)

Cm2−2 =
√

(Cm2−2 cosαm2−2)2 +(Cm2−2 sinαm2−2)2 (27)

αm2−2 = tan−1 Cm2−2 sinαm2−2

Cm2−2 cosαm2−2
(28)
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