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Abstract: This paper proposes a robust-optimal trajectory design method for uncertain system to 

minimize the expected value of objective function. The basic idea is solving Stochastic 

Differential Dynamic Programming (SDDP), which solve optimal control problem to minimize 

the expected value of cost-to-go function, with Unscented Transform, which is used to estimate 

the expected value. Most recent studies have focused on the trajectory optimization assuming 

that the spacecraft can control their trajectory exactly as planed; however, the assumption is 

violated in the realistic operations where uncertain events, such as missed-thrust and navigation 

error, perturb the predetermined trajectory. Conventionally, experienced specialists empirically 

determine “margin” on optimal low-thrust trajectory by duty cycle or forced coast period. A 

proposed SDDP autonomously provides “margin” in optimization for future feedback as well. 

Numerical result by V-infinity leveraging problem shows that SDDP has better performance, in 

other words, expected value of objective function considering uncertainty is better, than 

conventional DDP when the system has uncertainty, since the result of SDDP has “margin” in 

optimal control for future feedback.  

 

Keywords: Differential Dynamic Programming, Low-Thrust Trajectory Optimization, Stochastic 

Programming, Robust-Optimal Control 

 

1. Introduction 

 

1.1. Background 

 

In recent years, low-thrust propulsion systems have been increasingly used in the interplanetary 

missions, because these systems have high specific impulse and can achieve large delta-V to 

travel far from the Earth. Due to this background, various low-thrust trajectory design methods 

have been developed [1][2]. These methods assume that the spacecraft is perfectly guided to the 

predesigned trajectory as planed; however, this assumption is violated in realistic operation 

because of various disturbances including missed-thrust [3] (i.e. contingent coasting period due 

to temporary operational troubles) and navigation error. 

 

When the system has uncertainty, the state (e.g. position and velocity) will not evolve as 

expected. Hence, in the trajectory optimization under uncertainty, it is significant to ensure the 

feasibility throughout every time step. To assure the feasibility throughout trajectory, we usually 

retain a “margin” in optimization for future feedback (this approach is called “constraint 

tightening” method [4][5]). Currently, this margin is empirically and intuitively implemented by, 

for example, duty cycle and forced-coast period [3]. The major motivation in this study is to 
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suggest numerical method to design robust and optimal low-thrust trajectory with an appropriate 

margin. 

 

Robust-optimal low-thrust trajectory design with an appropriate margin will increase in 

importance for following reasons: 

 

1) Robustness to missed-thrust 

   Most of the interplanetary mission using low-thrust propulsion system, such as Dawn 

(NASA) and Hayabusa (JAXA) spacecraft, experiences missed-thrust caused by operational 

anomaly such as malfunction of propulsion system or safe-mode. Missed-thrust is inevitable 

because the low-thrust propulsion system require long-time operation to achieve a certain 

delta-V. 

2) Reasonable mission by small spacecraft 

   In conventional mission, we make effort to reduce uncertainty as much as possible by 

expensive way (precious orbit determination by DDOR, highly reliable propulsion system, 

and so on). On the other hands, in the reasonable mission by small spacecraft, instead of 

using expensive way, we should permit certain amount of uncertainty. 

3) Advanced mission by solar sail spacecraft 

   Technology of solar sail spacecraft has been demonstrated by IKAROS (JAXA) and 

LightSail (Planetary Society). In the next stage, the practical mission by solar sail is 

proposed, such as NEA Scout (NASA). Solar sail has much uncertainty in thrust (because of 

uncertainty in optical parameter and area-mass ratio).  

 

1.2. Related Works 

 

Most of the previous works to design robust low-thrust trajectory against uncertainty is based on 

deterministic method with empirical margin [3]. The method to evaluate the margin against 

missed-thrust is also proposed [6]. However, except certain special cases, the optimal control for 

the system with uncertainty is different from that without uncertainty. Hence, the conventional 

approach is no longer optimal control for realistic system. 

 

As for the optimal control for the system with uncertainty, Olympio and Yam[7] have suggested 

the surrogate-based method to solve the robust-optimal trajectory for one temporary engine 

failure. Olympio[8] has also suggested the sophisticated method using two-stage stochastic 

programming with indirect method; however this method is only focused on one temporary 

engine failure (because of two-stage). Therefore, we need to invent an innovative multi-stage 

robust-optimal trajectory design method for a general system with uncertainty. 

 

Multi-stage robust optimization problem can be achieved by Robust Dynamic Programming 

(RDP)[9][10], which has recently received substantial attentions. Generally, RDP cannot be 

solved numerically without special assumption. Most methods to solve RDP are implemented 

with the assumption of linear system; however trajectory design problem is usually nonlinear 

problem. 

 

As for Dynamic Programming to solve trajectory design problem, Differential Dynamic 

Programming (DDP) [11] has recently received substantial attentions again. To apply dynamic 
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programming to continuous state system numerically, we notice that it has inherent difficulty 

called “curse of dimensionality” since the dimension of the state variables becomes incredibly 

large. To overcome this fundamental difficulty, DDP was created based on expanding the 

Principle of Optimality by second order around the reference trajectory. The classical DDP was 

only effective for smooth unconstrained problems; on the other hands low-thrust problems 

fundamentally have constrained bang-bang structure (i,e, DDP may converge slowly or may not 

converge at all for the low-thrust problems). Recent works for DDP[12][13] have been 

improving the applicability to the low-thrust problem by incorporating well-developed Nonlinear 

Programming (NLP) techniques to DDP[13].  

 

The advantages of DDP-based low-thrust trajectory optimization methods are: 

- High robustness to poor initial guess. 

- Good applicability to large-scale problems, such as multi-revolution problem, because the 

computational effort per iteration of DDP increases only linearly with the number of nodes, 

whereas that of the common NLP-based method increases exponentially. 

- Optimal feedback control policy can be also retrieved. 

 

Robust optimal control by DDP has recently proposed in the field of reinforcement learning and 

optimal control by Todorov and Tassa[14] and Theodorou, Tassa and Todorov[15]. Both 

approaches are based on Stochastic Differential Dynamic Programming (SDDP) to minimize the 

expected value of objective function. One of the approaches, called iterative Local Dynamic 

Programming (iLDP), proposed by Todorov and Tassa uses collocation method with unscented 

transform; on the other hands, the other approach by Theodorou, Tassa and Todorov use the 

theoretical differential of stochastic system. The approach we propose in this paper follows their 

works. 

 

1.3. Objectives 

 

This study proposes a strategy to design robust optimal low-thrust trajectory for uncertain system 

to minimize the expected value of objective function by Differential Dynamic Programming. 

 

2. Differential Dynamic Programming 

 

2.1. Overview of Differential Dynamic Programming 

 

Differential Dynamic Programming (DDP) is proposed by Jacobson and Mayne in 1966. 

Although it is introduced early, DDP had not been applied to trajectory design problem since it is 

difficult to apply DDP to constrained problem (i.e. bang-bang problem) until recently. Because 

there are good advantages in DDP, techniques to apply DDP to trajectory design problem have 

been recently well developed [12][13].  

 

The main idea of DDP is using quadratic expansion of Bellman’s principle of optimality to 

overcome the curse of dimensionality in Dynamic Programming. There is iteration to calculate 

nonlinear optimal control problem. Every iteration of DDP involves backward sweep and 

forward sweep alternately shown in Fig.1. In backward sweep step, we calculate optimal control 
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of quadratic system expanded around reference trajectory, and in forward sweep step we update 

reference trajectory using optimal control strategy obtained by backward sweep step.  

 

 

 
Figure 1.  Calculation Step in DDP 

 

2.2. Discrete-Time Dynamic Programming and Bellman’s Principle of Optimality 

 

Let us consider the discrete-time dynamical system described as following equation: 

 𝒙𝑘+1 = 𝑭𝑘(𝒙𝑘, 𝒖𝑘;  𝑡𝑘) (1) 

where 𝒙𝑘 ∈ ℝ𝑛 is state vector at discretized time 𝑘 ∈ {1,2, … , 𝑁 + 1}, 𝒖𝑘 ∈ ℝ𝑚 is control vector, 

𝑡𝑘 ∈ ℝ is time, and 𝑭𝑘(∙): ℝ
𝑛 × ℝ𝑚 × ℝ → ℝ𝑛 is the nonlinear function to describe dynamical 

system. Given boundary conditions 𝒙1 ∈ ℝ𝑛  and 𝒙𝑁+1 ∈ ℝ𝑛 , the general optimal control 

problem is to find the optimal control policy: 

 {𝒖𝑘
∗ } ≔ {𝒖1

∗ , 𝒖2
∗ , … , 𝒖𝑁 

∗ } (2) 

to minimize the objective function: 

 𝐽({𝒖𝑘
∗ }):= 𝛷𝑁+1(𝒙𝑁+1;  𝑡𝑁+1) + ∑ 𝐿𝑘(𝒙𝑘, 𝒖𝑘;  𝑡𝑘)

𝑁
𝑘=1 . (3) 

where, 𝛷𝑁+1(∙): ℝ
𝑛 × ℝ → ℝ is terminal cost function, and  𝐿𝑘(∙): ℝ

𝑛 × ℝ𝑚 × ℝ → ℝ is cost 

function at discretized time 𝑘.  
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Instead of solving above problem directly, in Dynamic Programming, we obtain the control 𝒖𝑘 at 

discretized time 𝑘 by optimizing cost-to-go function 𝑉𝑘(∙): ℝ
𝑛 → ℝ defined as follows: 

 𝑉𝑘(𝒙𝑘) ≔ 𝛷𝑁+1(𝒙𝑁+1;  𝑡𝑁+1) + ∑ 𝐿𝑖(𝒙𝑖, 𝒖𝑖;  𝑡𝑖)
𝑁
𝑖=𝑘 . (4) 

According to Bellman’s principle of optimality, we obtain a recursive optimization problem 

which optimize the cost at discretized time 𝑘 and the rest of cost-to-go function: 

 𝑉𝑘
∗(𝒙𝑘) = min𝒖𝑘

[𝐿𝑘(𝒙𝑘, 𝒖𝑘;  𝑡𝑘) + 𝑉𝑘+1
∗ (𝒙𝑘+1)]. (5) 

where 𝑉𝑘
∗(∙): ℝ𝑛 → ℝ is optimal cost-to-go function. 

 

2.3. Differential Dynamic Programming 

 

To overcome the inherent curse of dimensionality of dynamic programming, DDP is 

fundamentally formulated by introducing quadratic expansions of Bellman’s principle of 

optimality in the neighborhood of a reference trajectory. Define {𝒙 𝑘} as reference trajectory, let 

us derive the quadratic expansion of Eq. (5) with respect to 𝒙𝑘(= 𝒙 𝑘 + 𝛿𝒙𝑘) and 𝒖𝑘(= 𝒖 𝑘 +
𝛿𝒖𝑘): 

 𝑉𝑘
∗(𝒙𝑘) ≃  𝑉𝑘

∗(𝒙 𝑘) + 𝑉𝒙
∗(𝑘)

𝛿𝒙𝑘 +
1

2
𝛿𝒙𝑘

𝑇𝑉𝒙𝒙
∗(𝑘)

𝛿𝒙𝑘 (6) 

 𝐿𝑘(𝒙𝑘, 𝒖𝑘) ≃  𝐿𝑘(�̅�𝑘 , �̅�𝑘) + 𝐿𝒙
(𝑘)

𝛿𝒙𝑘 + 𝐿𝒖
(𝑘)

𝛿𝒖𝑘 +
1

2
𝛿𝒙𝑘

𝑇𝐿𝒙𝒙
(𝑘)

𝛿𝒙𝑘 + 𝛿𝒙𝑘
𝑇𝐿𝒙𝒖

(𝑘)
𝛿𝒖𝑘 +

1

2
𝛿𝒖𝑘

𝑇𝐿𝒖𝒖
(𝑘)

𝛿𝒖𝑘 

 𝑉𝑘+1
∗ (𝒙𝑘+1) ≃  𝑉𝑘+1

∗ (𝒙 𝑘+1) + 𝑉𝒙
∗(𝑘+1)

𝛿𝒙𝑘+1 +
1

2
𝛿𝒙𝑘+1

𝑇 𝑉𝒙𝒙
∗(𝑘+1)

𝛿𝒙𝑘+1 (8) 

where subscript except 𝑘 denotes partial derivative with respect to 𝒙𝑘 or 𝒖𝑘 and superscript (𝑘) 

denotes the value at discretized time 𝑘. 𝛿𝒙𝑘+1 is obtained from the equation of dynamical system 

(1) as follows: 

 𝛿𝒙𝑘+1 ≃ 𝑭𝒙
(𝑘)

𝛿𝒙𝑘 + 𝑭𝒖
(𝑘)

𝛿𝒖𝑘 +
1

2
𝛿𝒙𝑘

𝑇 ∗ 𝑭𝒙𝒙
(𝑘)

𝛿𝒙𝑘 + 𝛿𝒙𝑘
𝑇 ∗ 𝑭𝒙𝒖

(𝑘)
𝛿𝒖𝑘 +

1

2
𝛿𝒖𝑘

𝑇 ∗ 𝑭𝒖𝒖
(𝑘)

𝛿𝒖𝑘 (9) 

where the operator * is defined as (𝐴 ∗ 𝐵)𝑗𝑘 = 𝐴𝑖𝐵𝑖𝑗𝑘, where the subscripts denote the 

component in tensor notation. 

 

Therefore, the right hand side of Bellman’s principle of optimality (5) can be described as 

following form: 

 𝐿𝑘(𝒙𝑘, 𝒖𝑘) + 𝑉𝑘+1
∗ (𝒙𝑘+1) = 𝑄0 + [𝑞𝒙

𝑇 𝑞𝒖
𝑇] [

𝛿𝒙𝑘

𝛿𝒖𝑘
] +

1

2
[𝛿𝒙𝑘

𝑇 𝛿𝒖𝑘
𝑇] [

𝑄𝒙𝒙 𝑄𝒙𝒖

𝑄𝒙𝒖
𝑇 𝑄𝒖𝒖

] [
𝛿𝒙𝑘

𝛿𝒖𝑘
] (10) 

where the coefficients Q (𝑄0, 𝑞𝒙, 𝑞𝒖, …) is defined in Appendix 6.1.  

 

Assume 𝑄𝒖𝒖 is a positive definite matrix, the optimal control variations can be obtained as 

stationary points of Eq.(10): 

 𝛿𝒖𝑘 = 𝜶𝑘 + 𝛽𝑘𝛿𝒙𝑘 (11) 

where 𝜶𝑘 ≔ −𝑄𝒖𝒖
−1𝑞𝒖 and 𝛽𝑘 ≔ −𝑄𝒖𝒖

−1𝑄𝒙𝒖
𝑇 . 

(7) 
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In backward sweep, calculate the optimal control policy 𝜶𝑘 and 𝛽𝑘 to minimize 𝐿𝑘(𝒙𝑘, 𝒖𝑘) +
𝑉𝑘+1

∗ (𝒙𝑘+1). In forward sweep, update reference trajectory by using closed-loop optimal control 

𝒖𝑘 = 𝒖 𝑘 + 𝛿𝒖𝑘 = 𝒖 𝑘 + 𝜶𝑘 + 𝛽𝑘𝛿𝒙𝑘.  

 

3. Stochastic Differential Dynamic Programming 

 

To solve robust optimal low-thrust trajectory for uncertain system to minimize the expected 

value of objective function, we introduce Stochastic Differential Dynamic Programming 

(SDDP)[14][15]. The fundamental idea of SDDP is finding optimal control to minimize the 

expected value of cost-to-go function.  We introduce unscented transform [16], which is well 

known in filtering problem, to obtain the expected value of cost-to-go function [14]. 

 

3.1. Unscented Transform 

 

The Unscented Transform (UT) is the method to calculate the probability distribution of a 

random variable that undergoes a nonlinear transformation [16]. The basic idea of UT, which is 

similar to Monte-Carlo to estimate probability distribution by random sampling, is to estimate 

probability distribution by using a set of representative points, called sigma points. 

 

Given n-dimensional random variable 𝒙  with mean 𝒙  and covariance 𝑃𝒙𝒙 , and nonlinear 

transformation 𝒚 = 𝒇(𝒙), UT is used to estimate the mean 𝒚  and covariance 𝑃𝒚𝒚  of random 

variable 𝒚 by following steps: 

1) Calculate sigma-points 𝓧𝑖 and its weight 𝑊𝑖 (𝑖 = 0,1, … ,2𝑛): 

 

𝓧0 = 𝒙 𝑊0 = 𝜆/(𝑛 + 𝜆)

𝓧𝑖 = 𝒙 + (√(𝑛 + 𝜆)𝑃𝒙𝒙)𝑖
𝑊𝑖 = 1/2(𝑛 + 𝜆)

𝓧𝑖+𝑛 = 𝒙 − (√(𝑛 + 𝜆)𝑃𝒙𝒙)𝑖
𝑊𝑖+𝑛 = 1/2(𝑛 + 𝜆)

 (12) 

where 𝜆 ∈ ℝ is free parameter, (∙)𝑖 means the i-th column of the matrix square root √(𝑛 + 𝜆)𝑃𝒙𝒙. 

 

2) Obtain the set of transformed sigma points 𝓨𝑖, 

 𝓨𝑖 = 𝒇(𝓧𝑖) (13) 

 

3) The mean and covariance are given by using weight and transformed sigma-point as 

follows: 

 𝒚 = ∑ 𝑊𝑖
2𝑛
𝑖=0 𝓨𝑖 (14) 

 𝑃𝒚𝒚 = ∑ 𝑊𝑖
2𝑛
𝑖=0 {𝓨𝑖 − �̅�}{𝓨𝑖 − �̅�}𝑇 (15) 

 

Example of UT is shown in Fig.2. Here, nonlinear transformation is quadratic transformation, 

and a free parameter 𝜆 is chosen as −0.75. 
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Figure 2.  Unscented Transform (Before transform: Left, After transform: Right) 

 

3.2. Stochastic Differential Dynamic Programming for State Uncertainty 

 

We assume that the state has the uncertainty and it is formulated as: 

 𝑿𝑘 = 𝒙𝑘 + 𝒘𝑘 (16) 

where 𝒘𝑘~𝒩(𝟎𝑛, 𝑃𝒘𝑘
)  is uncertainty, 𝟎𝑛 ∈ ℝ𝑛  is null vector, and 𝑃𝒘𝑘

∈ ℝ𝑛×𝑛  is covariance 

matrix. If there is no observation noise and time lag from observation to control, then we can 

employ the optimal feedback control law: 

 𝑼𝑘 = 𝒖𝑘 + 𝛽𝑘(𝑿𝑘 − 𝒙 𝑘) (17) 

 

In a proposed SDDP, instead of solving Bellman’s principle of optimality Eq.(5), we solve the 

following principle of optimality with expectation[11][15]: 

 𝑉𝑘
∗(𝒙𝑘) = min𝒖𝑘

{𝐸𝒘𝑘
[𝐿𝑘(𝑿𝑘, 𝑼𝑘;  𝑡𝑘) + 𝑉𝑘+1

∗ (𝑿𝑘+1)]} (18) 

where 𝐸𝒘𝑘
[⋅] is the expectation with respect to random variable 𝒘𝑘, and the state vector 𝑿𝑘+1 at 

discretized time (𝑘 + 1), which is influenced by uncertainty 𝒘𝑘, is described as: 

 𝑿𝑘+1 = 𝑭𝑘(𝑿𝑘, 𝑼𝑘). (19) 

The right hand side of Eq.(18) can be expanded as: 

 𝐿𝑘(𝑿𝑘, 𝑼𝑘;  𝑡𝑘) + 𝑉𝑘+1
∗ (𝑿𝑘+1) = 𝑄0(�̅�𝑘 , �̅�𝑘) + [𝑞𝒙

𝑇(�̅�𝑘, �̅�𝑘) 𝑞𝒖
𝑇(�̅�𝑘, �̅�𝑘)] [

𝛿𝒙𝑘

𝛿𝒖𝑘
] + ⋯ (20) 

where, we can easily derive 𝛿𝑿𝑘 = 𝛿𝒙𝑘, 𝛿𝑼𝑘 = 𝛿𝒖𝑘 by definition. 

 

Therefore, the optimal control variations can be obtained as stationary points of Eq.(20) by: 

 𝛿𝒖𝑘 = 𝜶𝑘 + 𝛽𝑘𝛿𝒙𝑘 (21) 

where we assume 𝐸𝒘𝑘
[𝑄𝒖𝒖(�̅�𝑘, �̅�𝑘)] is a positive definite matrix, and 𝜶𝑘 and 𝛽𝑘 in SDDP are: 
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 𝜶𝑘 ≔ −𝐸𝒘𝑘
[𝑄𝒖𝒖(�̅�𝑘, �̅�𝑘)]

−1𝐸𝒘𝑘
[𝑞𝒖(�̅�𝑘, �̅�𝑘)] (22) 

 𝛽𝑘 ≔ −𝐸𝒘𝑘
[𝑄𝒖𝒖(�̅�𝑘 , �̅�𝑘)]

−1𝐸𝒘𝒌
[𝑄𝒙𝒖

𝑇 (�̅�𝑘, �̅�𝑘)] (23) 

 

To calculate 𝐸𝒘𝑘
[𝑄𝒖𝒖(�̅�𝑘, �̅�𝑘)], 𝐸𝒘𝑘

[𝑞𝒖(�̅�𝑘, �̅�𝑘)], and so on, we apply Unscented Transform in 

Section 3.1. 

 

In the backward sweep in SDDP, we compute aforementioned equations. Meanwhile, in the 

forward sweep in SDDP, we propagate the mean value of state perturbed by uncertainty 𝒘𝑘 

using Unscented Transform and use the mean value as nominal state of SDDP reference 

trajectory. 

 
Figure 3.  Forward Sweep in SDDP by Unscented Transform 

 

We summarize the computational step in every iteration of SDDP. First, in backward sweep, we 

compute optimal control by Eq.(21), where we apply Unscented Transform to calculate expected 

value of coefficient Q. Then, using the robust optimal control law Eq.(21), we update the 

reference nominal trajectory in forward sweep, shown in Fig.3. 

 

4. Numerical Example 

 

Prior to applying a proposed SDDP to trajectory design problem, we demonstrate that our DDP 

algorithm successfully computes the correct solution, using classical brachistochrone problem as 

example [17]. 

 

4.1. Classical Brachistochrone Problem 

 

The equation of motion of brachistochrone problem is described as: 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝛥𝑡 ⋅ 𝑣𝑥

𝑦𝑘+1 = 𝑦𝑘 + 𝛥𝑡 ⋅ 𝑣𝑦

𝑣𝑥,𝑘+1 = 𝑣𝑥,𝑘 + 𝛥𝑡 ⋅ √𝑣0
2 − 2𝑔𝑦 ⋅ cos 𝑢

𝑣𝑦,𝑘+1 = 𝑣𝑦,𝑘 + 𝛥𝑡 ⋅ √𝑣0
2 − 2𝑔𝑦 ⋅ sin 𝑢

 (24) 

where 𝑢 ∈ ℝ is control variable, and 𝑣0 and 𝑔 are parameters which describe initial velocity and 

gravity constant, respectively. Given initial position  [𝑥1, 𝑦1] = [0.0, 0.0] , initial velocity 

𝑣0 = 0.0, and final position [𝑥𝑁+1, 𝑦𝑁+1] = [15.7, 10.0], find the optimal control law {𝑢𝑘} to 
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minimize the transfer time. The optimal path obtained by DDP corresponds to the cycloid curve, 

which is known as theoretical solution, shown in Fig.4. 

 
Figure 4.  Trajectory of Classical Brachistochrone Problem 

 

4.2. V-Infinity Leveraging Problem 

 

The dynamical system, here we consider, is 2-dimensional two-body problem: 

 
𝑑

𝑑𝑡
[

𝑥
𝑦
𝑣𝑥

𝑣𝑦

] =

[
 
 
 
 
 

𝑣𝑥

𝑣𝑦

−
𝜇

(𝑥2+𝑦2)
3
2

𝑥 + 𝑇 cos 𝑢

−
𝜇

(𝑥2+𝑦2)
3
2

𝑦 + 𝑇 sin 𝑢
]
 
 
 
 
 

  (25) 

where 𝑢 ∈ ℝ  is control variable, 𝜇 = 1.327 × 1011[𝑘𝑚3/𝑚2 ]  is the gravity constant, and 

𝑇 = 1.2 × 10−4[𝑚/𝑠2] is thrust acceleration. The dynamical system is discretized by Runge-

Kutta 4-th order method. 

 

As for a deterministic optimal control problem, given initial state  [𝑥1, 𝑦1] = [1.5 × 108,
0.0](𝑘𝑚), [𝑣𝑥,1, 𝑣𝑦,1] = [0.0, 29.8](𝑘𝑚/𝑠), final position [𝑥𝑓 , 𝑦𝑓] = [1.5 × 108, 0.0](𝑘𝑚), and 

transfer time is 1 (year), find the optimal control law {𝑢𝑘} to minimize the objective function: 

 𝐽 = 𝛷𝑁+1(𝒙𝑁+1;  𝑡𝑁+1) = 𝐶1 ⋅ 𝑉∞(𝑡𝑁+1) + 𝐶2 ⋅ (𝑥𝑁+1 − 𝑥𝑓)
2
+ 𝐶3 ⋅ (𝑦𝑁+1 − 𝑦𝑓)

2
 (26) 

where 𝑉∞(𝑡𝑁+1) ≔ √(𝑣𝑥,𝑁+1 − 𝑣𝑥,1)
2
+ (𝑣𝑦,𝑁+1 − 𝑣𝑦,1)

2
, and weight is tuned as 𝐶1 =

−10.0, 𝐶2 = 1.0 × 106, 𝐶3 = 1.0 × 106. The solution is shown as DDP in Fig.5. 

 

As for a robust-optimal control problem with state uncertainty, we consider following discretized 

stochastic dynamical system: 

 𝒙𝑘 = 𝑭𝑘−1(𝒙𝑘−1, 𝒖𝑘−1) + 𝒘𝑘  (27) 

where, 𝑭𝑘(⋅)  is discretized dynamical system by Runge-Kutta 4-th order method with 𝛥𝑡 =
0.025 [year], the unit is unified as [km] and [km/s], and 𝒘𝑘 is a Gaussian random process with 

zero mean and covariance 𝑃𝒘𝑘
, which is described as: 
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 𝑃𝒘𝑘
= [

0 0 0 0
0 0 0 0
0 0 8.9 × 10−6 0
0 0 0 8.9 × 10−6

]  (28) 

Hence, the velocity disturbance is about 3[m/s]@1-sigma every 9[days]. The robust-optimal 

control problem is, when the same boundary condition as deterministic one is given, finding the 

optimal control law {𝑢𝑘} to minimize the expected value of cost-to-go function. The solution is 

shown as Stochastic DDP in Fig.5.  

 

 
Figure 5.  Trajectory of V-infinity Leveraging Problem 

 

To evaluate the result of conventional DDP and a proposed SDDP, we apply Monte-Carlo 

method to both results. Both results obtained by DDP and SDDP has optimal feedback controller 

around nominal trajectory; therefore, the optimal feedback controller corrects the trajectories 

autonomously. We generate 5000 samples, and every sample has velocity Gaussian disturbance 

of 3[m/s]@1-sigma every 9[days]. The result is shown in Fig.6 and Fig.7. 

 

As shown in Fig.6, only 30% of samples come back close to the Earth in DDP, while 

approximately 90% of samples do in SDDP, since the result of SDDP has more “margin” in 

optimal control than that of DDP. As shown in Fig.7, even though nominal V-infinity of SDDP 

(0.488[km/s]) is worse than one of DDP (0.575[km/s]), the expected value of V-infinity of 

SDDP (0.501[km/s]) is better than one of DDP (0.451[km/s]). We find that the performance of 

SDDP is better than DDP in the case that the system has uncertainty, as we expected. 
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Figure 6.  Result of Monte-Carlo Simulation (Terminal Position Deviation) 

 

 
Figure 7.  Result of Monte-Carlo Simulation (V-infinity at Terminal Condition) 

 

5. Conclusion 

 

This paper proposes a robust-optimal trajectory design method for uncertain system to minimize 

the expected value of objective function. The basic idea is solving Stochastic Differential 

Dynamic Programming (SDDP), which solve optimal control problem to minimize the expected 

value of cost-to-go function, with Unscented Transform, which is used to estimate the expected 

value. We apply a SDDP to V-infinity leveraging problem, and demonstrate that SDDP has 

better performance than conventional DDP when the system has uncertainty since the result of 

SDDP has “margin” in optimal control for future feedback. However, it is difficult to apply a 

proposed SDDP to bang-bang problem, such that the low-thrust trajectory designs with thrusting 

arc and coasting arc. We will extend a proposed SDDP to the bang-bang problem as future work. 
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6. Appendix 

 

6.1. Coefficient Q of Quadratic Expansion of Bellman’s Principle of Optimality 

 

The coefficients Q (𝑄0, 𝑞𝒙, 𝑞𝒖, …) , which is introduced in Eq.(10), can be calculated by 

substituting Eqs.(7), (8), (9) to right hand side of Eq.(5), and defined as follow: 

 

 𝑄0 ≔ 𝐿𝑘(�̅�𝑘 , �̅�𝑘) + 𝑉𝑘+1
∗ (𝒙 𝑘+1) (29) 

 𝑞𝒙 ≔ 𝐿𝒙
(𝑘)

+ 𝑉𝒙
∗(𝑘+1)

𝑭𝒙
(𝑘)

 (30) 

 𝑞𝒖 ≔ 𝐿𝒖
(𝑘)

+ 𝑉𝒙
∗(𝑘+1)

𝑭𝒖
(𝑘)

 (31) 

 𝑄𝒙𝒙 ≔ 𝐿𝒙𝒙
(𝑘)

+ 𝑉𝒙
∗(𝑘+1)

∗ 𝑭𝒙𝒙
(𝑘)

+ 𝑭𝒙
(𝑘)𝑇𝑉𝒙𝒙

∗(𝑘+1)
𝑭𝒙

(𝑘)
 (32) 

 𝑄𝒙𝒖 ≔ 𝐿𝒙𝒖
(𝑘)

+ 𝑉𝒙
∗(𝑘+1)

∗ 𝑭𝒙𝒖
(𝑘)

+ 𝑭𝒙
(𝑘)𝑇𝑉𝒙𝒙

∗(𝑘+1)
𝑭𝒖

(𝑘)
 (33) 

 𝑄𝒖𝒖 ≔ 𝐿𝒖𝒖
(𝑘)

+ 𝑉𝒙
∗(𝑘+1)

∗ 𝑭𝒖𝒖
(𝑘)

+ 𝑭𝒖
(𝑘)𝑇𝑉𝒙𝒙

∗(𝑘+1)
𝑭𝒖

(𝑘)
 (34) 
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