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(1)‘Sapienza’ Università di Roma, Via Eudossiana 18, Rome, Italy 00184, (+39) 064458 5210 ,
alessandro.zavoli@uniroma1.it
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Abstract: The paper deals with attitude dynamics of an underactuated spacecraft, proposing a
technique for aiming a body-fixed axis (e.g. sensor, antenna, nozzle, etc.) arbitrarily close to
a prescribed direction in space by means of two reaction wheels only, when the total angular
momentum of the spacecraft is zero. The technique is based on a simple kinematic planning scheme,
where an eigenaxis rotation is performed around an admissible rotation axis, that is, an axis that lies
on the plane of the two active reaction wheels. Proof of almost global stability is provided, together
with a detailed discussion of a few theoretical shortcomings. The latter can be circumvented in the
numerical implementation of the control law, that remains simple and computationally efficient.
Numerical simulations of single-axis pointing maneuvers for a reference spacecraft prove the
practical viability and validity of the approach. The effect of non-ideal conditions, such as a small
residual angular momentum, command torque saturation and off-diagonal terms in the inertia
tensor, are also investigated.

Keywords: Attitude control, Underactuated control, Reaction wheel failure.

1. Introduction

The paper proposes a novel approach for single-axis pointing by using only two reaction wheels
(RW), derived on the basis of a simple yet effective wheel rate command. This maneuver technique
can be used for aiming the line-of-sight of a sensor, a nozzle or an antenna towards a target direction,
or solar panels towards the Sun, after failure of one wheel for a non-redundant control system
hardware or in the case of multiple failures for redundant systems. Examples of this kind of
situation are the Far Ultraviolet Spectroscopic Explorer (FUSE) and Kepler space telescope, that
both suffered from failures that left only two wheels available for maneuvers. Failure of mechanical
actuators is also expected to potentially affect low-budget space missions based on small-size
low-cost spacecraft (nano-, pico-, and cube-sat families).

The control approach here proposed, derived from the kinematic planning scheme of Ref. [1],
represents its practical, dynamic implementation, under the assumptions of zero overall angular
momentum and a diagonal inertia tensor. The effects of a non-zero residual angular momentum and
control axes not aligned with the principal axes of inertia will also be investigated at the end of the
paper, highlighting limitations on pointing precision and convergence performance. The possibility
of pointing a body-fixed axis towards and arbitrary direction represents a significant contribution,
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inasmuch as it may allow a failed spacecraft to perform, at least partially, its operational tasks. The
limited computational effort for the control law makes it a practical solution also in the case of small-
size satellites, where computational budget is severely limited by the available CPU processing
capabilities.

The problem of spacecraft control by means of two attitude effectors only is a relevant topic in the
literature dealing with satellite attitude control. Among many others, Tsiotras and Longuski [2]
present a methodology for constructing feedback control laws for the attitude stabilization about the
symmetry axis. Kim & Kim [3] also consider the problem of spin stabilization of a spacecraft about
a specified inertial axis using two reaction wheels. They exploit the z-w parametrization introduced
by Tsiotras [4] to derive a feedback control law that globally and asymptotically stabilizes the
spacecraft on a revolving motion along a specified inertial axis.

A time-variant discontinuous singular controller approach is proposed by Horri for the 3-axis attitude
stabilization of a zero total angular momentum satellite, based on a Rodriguez parametrization of
the attitude [5] or on a quaternion attitude parametrization [6]. Yoon and Tsiotras [7] consider a
spacecraft equipped with a single VSCMG. They illustrate an LQR control law to locally stabilize
the spacecraft angular velocity, while also controlling the direction of a given spacecraft body-axis
in the inertial space. A multi-stage control law is also suggested to attain the same goal in the large.

In Ref. [1], Avanzini and Giulietti propose a kinematic planning scheme for eigenaxis rotations that
allows for aiming a body-fixed axis σ̂ towards a prescribed direction τ̂ , in the presence of constraints
on the admissible rotation axis. This constraint is representative of a condition of underactuation for
the attitude control system, when there is a direction b̂ around which a control torque component
is not available. This means that control torque is constrained on a plane perpendicular to the
torqueless direction. This technique has been recently extended in order to determine a sequence of
feasible rotations with minimum total angular path, to be applied when the axis σ̂ is also required
to stay away from inadmissible directions, such as bright radiation sources that may harm sensor
hardware [8].

The kinematic planning schemes of Refs. [1] and [8] identify a (sequence of) admissible rotation(s),
represented in terms of eigenaxis ĝΓ, perpendicular to b̂, and rotation amplitude α̂ , that allows for
driving σ̂ towards a prescribed direction τ̂ . The approach proposed in Refs. [1] and [8] is applied
as a maneuver planning scheme in the framework of magnetic control, where magnetic torquers
are used as attitude effectors and the torqueless direction b̂ is represented by the geomagnetic field,
being thus prescribed in the orbit frame. But, as underlined in [1], the same planning scheme can
also be adopted when the torqueless direction b̂ is prescribed in the body frame.

In the present paper, the kinematic planning scheme of Ref. [1] is turned into a control logic and
it is applied to the case of a spacecraft equipped with only two operational reaction wheels. As
outlined above, such a situation is representative of failure conditions for non-redundant control
hardware of multiple failure in a redundant system. Thanks to simple angular momentum balance
considerations, it is possible to derive a wheel rate command that causes the spacecraft to rotate
around the admissible rotation axis, ĝΓ, lying on the plane identified by the two RW axes, thus
directly implementing the kinematic planning scheme at a dynamic level. This is obtained by
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defining a desired angular velocity command around the admissible rotation axis ĝΓ, the magnitude
of which is proportional to the amplitude α̂ of the admissible rotation.

A candidate Lyapunov function is then defined, which features two terms, one proportional to the
remaining angular travel towards τ̂ , one to the error of the current angular speed with respect to
the desired angular velocity. A reaction wheel command torque is derived, which guarantees that
the time derivative V̇ of the candidate Lyapunov function is strictly negative, thus enforcing an
asymptotic convergence of σ̂ towards the desired direction τ̂ for almost any initial condition.

Convergence is straightforward, once the direction of the admissible rotation axis ĝΓ is available.
As a minor drawback, there are some situations in which the definition of this axis can become
critical, that is when σ̂ and τ̂ are exactly aligned (that is, the desired alignment is obtained), and
when the alignment error ε = τ̂− σ̂ is parallel to the torqueless direction b̂. The first case is not
critical, provided also that the magnitude of the angular velocity command drops to zero when the
desired alignment is achieved. The second case will deserve an ad hoc discussion.

In the next Section, after some preliminary considerations, the derivation of the control law for the
zero-angular momentum case is provided, with a proof of stability and a discussion of the critical
situation highlighted above. In Section III, convergence towards the prescribed axis alignment
is analyzed by means of numerical simulation, also in the case of a non-zero residual angular
momentum and for a non-diagonal inertia tensor. A Section of concluding remarks ends the paper.

2. Problem Statement and solution

2.1. Outline of the kinematic planning scheme

The approach here proposed allows for a computationally inexpensive control technique that
directly stems from the kinematic planning scheme of [1], representing its practical, dynamic
implementation, under the assumption of zero overall angular momentum. An ideal admissible
rotation eigenaxis ĝΓ is identified, which allows for aiming a body-fixed axis σ̂ towards a prescribed
direction τ̂ , when the admissible rotation axis is constrained to lie on a plane perpendicular to the
torqueless direction b̂.

The body-fixed axis σ̂ can be rotated onto its desired position τ̂ by means of an eigenaxis rotation
of amplitude α̂ around one of the axis

ĝ = êm cosβ + êM sinβ (1)

where êm = (σ̂ × τ̂)/‖σ̂ × τ̂‖ is perpendicular to the plane that contains σ̂ and τ̂ , êM = (σ̂ +
τ̂)/‖σ̂ + τ̂‖ is the bisector between σ̂ and τ̂ , and β is the angle between ĝ and êm. For β = 0, the
desired alignment of σ̂ over τ̂ is obtained by means of the minimum angular path, α , that is, the
angle between σ̂ and τ̂ at the initial time.

The admissible rotation axis was then identified in [1] by choosing the angle β that provides the unit
vector ĝΓ perpendicular to b̂, that is, the eigenaxis ĝΓ is chosen at the intersection of the planes Γ

and Σ, where Γ is perpendicular to b̂ (identified in the present application by the plane that contains
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!̂! "̂ cos!" #êm $ "̂% sin! (1)

By indicating with êM the unit vector of the bisector of the angle !,

êM !
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2#1" cos!%

p (2)

the desired rotation of "̂ onto !̂ can be accomplished by rotating the
body-fixed frameFB about any axis ĝ on the plane!, perpendicular
to ", that contains both êm and êM, that is, any unit vector ĝ lying
along a linear combination of êm and êM. This point is proven by
deriving the expression of the angle of rotation !̂ for any possible
vector ĝ on the plane !.

Letting " be the angle between ĝ and êm (where it is possible to
bound the values of " to &#=2 ' " ' #=2), it is
ĝ! êm cos"" êM sin", that is,
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Noting that the three unit vectors "̂, #êm $ "̂%, and êm form a right-
handed triad, it is possible, without loss of generality, to make them
represent the initial position of the body axes,F #1%B * #O; î1; ĵ1; k̂1%.
The body-frame components #g1; g2; g3%T of the eigenaxis ĝ can thus
be obtained from the coefficients between square brackets in Eq. (3).

The coordinate transformation matrix T21 from F #1%B to F #2%B *
#O; î2; ĵ2; k̂2% can be expressed in terms of the Euler eigenaxis
rotation !̂ about the generic unit vector ĝ 2 ! as [5]

T 21 !
c!̂" g21#1 & c!̂% g1g2#1 & c!̂% " g3s!̂ g1g3#1 & c!̂% & g2s!̂

g1g2#1 & c!̂% & g3s!̂ c!̂" g22#1 & c!̂% g2g3#1 & c!̂% " g1s!̂
g1g3#1 & c!̂% " g2s!̂ g2g3#1 & c!̂% & g1s!̂ c!̂" g23#1 & c!̂%

2
4

3
5 (4)

where c!̂! cos !̂ and s!̂! sin !̂. Given the choice of axes as
discussed, the final position of î1 * "̂ is î2 * !̂, represented in F #2%B
by the vector !̂2 ! #1; 0; 0%T . From Eq. (1), the same unit vector is
expressed as !̂1 ! #cos!; sin!; 0%T in F #1%B only if the eigenaxis
rotation about ĝ performs the required rotation of "̂. Thus, the
following relation between the coordinates of !̂ must hold:

!̂ 2 ! T21!̂1 $$$! !̂1 ! T12!̂2 ! (T21)T !̂1

that is,

#cos!; sin!; 0%T ! #T11; T12; T13%T

where Tij is the #i; j%th component of the coordinate transformation
matrix T21. From the equation T13 ! 0, one gets

sin !̂! g1g3
g2
#1 & cos !̂%

which can be substituted into the equation T12 ! sin!, getting

#1 & cos !̂% ! g2
g1#g22 " g23%

sin!

Upon substitution of the expressions of the components of the
eigenaxis ĝ from Eq. (3), and after some manipulation, one gets

cos !̂! 1 & 2sin2!

sin2!sin2"" 2#1" cos!%cos2" (5)

which allows one to evaluate !̂ by means of an inverse cosine
function. Figure 2 provides the plot of the function !̂! !̂#!;"% for
"! 0, 20, 40, 60, 80, and 90 deg.

Note that, if "! 0 (that is, ĝ * êm), Eq. (5) reduces to

cos !̂! 1 & sin2!

#1" cos !% ! cos!

that holds for !̂! !, as expected. Conversely, if "!+#=2 and
ĝ * +êM, the same equation reduces to cos !̂!&1, that holds for
!̂!+#. This means that, in this latter case, a maximum rotation of
180 deg is necessary in either direction to accomplish the desired
rotation of the unit vector "̂, during which the unit vector "̂ itself
draws half of a cone around ĝ. As a final observation, one should also
note that a rotation of !̂? !&#2# & !̂% in the opposite direction
allows for the same rotation of "̂ following a longer angular path of
little practical interest.

The possibility of choosing ĝ arbitrarily in a plane to accomplish
the required alignment of the unit vectors "̂ and !̂ is particularly

Fig. 1 Geometry of the problem.
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Figure 1. Kinematic planning scheme (from [1]).

the spin axis of the two active RW’s), and Σ, which contains all the axes ĝ that allow for performing
the required alignment of σ̂ over τ̂ , that is the plane identified by êm and êM (see Fig. 1). In the
derivation of the control law, it is more convenient to express the admissible eigenaxis ĝΓ in the
form

ĝΓ =
(τ̂− σ̂)× b̂
‖(τ̂− σ̂)× b̂‖

(2)

where the error vector ε = τ̂− σ̂ is perpendicular to the plane Σ, whereas the underactuated direction
b̂ is normal to the plane Γ that contains the admissible rotation axes.

The amplitude of the rotation α̂ can be analytically determined (see [1] for details), and it depends
on β , growing from its minimum value, α̂ = α for β = 0 and ĝ = êm, up to π rad, when β = π/2
and ĝ ≡ êM. Also this result was revisited for the derivation of the control law discussed in this
paper. Thanks to spherical trigonometry considerations (omitted here for the sake of conciseness) it
is possible to prove that

sin(α̂/2) =
sin(α/2)[

sin2(α/2)sin2
β + cos2 β

]1/2 (3)

The idea at the basis of the present paper is to derive an angular rate command for the available
wheels that results into a rotation of the spacecraft (almost exactly) around the admissible axis ĝΓ.
The desired angular rate achieves the form ωd = ωd ĝΓ, where the magnitude of the rate command,
ωd , is proportional to the required angular travel α̂ around ĝΓ, that provides the required single axis
pointing (that is, σ̂ parallel to τ̂). In the ideal case, one assumes that a perfect detumbling and/or
wheel desaturation of the spacecraft was performed prior to the pointing maneuver, such that the
total angular momentum of the spacecraft is zero.

2.2. Equations of motion

A satellite platform equipped with three identical reaction wheels is considered. Spacecraft dynam-
ics, expressed in terms of total angular momentum with respect a set of body-fixed principal axes of
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inertia, FB = {P, ê1, ê2, ê3} centered in the spacecraft center of mass P, is described by the following
equations:

ω̇ = J−1 [−ω× (Jω +hw)− ḣw
]

(4)

ḣw,i = JwΩ̇i = gem,i− Jwω̇
T âi, i = 1,2,3 (5)

where ω = (ω1,ω2,ω3)
T is the absolute angular velocity vector, hw,i = JwΩi is the relative angular

momentum vector of the i-th reaction wheel that spins at a relative angular rate Ωi around the spin
axis âi, under the control of the electrical motor torque gem,i, and J is the spacecraft inertia matrix.
The vector hw =

∑3
i=1 JwΩiâi is the total internal angular momentum.

It will be assumed that êi, i = 1,2,3 are principal axes of inertia, the inertia tensor becomes
diagonal, J = diag(J1,J2,J3) and that the spin axes of the wheels are parallel to them, that is, âi ≡ êi,
i = 1,2,3. Without loss of generality, one can also assume that the underactuated axis is b̂ = ê3. As
a consequence, only two reaction wheels are available, with spin axes parallel to the ê1 and ê2 body
axes.

Under the assumption of zero total angular momentum, and neglecting external torques, h is con-
stantly zero; a vector u = (u1,u2,u3)

T of virtual controls ui =−
(
Tem,i− Jwω̇

T âi
)

can be introduced,
so that Eq.s (4) and (5) reduces to

Jω̇ = u (6)

ḣw =−u (7)

Moreover, in the absence of an active reaction wheel spinning around ê3, the third component of the
angular velocity vector ω3 remains identically zero throughout the maneuver.

2.3. Command law and proof of stability

An asymptotical convergence to the desired single-axis pointing condition can be obtained if a
stable first-order dynamics in the form

˙̂α + kα α̂ = 0 (8)

is enforced to the rotation angle α̂ about the unit vector ĝΓ. It is possible to express the time
derivative of α̂ in the form

˙̂α = ω
T

Ψ, (9)

where

Ψ =
(τ̂× σ̂)+2(1− cos α̂)(ĝΓ · σ̂)

{
[ĝΓ× (σ̂ × ĝΓ)]

(
b̂ · τ̂

)
− [(τ̂× ĝΓ) · (σ̂ × ĝΓ)] b̂

}
/
∥∥ε× b̂

∥∥
sin α̂

[
1− (ĝΓ · σ̂)2

]
(10)

with ε = τ̂ − σ̂ (the derivation of Eqs (10) is provided with full details in Appendix 1). An
asymptotically stable dynamics for α̂ is obtained if a desired angular speed in the form

ωd =−
[
kα α̂

/(
ĝT

ΓΨ
)]

ĝΓ (11)
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is tracked. Equation (11) can be further simplified noting that ĝT
ΓΨ = 1 (proof is given in Appendix

2), hence
ωd =−kα α̂ ĝΓ (12)

Noting that ω3 and ωd,3 are both zero (the former because of conservation of angular momentum,
and the latter from its definition that requires that ωd lies on the plane of admissible rotations, normal
to b̂≡ ê3), the third component of the vector Ψ (which in general is not zero) becomes not relevant
for the dynamics of α̂ . At the same time, only the first two RW torque components are available.
It is thus possible to define the following vector quantities, ω? = (ω1,ω2)

T , ω?
d = (ωd,1,ωd,2)

T ,
u? = (u1,u2)

T , and Ψ
? = (Ψ1,Ψ2)

T .

In order to find a command u? for the operational RW’s, which implements the single-axis pointing
strategy with asymptotic convergence towards the desired inertially-fixes direction τ̂ , a strictly
positive candidate Lyapunov function is then introduced,

V =
1
2

α̂
2 +

1
2

z?T J?z? (13)

where z = ωd−ω , and z? = (z1,z2)
T is the error on the first and second components of the angular

velocity, and J? = diag(J1,J2) is a reduced-order inertia matrix. By taking the time derivative of
Eq. (13) one gets

V̇ = α̂ ˙̂α + z?T J?ż? (14)

After taking into account Eq. (9), and recalling that ω = ωd− z, V̇ achieves the form

V̇ =−kα α̂
2− zT

Ψα̂ + z?T (J?ω̇
?
d−u?) (15)

By noting that zT Ψ = z?T
Ψ

?, one can rewrite V̇ as

V̇ =−kα α̂
2− z?T (Ψ?

α̂−J?ω̇
?
d +u?) (16)

The first term is clearly negative definite, for any value of α̂ and kα > 0. If one selects the control
u?, such that

z?T (Ψ?
α̂−J?ω̇

?
d +u?) = z?T Cz? > 0, (17)

where C ∈R2 is any positive definite symmetric matrix, V̇ becomes strictly negative and the desired
pointing of σ̂ is asymptotically achieved. This is obtained by letting

u? = Cz?−Ψ
?
α̂ +J?ω̇

?
d (18)

2.4. Practical implementation

The implementation of Eq. (18) as the command law requires the determination of ω̇d during the
maneuver. It is possible to derive an analytical expressions for ω̇d in terms of ˙̂α and ˙̂gΓ, which
becomes an undetermined form for α → 0. It is possible to prove that the limit remains finite,
nonetheless computational issues are present in the numerical evaluation of this term for a practical
implementation in a computer finite algebra. Moreover, the computational burden is increased by
the complexity of the expressions, which feature several trigonometric terms.

6



As a consequence, it is easier and computationally more efficient to numerically evaluate ω̇d by
means of finite differences between the current value of ωd and its value at a previous time. This is
particularly easy on a discrete time digital implementation and it circumvents all numerical issues
with the determination of singular forms in the limit for vanishingly small values of α .

In addition it is worth to reming that, since slow variations of ωd can be achieved by means of a
proper choice of the control gains, the term containing ω̇d is relatively small and thus it can be
neglected in the definition of the control action. In this respect, in the next Section, together with the
nominal command law given by Eq. (18), two more control laws are discussed: namely a simplified
version

uS = Cz?−Ψ
?
α̂ (19)

where the ω̇d is dropped, and a minimum-complexity version, that is

uMC = Cz? = C(ω?
d−ω

?) (20)

In this latter case, the control torque is simply required to track the desired value of the angular
rates. Note that a proof of convergence becomes no longer available, when Eq. (19) or (20) are used.
Simulations prove that convergence performance in both cases is still adequate (if not better).

As a final comment, note that in the proposed command law the angular rate command goes to zero
as σ̂ approaches its desired position τ̂ , thus slowing down the motion automatically. Command
gains can be determined as a function of misalignment error ε , in order to speed up convergence
when the error is large, by use of the maximum available wheel angular momentum.

3. Results

A spacecraft with moment of inertia J = diag(40.45,41.36,42.09) kg m2 was considered for demon-
strating the viability of the approach. The two active reaction wheels have an identical moment of
inertia, Jw = 0.0077 kg m2. Spacecraft data are taken from [5] in order to deal with a realistic set of
parameters.

In the ideal case, the spacecraft and the reaction wheels are assumed to be at rest at the initial time
(ω0 = 0, Ωi0 = 0), in order to satisfy the assumption of total angular momentum equal to zero
during the maneuver. Without lack of generality, an inertially fixed target direction τ̂ I = (1,0,0)T is
assumed. Absence of any privileged inertial direction justifies this choice. Conversely, the position
of the body-fixed axis σ̂ that needs to be aligned with τ̂ has an influence on the response of the
spacecraft, under the considered control law. Indicating with λ the elevation of σ̂ with respect to
the plane of admissible rotations Γ, that is, the plane identified by the spin axes of the two active
RW’s (ê1 and ê2, for the considered application), three cases are envisaged, namely: Case 1 for
λ = 0 (that is, σ̂ lies exactly on Γ); Case 2 for 0 < |λ |< π/2 (that is, σ̂ lies outside of Γ); and Case
3 for |λ |= 90 deg (when σ̂ is parallel to the torqueless direction b̂, that is, the spin axis ê3 of the
failed reaction wheel). Note that, when λ = 0, the possibility of distributing the angular momentum
over Γ between two wheels allows one to consider σ̂ ≡ êi, i = 1,2, without loss of generality. In
what follows, σ̂ ≡ ê1 will be assumed for simulations testing the algorithm in Case 1 scenarios.
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Figure 2. Case 1 with h = 0: wheel rates and pointing error for the nominal (a) and minimum-
complexity (b) command laws.

The results shown in the present section were obtained for control gains kω = 100 and kα = 0.001.
These gains are not optimized, rather they were chosen with a trial-and-error procedure until a
satisfactory convergence was obtained, without violating saturation constraints on maximum wheel
rotation rate. All the three command laws proposed in the previous section, namely Eqs. (18), (19),
and (20), where implemented for the ideal case, with zero total angular momentum, diagonal inertia
tensor, and no saturation on RW command torque. In order to assess the command law in a more
realistic scenario, some cases where also run in the presence of RW command torque saturation,
non-diagonal inertia tensor and non-zero total angular momentum.

All the three command laws perform well in the ideal case for all the test-cases considered, that is,
for an arbitrary direction of the axis σ̂ in the body frame. For λ = 0 and a random initial attitude,
described by the quaternion qBI = (0.7792,0.1225,−0.1051,0.6056)T , the results reported in Fig. 2
are obtained using the complete and the minimum complexity command laws (Fig. 2(a) and (b),
respectively). The behavior of the simplified law, where only the ω̇d term is dropped, is almost
identical to that of the complete law and it is not reported for the sake of conciseness.

From the comparison of the bottom plots in Figs. 2(a) and (b) it is apparent that the pointing error
α and the non-nominal rotation angle α̂ share an almost identical behavior, with a convergence
time in the same order of magnitude, only slightly above 500 s for the slower minimum complexity
law. A more relevant difference is evident in the wheel rotation rate (and consequently in spacecraft
angular speed components, not reported in the figures), visible in the top portion of the same figure,
where Ω2 has a different sign during the initial transient that accelerates the spacecraft around
the admissible rotation axis ĝΓ. This is due to the additional terms in the complete law, that are
necessary to exactly cancel out the “fast terms” in spacecraft rotational dynamics. These terms are
required in the proof of asymptotic stability, in order to obtain a strictly negative definite Lypaunov
function (see Section 2), but they also result into more demanding RW command torques, with a
faster initial transient and higher peaks in rotation rates during the first few seconds. As a matter of
fact, the minimum complexity command law is simpler, computationally more efficient and it limits
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Figure 3. Case 1 with h = 0: wheel rates and pointing error for the nominal (a) and minimum-
complexity (b) command laws.
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Figure 4. Case 3 with h = 0: wheel rates and pointing error for the nominal (a) and minimum-
complexity (b) command laws.

Both laws are affected by saturation on the RW command torque in a similar way (Fig. 3(a) and
(b)), where the initial acceleration transient becomes longer. Obviously, the effect of saturation is
apparent on the behaviour of RW spin rates, which vary linearly during those time intervals when
the command torque u saturates. Nonetheless, the final convergence time to the desired alignment
of σ̂ over τ̂ is only marginally affected by the initial saturation of the command torque.

When a Case 3 scenario is dealt with, the behaviour of the complete and minimum complexity
command laws becomes almost identical, clearly indicating that in this circumstance the additional
terms required in the complete law for canceling the fast dynamics become less relevant, even in the
presence of torque saturation, as shown in Fig. 4.
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The misalignment of the command axes with respect to the principal axes of inertia has apparently
no impact on the convergence characteristics of the command law. This situation was investigated
by changing the nominal diagonal inertia tensor J with a “full” inertia tensor JF = TmJTT

m, where
Tm is a coordinate transformation matrix that expresses the misalignment of the control axes with
respect to the frame of principal axes of inertia. For a 10 deg rotation around a random axis,
â = (−0.4913,0.8222,−0.2873)T , one gets

Jm =

 40.4731 −0.0801 −0.1337
−0.0801 42.0811 0.0536
−0.1337 0.0536 41.3458

 kg m2 (21)

For λ > 0 (that is Cases 2 and 3), the perturbation of the alignment of the control axes has no
consequences on the convergence to the desired alignment of σ̂ over τ . Conversely, for λ = 0, the
system converges steadily towards a solution with a small, yet non negligible, steady state error,
that for the considered test cases, can become equal to 0.2 deg in terms of α .

Finally, the effect of a small non-zero initial angular momentum stored in the RW’s is considered.
This is a particularly relevant feature for small-size spacecraft equipped with magnetic actuators
that, during the detumbling phase, dumps the angular momentum in excess, possibly close to zero,
but never exactly canceling all the three components at the same time. As far as the single-axis
pointing problem is dealt with, there is no apparent difficulty for the considered command law to
aim exactly a body-fixed axis towards a desired direction, if the residual angular momentum is
sufficiently small (in the order of 0.01÷0.1 Nms). For higher values of the angular momentum,
some regions of the attitude space become not accessible when the spacecraft is at rest. Therefore,
aligning an arbitrary (non-pincipal axes of inertia) body-axis σ̂ towards a given inertially-fixed
direction may not be always possible. This is the subject of ongoing research

4. Conclusions

The dynamic implementation of a kinematic planning strategy for single-axis pointing by means
of two reaction wheels was demonstrated. An almost global stability to the desired alignment
of a body-fixed axis towards an inertially fixed direction was given in ideal conditions of zero
total angular momentum, no reaction wheel torque saturation and wheel spin axis aligned with
the principal axes of inertia. The resulting command law features three terms: one required for
generating an angular rate command that tracks the desired rotation around an admissible rotation
axis (that is, a rotation axis that lies on the plane of the two active reaction wheels; a second
one, related to the time-derivative of the angular rate command; and the third one, proportional to
the angular travel required to perform the admissible rotation, in the direction of the vector that
describes the evolution of this angle, as a function of the actual spacecraft angular speed. As a
matter of fact, numerical simulation demonstrates that even simplified versions of the command law,
where the second and the third terms are dropped, perform well also in non-ideal conditions, when
a small residual angular momentum is dealt with, the inertia tensor features non-zero off-diagonal
elements and saturation affects the maximum reaction wheel torque.
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Appendix 1

According to Rodrigues’ rotation formula the unit vector τ̂ can be seen as the rotation of σ̂ by an
angle α̂ about the axis ĝΓ

τ̂ = cos α̂ σ̂ + sin α̂ (ĝΓ× σ̂)+(1− cos α̂)(ĝΓ · σ̂) ĝΓ (22)

After recalling that τ̂ · σ̂ = cosα , one has:

cosα = cos α̂ +(1− cos α̂)(ĝΓ · σ̂)2 (23)

By taking time derivative in the body-axis reference frame, one obtains

˙̂α =
α̇ sinα +2(1− cos α̂)(ĝΓ · σ̂)

( ˙̂gΓ · σ̂
)

sin α̂

(
1− (ĝΓ · σ̂)2

) (24)

where

α̇ =−êm ·ω (25)
˙̂gΓ = ĝΓ× (a× ĝΓ) (26)

with
a = (ε̇× b̂)/

∥∥ε× b̂
∥∥ (27)

After substituting the expressions of α̇ e ˙̂gΓ into Eq. (24), and after some algebraic manipulation, all
the terms feature a dot product with the angular rate, that can be collected. Thus, after introducing
the vector quantity

Ψ =
(τ̂× σ̂)+2(1− cos α̂)(ĝΓ · σ̂)

{
[ĝΓ× (σ̂ × ĝΓ)]

(
b̂ · τ̂

)
− [(τ̂× ĝΓ) · (σ̂ × ĝΓ)] b̂

}∥∥ε× b̂
∥∥

sin α̂

[
1− (ĝΓ · σ̂)2

]
(28)

the expression of α̇ assumes the compact structure ˙̂α = Ψ ·ω .

Appendix 2

In what follows, the equality Ψ · ĝΓ = 1 proposed in Section 2.3. is verified. Starting from Eq. (10),
and recalling that b̂ · ĝΓ = 0 and [ĝΓ× (σ̂ × ĝΓ)] · ĝΓ = 0, it is straightforward to obtain

Ψ · ĝΓ =
(τ̂× σ̂) · ĝΓ

sin α̂ [1− (ĝΓ · σ̂)2]
(29)

provided τ̂× σ̂ = sinα êm, and êm · ĝΓ = cosβ one has:

Ψ · ĝΓ =
sinα

sin α̂

cosβ

[1− (ĝΓ · σ̂)2]
(30)

Consider the spherical triangle ABC defined by unit vectors σ̂ , ĝΓ, and êM depicted in Figure 5.
The great circle length from σ̂ to êM is α/2, from ĝΓ to êM is π/2−β , while the former angle in
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ĝΓ

σ̂ δ

êM
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α̂/2
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δ

α̂/2

α/2

Figure 5. Spherical triangles for the proof of Eq. (33).

êM is π/2 and the corner angle in ĝΓ is α̂/2. Let define γ as the great circle length from σ̂ to ĝΓ; by
applying the law of sines for spherical triangles the corner angle δ in σ̂ is given by:

sinδ = cosβ/sinγ (31)

Consider the isosceles spherical triangle ABD in Fig. 5 generated by the unit vectors σ̂ , ĝΓ, and τ̂ .
By applying the sines law

sinα

sin α̂
=

sinγ

sinδ
=

sin2
γ

cosβ
(32)

Finally, since ĝΓ · σ̂ = cosγ , Eq. (29) can be reshaped as:

Ψ · ĝΓ =
sin2

γ

cosβ

cosβ

1− cos2 γ
= 1 (33)
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