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Abstract: The system entry problem entails the capture of a spacecraft about a planet by way of
propulsive maneuver(s) or flyby(s) of a planetary satellite(s), or both. In the case of the Jovian system,
a balance is sought between the interplanetary time-of-flight, orbit insertion maneuver magnitude,
mass delivered to the system, capture orbit period, radiation dose, and mission complexity. Based
on a nominal asymptote, this paper introduces the analytical equations necessary to solve the
phase-free, singly-aided and doubly-aided capture problems, with a focus on the doubly-aided
capture problem in the Jovian system. An analytical approximation for the required phasing is
derived and the implications of the Laplace resonance are discussed. Analytical approximations
are used to seamlessly seed a multiple-shooting algorithm in order to arrive at the converged
high-fidelity solution space for the Europa Mission.

Keywords: Mission Design, Trajectory Design, System Entry, Capture, Singly Aided, Doubly Aided,
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1. Introduction

Gravity assist aided capture into a planetary system can significantly reduce the propulsive require-
ments of an insertion maneuver, and for a given launch vehicle, increase the delivered dry mass
that can be utilized for scientific instrumentation or other spacecraft subsystems, and/or potentially
allowing a shorter time-of-flight interplanetary trajectory to the planetary system. The only example
of aided capture to date is the Galileo mission, which performed an Io assisted capture in 1995,
reducing the insertion maneuver by about 175 m/s. Interestingly, it had an untargeted Europa
encounter of 32,000 km altitude, 4.6 hours prior to the Io flyby.[1] The trajectory likely came close
to a doubly-aided solution.

As early as the 1960’s, Longman [2, 3] studied each moon’s ability to affect capture about Jupiter
in terms of energy, yet he did not determine the specifics of the actual trajectories. The possible
energy change available from two-moon encounter combinations was additionally quantified. Cline
[4] studied the possibility of a single flyby capture within the solar system and concluded that
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it is not possible to capture without a maneuver assuming a direct Earth launch, excluding a
possible Triton assisted capture. Nock [5] studied phase-free, singly-aided assisted captures in many
systems with finite declinations, including powered flybys. Over the past several years, Lynam
has published many works on the topic investigating both double- and triple-flyby sequences by
deriving the relative phasing constraints and the associated directions of the incoming Jupiter excess
velocities.[6, 7, 8] Feasible interplanetary trajectory candidates, limited to direct interplanetary
trajectories, were identified by backwards propagation.

The proposed solution process differs from previous work in that a prediction for the doubly-aided
sequence is derived assuming a fixed interplanetary arrival asymptote. This assumption is due to the
fact that an enabling interplanetary trajectory, without regard to satellite-aided capture, accounts
for the majority of the total energy (∆v and delivered mass) and time-of-flight requirements. The
interplanetary trajectory may also define thermal requirements on the spacecraft from the extremes
in solar distance, as well as communication gaps to the Earth due to solar conjunctions. Thus,
the pragmatic mission design work-flow initiates with an exhaustive global interplanetary search,
taking into account the aforementioned system-driving considerations prior to selection. Within this
work-flow, single and double satellite-aided system capture is treated as an enhancement option
to further improve a given interplanetary design. Thus, the approach presented here is a forwards
method in that only small timing adjustments are introduced to an interplanetary trajectory of
interest to produce a potential doubly-aided capture scenario. The process also reduces the design
space to a small region of interest by automatically omitting the infeasible solution space. Finally,
this approach is applicable to any interplanetary solution, such as direct trajectories or multi-gravity
assists (e.g. VEEGA’s). A seamless process to convert an analytical prediction to an end-to-end,
Earth to Jupiter orbit insertion (JOI) optimized, high-fidelity trajectory is introduced. A detailed
derivation and description of the doubly-aided combinations that open the design space to finite
incoming declinations is additionally demonstrated.

Currently, the Europa Project has a baseline design that utilizes a single 300 km Ganymede flyby
prior to the JOI maneuver, resulting in a 200-day period capture orbit. There is an ongoing trade
study to understand potential propellant mass savings and system impact from a double capture
scenario. Doubly-aided solutions provide access to a flight time of the subsequent tour versus ∆v
savings trade space at the expense of increased mission complexity (navigation and spacecraft
design). An extreme example is to insert into the nominal 200-day orbit while realizing the
maximum ∆v savings of the doubly-aided solution. Alternatively, it is possible to capture into a
lower period orbit, trading reduced flight time for ∆v.

2. Solution Process

Using the methods detailed in this paper, Fig. 1 shows the capture contours of all ballistic dual
satellite flyby solutions in the Jupiter system as a function of incoming system hyperbolic excess
velocity and satellite flyby altitude. For simplicity, both flyby altitudes are held to the same value
of 500 km and the incoming hyperbola is in the plane of the moons. Here, capture is defined as
zero Jupiter two-body energy at the end of the dual-flyby sequence, and solutions below the curves
represent all entry conditions resulting in ballistic capture. Under the assumptions of co-planar,
circular planetary orbits, a minimum arrival v∞ of 5.65 km/s for a direct Earth-to-Jupiter Hohmann
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transfer would not result in a captured solution from a purely ballistic dual flyby system entry.
Therefore, all solutions investigated in this paper involve a propulsive maneuver near Jupiter.
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Figure 1: Dual flyby ballistic capture contours

Efforts to develop the analytical, phase-free approximation stem from a desire to rapidly identify
enabling trajectories and assess associated ∆v cost/savings. The flyby-maneuver-flyby (FMF)
sequence is the most likely for a non-zero excess velocity declination.1 The major drawback of this
sequence is that the uncertainty of the spacecraft state is amplified by the large maneuver before the
second flyby. It is for this reason that maneuver-flyby-flyby sequences are not considered. In the
flyby-flyby-maneuver (FFM) sequence, the first flyby must eliminate the inclination with respect the
orbital plane of the moons or the interplanetary trajectory must be modified such that the incoming
asymptote has zero declination. In this study, the FFM sequences are produced by constraining the
interplanetary asymptote to have zero declination with respect to the moon plane since reasonable
changes in the DSM magnitude are realized.

A search for doubly-aided sequences begins by considering the phase-free problem, where the
phasing of the moons is not yet incorporated. An analytical solution is derived, with key assumptions
for the phase-free approximation are listed as follows:

1. The orbits of the moons are circular and coplanar.
2. An impulsive maneuver is applied at the planetary periapsis.
3. The maneuver is in the anti-velocity direction.
4. Zero sphere-of-influence (ZSOI) flybys are modeled.
5. The flybys minimize energy with respect to the central body.
6. The inbound asymptote into the system is fixed.

A simple phasing check using planetary and moon ephemerides is used to match candidate phase-
free trajectories with nominal arrival dates. Once a candidate trajectory is matched with an arrival
date, it is transitioned to a high-fidelity model using simplified models for the planetary and satellite
ephemerides. For the purpose of this study, the JPL in-house high-fidelity optimization software,
Computer Optimization System for Multiple Independent Courses (COSMIC), is used to reconverge
the solution within the ephemeris model. The doubly-aided sequences are numerically sensitive by
nature. Therefore, an intermediate refinement step is necessary to lift the assumption of circular

1with respect to the orbital plane of the planetary satellites
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orbits during the transition to the ephemeris model. This refinement step entails a simple nonlinear
programming algorithm which uses the ephemerides to refine the solution. The refinement helps
to place the approximation within the basin of convergence of the optimization algorithm. The
solution process is summarized in Fig. 2.
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Figure 2: Solution process

3. Analytical Predictions

In the following sections, a detailed derivation of the states defining segments along doubly-aided
sequences is demonstrated. The assumptions listed in section 2 are applied to both the FMF and
FFM cases.

3.1. Flyby-Maneuver-Flyby Sequences

The phase-free doubly-aided solution for the FMF sequence is analytically calculated in five steps
with a sixth step to estimate the phasing. These steps are outlined as follows:

1. Select a value, rp, for the perijove radius of the incoming hyperbola.
2. Calculate the orbital elements of the incoming hyperbola, subject to the constraints on the

incoming asymptote and constraining the radius of the first node to be equal to the orbit radius
of the first flyby body.

3. Based on the B-plane target of the first flyby body that minimizes energy relative to Jupiter,
calculate the orbital elements after the first flyby.

4. Find the orbital elements after the maneuver subject to the second node radius, perijove radius,
and maneuver direction constraints.

5. Based on the B-plane target of the second flyby body that minimizes energy relative to Jupiter,
calculate the orbital elements after the second flyby.

6. Calculate the time-of-flight of each segment to provide a relative (angle subtended between
flybys) and absolute (angle orienting the first flyby relative to an inertial frame) phasing guess.
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The orbital elements before and after the first flyby, after the maneuver at perijove, and after
the second flyby are defined analytically from the imposed constraints, as previously described.
Expressions for these elements are derived in the following sections.

3.1.1. Orbital elements of the incoming hyperbola

The orbital elements of the incoming hyperbola are prescribed by the incoming asymptote and
radius of the first node. All orbital elements in the expressions within this section correspond to
the incoming hyperbola before the flyby, and are relative to the central body. The inertial excess
velocity with respect to the central body is expressed as

v−∞ = v∞

[
cosαe cosδe sinαe cosδe sinδe

]T (1)

where αe and δe are the right ascension and declination of the incoming asymptote with respect to
the planet. If the x-y plane of the inertial frame lies in the orbital plane of the planetary satellite,
then the range of possible inclinations of the incoming hyperbola with respect to this plane is
δe ≤ i≤ π−δe.

For a finite declination, the radius of the ascending or descending node of the hyperbola must equal
that of the planetary satellite for a flyby to be possible under the ZSOI assumption. Using the orbit
equation, the true anomaly at a node is

θN1 =

 arccos
(

p
eRN1
− 1

e

)
(flyby after periapsis)

−arccos
(

p
eRN1
− 1

e

)
(flyby before periapsis)

 (2)

where RN1 is the radius of the node, p is the semi-parameter, and e is the eccentricity about the
central body. The argument of periapsis is

ω =

{
−θN1 (flyby at ascending node)

π−θN1 (flyby at descending node)

}
(3)

and the radius at the node is

RN1 =

{ p
1+ecos(−ω) (flyby at ascending node)

p
1+ecos(π−ω) (flyby at descending node)

}
(4)

Because RN1 > 0, the existence of the nodes is given as follows:

cosω >−1
e : ascending node exists

cosω < 1
e : descending node exists

−1
e < cosω < 1

e : both ascending and descending nodes exist
(5)

The incoming asymptote is connected to the orbital elements of the hyperbola using the standard
perifocal frame, p̂-q̂-ŵ, as

vpqw−
∞ = Pv−∞ (6)
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where the elements Pi j of P are given as

P11 = cosΩcosω− sinΩsinω cos i
P12 = sinΩcosω + cosΩsinω cos i
P13 = sinω sin i
P21 = −cosΩsinω− sinΩcosω cos i
P22 = −sinΩsinω + cosΩcosω cos i
P23 = cosω sin i
P31 = sinΩsin i
P32 = −cosΩsin i
P33 = cos i

(7)

Here, Ω and i are the right ascension of the ascending node and inclination with respect to the
central body, respectively. The velocity vpqw−

∞ is obtained via the true anomaly at negative infinity,
θ∞, yielding the approach velocity of the hyperbolic orbit:

vpqw−
∞ =

[
vpqw

∞x vpqw
∞y 0

]
=

√
µc

p

[
sinθ∞ e+ cosθ∞ 0

]T (8)

where
cosθ∞ =−1

e
(9)

Here, µc is the gravitational mass parameter of the central body. Note that the first two terms of
vpqw−

∞ are greater than zero in the p̂-q̂-ŵ frame. It follows that

sin i =
v∞ sinδe

vpqw
∞y cos(ω)+ vpqw

∞x sin(ω)
=

sinδe

cos
(

ω + arctan
(
−vpqw

∞x
vpqw

∞y

)) (10)

where the quadrant is chosen in accordance with a prograde or retrograde solution. It also follows
from Eq. 6 that

Ω = αe− arcsin
(

tan(δe)

tan(i)

)
= αe + arccos

(
vpqw

∞x cos(ω)− vpqw
∞y sin(ω)

v∞ cos(δe)

)
(11)

A quadrant check is performed by comparing the two expressions in equation 11.

The radius and velocity vectors at the node are now computed as

rN1 = PT rpqw
N1

v−N1 = PT vpqw−
N1

(12)

where
rpqw

N1 = RN1
[

cosθN1 sinθN1 0
]T

vpqw−
N1 =

√
µc
p

[
sinθN1 e+ cosθN1 0

]T (13)

Thus, the full state at the node is defined analytically.
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3.1.2. Orbital elements after the first flyby

The state associated with the hyperbola, relative to Jupiter, after the first flyby is defined, provided
that the position of the flyby body at the first node is known. Assuming that the orbit of the planetary
satellite is circular, its velocity at the flyby is

vb1 =

√
µc

RN1
v̂1 (14)

where v̂1 is computed by identifying the direction, r̂1, from the central body to the position of the
planetary satellite, and the direction normal to the orbit, ĥ1. For a circular orbit,

v̂1 =
k̂1× r̂1

||k̂1× r̂1||
(15)

where
r̂1 =

rN1
||rN1||

k̂1 = ĥ1 =
[

0 0 1
]T (16)

recalling that the x-y plane of the inertial frame is defined to lie within in the orbital plane of the
flyby body. The incoming excess velocity relative to the planetary satellite is

v−
∞1 = v−N1−vb1 (17)

To determine the post-flyby velocity relative to Jupiter, consider the plane containing the incoming
excess velocity and flyby body velocity vectors. The orientation of the outgoing excess velocity
vector relative to this plane is defined using the angle β , depicted in Figure 16 in the appendix. A
flyby that minimizes energy with respect to central body sets β to zero (see appendix for details).
Then, the post-flyby velocity relative to the central body becomes

v+N1 = vb1 +v+
∞1 (18)

with a post-flyby energy of E+
N1. The orbital elements are, then, calculated from the state after the

flyby.

3.1.3. Orbital elements after the maneuver

Assuming the spacecraft performs an impulsive maneuver at periapsis in the opposite direction
of the velocity, the post-maneuver orbital elements relative to Jupiter are preserved except for the
semi-major axis and eccentricity. The maneuver must place the next node at the radius, RN2, of
the second planetary satellite. Using the orbit equation, the semi-major axis after the maneuver is
expressed as

adv =
RN2rp cosθN2− r2

p

RN2 +RN2 cosθN2−2rp
(19)

where the subscript (dv) indicates a condition after the maneuver at periapsis. It follows that

Edv =−
µc

2adv
(20)
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vp,dv =

√
2
(

Edv +
µc

rp

)
(21)

Note that the existence of a solution is not guaranteed for all cases, as Eq. 21 may result in an
imaginary number. Differencing the energy before and after the maneuver gives the maneuver
magnitude as

∆v =
2(Edv−E+

N1)
vp,dv+vp

(22)

Any remaining orbital elements may additionally be computed via well-known astrodynamics
relationships.

3.1.4. Calculating the orbital elements after the second flyby

After the maneuver, the spacecraft is propagated to the second node using Eq. 12. The velocity of
the second planetary satellite is computed as before, and the incoming excess velocity is

v−
∞2 = vN2−vb2 (23)

As in the previous case, β is set to zero to minimize energy, yielding the post-flyby velocity

v+N2 = vb2 +v+
∞2 (24)

Again, the orbital elements associated with this segment are computed from the state at the second
node.

3.2. Flyby-Flyby-Maneuver Sequences

The phase-free doubly-aided solution for the FFM sequence is analytically calculated in six steps.
Because the maneuver occurs at perijove, the sequence requires the first encounter moon to be the
outer moon, followed by the inner moon. The analytical process is outlined as:

1. Select a value for the perijove radius of the incoming hyperbola.
2. Calculate the orbital elements of the incoming hyperbola, subject to the constraints on the

incoming asymptote and the radius of first flyby moon’s orbit.
3. Based on a B-plane target that minimizes energy relative to Jupiter, calculate the orbital

elements after the first flyby.
4. If the orbit resulting from the first flyby crosses the orbital radius of the second flyby moon,

calculate the orbital elements after the second flyby based on a B-plane target that minimizes
energy relative to Jupiter.

5. Calculate the maneuver value which results in the desired capture period.
6. Calculate the time-of-flight of each segment to provide a relative (angle subtended between

flybys) and absolute (angle orienting the first flyby relative to an inertial frame) phasing guess.

3.2.1. Orientation of the incoming hyperbola

The major assumption associated with the FFM sequence is that the incoming declination relative
to the orbital plane of the moons, δe, is zero. Then, the inertial excess velocity with respect to the
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central body becomes
v−∞ = v∞

[
cosαe sinαe 0

]T (25)

The incoming excess velocity written in the perifocal frame is

vpqw−
∞ = Av−∞ =

√
µc

p

[
sinθ∞ e+ cosθ∞ 0

]T (26)

where p and e are the semi-parameter and eccentricity of the incoming hyperbola, and

A =

 cosφ sinφ 0
−sinφ cosφ 0

0 0 1

 (27)

represents a rotation in the plane. It is straightforward to solve for the rotation angle φ and perform
the associated quadrant check.

3.2.2. Orbital elements after the first and second flybys

Choosing the perijove radius, rp, of the incoming hyperbola before the flyby and assuming that the
flyby is performed prior to periapsis with respect to the central body, the true anomaly at the flyby
along the incoming hyperbola is

θN1 = arccos
(

p
eR1
− 1

e

)
(28)

where R1 is the orbital radius of the first flyby moon. The excess velocity and velocity with respect
to the central body before and after the flyby are computed in the same manner as the previous case
with β = 0

r1 = AT rpqw
1

v−1 = AT vpqw−
1

(29)

where r1 and v−1 are the position and velocity of the spacecraft with respect to the central body
before the flyby. Here, the state vector in the p̂-q̂-ŵ-frame is given in Eq. 13 and

v−
∞1 = v−1 −vb1 (30)

v+1 = vb1 +v+
∞1 (31)

There is no guarantee that the trajectory will cross the radius of the second orbit for a given rp; all
infeasible solutions are discarded. For the feasible trajectory set, the velocity after the second flyby
is calculated as

v−
∞2 = v−2 −vb2 (32)

v+2 = vb2 +v+
∞2 (33)

For a target period, T , the semi-major axis and energy after the maneuver are

adv =
(

µcT 2

4π2

) 1
3

Edv =− µc
2adv

(34)
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If rp is the radius of periapsis and vp is the velocity of periapsis before the maneuver then,

vp,targ =

√
2
(

Edv +
µc
rp

)
∆v = vp,targ− vp

(35)

3.3. Phasing

Once a given phase-free solution is located, the next step is to determine the available arrival epochs
by locating times within the ephemerides that satisfy any phasing constraints. Pragmatically, an
interplanetary trajectory is already selected for planetary arrival, as this segment of the trajectory
typically has the most influence over minimization of total mission ∆v. Given the typical time scales
of planetary moon orbits compared to that of the interplanetary trajectory, it is reasonable to assume
that the planetary arrival v−∞ vector is inertially fixed. This vector serves as a useful reference for
determining which phase-free solutions meet the requirements of a phase-fixed solution. Assuming
a planet-centered inertial reference frame where the X̂-Ŷ axes are constrained within the moon
plane and the Ẑ axis is constrained with the north-pole vector, the asymptote frame x̂a-ŷa-ẑa may be
constructed. Defining the x̂a-axis as the projection of the asymptote into the moon plane, the frame
is defined as

x̂a =

[
v−∞ · X̂ v−∞ · Ŷ 0

]T√
(v−∞ · X̂)2 +(v−∞ · Ŷ)2

(36)

ŷa =
Ẑ×xa

||Ẑ×xa||
(37)

ẑa = x̂a× ŷa (38)

This asymptote frame is used as the basis for measuring angles for the phase-fixed problem.

For doubly-aided satellite capture, the phasing problem requires two angles to match at the epoch
of the first flyby. Define θ1 as the angle of the first encounter moon with respect to x̂a (i.e., the
absolute phasing), and θr as the relative phasing angle between the two moons. Both angles are
measured positive counter-clockwise, with desired values of θ1,d and θr,d identified in the phase-free
problem. A sketch of the moons in their desired configurations within the asymptote frame appears
in Figure 3. In the phasing problem, it is assumed that a reference arrival epoch tref, consistent with
the planetary arrival asymptote, is known. For this epoch, the moons are in arbitrary orientations
with respect to the desired locations, as depicted in Figure 4(a). An encounter time, t1 = tref +∆t,
with the first moon is sought for which the required absolute phasing is available. It is desirable
to minimize ∆t in order to preserve the assumption that the arrival asymptote is inertially fixed.
Sampling the moon ephemerides at tref yields θ1,0(tref) and θr,0(tref), i.e., the initial absolute and
relative phasing angles, respectively. The absolute angular velocities for the moons are n1 and n2,
with relative angular velocity nr. These angular rates are computed as

n1 = 2π/T1 (39)
n2 = 2π/T2 (40)
nr = n2−n1 (41)
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(a) FMF sequence (b) FFM sequence

Figure 3: Desired moon configuration for a feasible doubly-aided capture sequence

where T1 and T2 are the orbital periods of the first and second bodies. The time history of the
absolute and relative phasing is, then, simply

θ1 = θ1,0(tref)+n1∆t (42)
θr = θr,0(tref)+nr∆t (43)

The most desirable solutions from the available phase-free set are those with a small maneuver at
perijove and minimal ∆t. Let the phasing time ∆t be decomposed into two parts as

∆t = ∆t1 +∆tr,1 (44)

The time until the desired relative phasing first occurs (θr,1 = θr,d) is

∆tr,1 =
θr,d−θr,0

nr
(45)

with θ1(tref +∆tr,1) = θ1,1. This relative phasing repeats every m ∈ Z synodic periods

θr = θr +2πm (46)

where the synodic period Ts is

Ts =
2π

|nr|
(47)

With the relative phasing satisfied, the moons may still be in arbitrary orientations, as sketched in
Figure 3. To satisfy both the relative phasing and the absolute phasing, it is required that,

∆t1 = mTs (48)

so that the difference between the actual and desired phasing angles is

|∆θ1|= |θ1,d−θ1,1−n1mTs|< ε (49)
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(a) At tref (b) At tref +∆tr,1

Figure 4: Moon orientations during solution process

where ε is a user-specified error tolerance. The tolerance ε is selected to minimize m while
simultaneously maintaining a small discontinuity between the actual and desired phasing angles.
The value of this tolerance is an important consideration when transitioning the analytical solution
to a high-fidelity model. Considering both positive and negative values of m, values of ε < 17◦ are
generally sufficient to locate a solution while maintaining |∆t|< 40 days to maintain predictions
based on the nominal asymptote. Ideally, a balance between the magnitudes of ε and ∆t can be
found; otherwise, either ε or ∆t is minimized while allowing an increase in the other. Locating an
epoch that satisfies Eq. (49), the phasing of the moons is approximately equal to the desired phasing
depicted in Figure 3.

A special case in the solution space occurs when the the moons are in orbital resonance with one
another, for example Io, Europa, and Ganymede that are in a 1:2:4 Laplace Resonance. The mean
motions of the moon’s are expressed as [9]

nI−2nE = ν

nE −2nG = ν
(50)

where the subscripts I, E, and G indicate the mean motions Io, Europa, and Ganymede, respectively,
and ν is a small positive value. Setting these equations equal to each other gives the resonance
condition nI−3nE +2nG = 0. Then nE = nI−ν

2 , nG = nE−ν

2 . The synodic periods are expressed as

T sEI =
2π

nE+ν
= 4π

nI+ν

T sGE = 2π

nG+ν
= 4π

nE+ν

T sGI =
2π

3(nG+ν) =
8π

3(nI+ν)

(51)

In each case, if ν = 0 then the absolute phasing of the first flyby moon will return to the same value
after an integer multiple of synodic periods. For example, if the first flyby body is Ganymede and
the second is Io then Ganymede will return to the same location after three synodic periods. More
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Table 1: Drift and drift rates from a repeating pattern
Sequ. Syn. Per. (days) Drift (rad/syn. per.) Total Drift/cycle (deg.)
G-I 2.35 −2π

3
ν

nG
-5.3

G-E 7.05 −2π
ν

nG
-5.3

E-G 7.05 −4π
ν

nE
-5.3

E-I 3.53 −2π
ν

nE
-2.6

I-G 2.35 −8π

3
ν

nI
-5.2

I-E 3.53 −4π
ν

nI
-2.6

All combinations have a drift rate of -ν .

Table 2: Drift and drift rates of the Callisto combinations
Sequ. Synodic Period (days) Total Drift/cycle (deg.)
C-I 1.98 42.7
I-C 1.98 402.7(42.7)
C-E 4.51 97.3
E-C 4.51 457.3(97.3)
C-G 12.52 270.1
G-C 12.52 630.1(270.1)

accurately,

θ1,1 (m) = θ1,1 (0)+m
(

2π

3

)(
1

1+ ν

nG

)
≈ θ1,1 (0)+m

(
2π

3

)(
1− ν

nG

)
(52)

and Ganymede drifts from its original location by approximately 2π
ν

nG
every three synodic periods.

Table 1 shows the first order drift rates for each combination. Using ν = 0.74 deg/day [10] and
|∆t|< 40 days results in a drift of nearly ±30 deg. Therefore, if the proper phasing lies just outside
of the heuristic range then the maximum time until the next opportunity is 405 days. However, it
is unlikely that an equivalent interplanetary trajectory will exist at this time. Callisto is not in the
Laplace resonance with the other moons. Generally for any combination m1-m2 the synodic period
is 2π

n1
|n2−n1| with a drift rate of n1, see Tab. 2.

4. Integrated Trajectories

4.1. NLP Cleanup

Trajectories that satisfy the phasing criteria may be transitioned into high-fidelity solutions. The
circular, coplanar assumption of the moons employed the preceding analytical approaches are
generally accurate for estimating performance, however they introduce non-trivial degradation when
immediately applied as a high-fidelity initial guess. Therefore, a fast and robust pre-conditioning
step is added that removes assumptions #1 and #3 from the process outlined in Section 2 and
introduces moon ephemerides to the modeling, necessitating three-dimensional spacecraft motion.
The FMF process is summarized here, but the FFM procedure is fundamentally very similar.

For the FMF problem in the ephemeris, the first moon B-plane aim point (Bθ1) and JOI must
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contribute targeting the second moon as well as energy reduction. Any non-tangential targeting
contribution from the JOI reduces the efficiency of the maneuver, however since the solutions satisfy
phasing within the prescribed tolerance, the efficiency loss is expected to be small. Additionally, the
targeting contribution in Bθ1 may lead to inefficiency in energy reduction. Optimization of the JOI
maneuver is thus a function of the moon encounter times, t1 and t2, Bθ1 and the perijove time tp and
position rp where JOI occurs. Since t1 and t2 specify the ephemeris state vector of each moon, tp is
a free variable, the capture sequence is fully defined by solving two fully specified, independent
zero-revolution Lambert problems, namely{

v+1 ,v
−
p
}

= f(tp− t1,r1(t1),rp) (53){
v+p ,v

−
2
}

= f(t2− tp,rp,r2(t2)) (54)

Equations (53)-(54) can be solved with well-known approaches such as the Gooding algorithm.
[11] With the Lambert trajectories solved, v+

∞1 and v−
∞2 are immediately available via Eq. (31) and

Eq. (32), respectively. In addition, the JOI is available from the ∆v due to the velocity discontinuity
between the two independent arcs, i.e.,

∆v = ||vp
+−vp

−|| (55)

A feasible dual capture must still satisfy equality constraints on the fixed Jovian v−∞ vector given
in Eq. (1) immediately before the first moon flyby, and a constraint on the desired Jovian capture
period, T (or energy E), after the second moon flyby. Formally, the optimization problem is posed
as

Min. J = ∆v (56)

Subject to

F(X) =


v∞,des− v∞

αe,des−αe
δe,des−δe
Edes−E

= 0 (57)

where
X = [t1, t2,Bθ1, tp,rp]

T (58)

Evaluation of Eq. (57) requires a mapping of v−
∞1 = v−

∞1
(
v+

∞1,Bθ1,rp1
)

and v+
∞2 = v+

∞2
(
v−

∞2,Bθ2,rp2
)

where rp1 and rp2 are fixed moon flyby radii that are chosen in the phase free analysis, and Bθ2 is
always chosen as β = 0 (maximum energy reduction) as defined in the Appendix.

These relationships may be computed through standard B-plane mapping assuming the zero sphere
of influence.[12] Equation (30) yields v−1 , and subsequently a reference Jovian state vector

{
r1,v−1

}
along the incoming asymptote to the system. This state vector may be converted to standard orbital
elements, and then Eq. (1) and Eqs.(6)-(9) can be used to obtain v∞, αe, and δe. Equation (33) yields
v+2 , and subsequently, the Jovian capture orbit reference state

{
r2,v+2

}
that specifies E from vis-viva.

The preceding optimization problem may be solved with with standard nonlinear programming
(NLP) packages such as SNOPT.

The FFM problem utilizes a similar approach, but only one Lambert arc is required between the
flybys. The standard B-plane mappings are used to compute

{
r1,v−1

}
and

{
r2,v+2

}
using the same
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assumptions. However, the moon 2 to JOI arc is analytically propagated to perijove and the JOI ∆v
is explicitly calculated from vis viva given Edes. The problem reduces to an iterative search for a
unique solution of X = [t1, t2,Bθ1]

T that satisfies the first three constraints in Eq. (57).

All initial guesses satisfying the phasing criteria rapidly converge in both cases, even with numerical
partial derivatives. The converged solutions are sufficiently accurate as an initial guess for the higher
fidelity model.

4.2. High-Fidelity Optimization

Solutions that are solved in the NLP cleanup stage are suitable to initiate a high-fidelity, doubly-
aided satellite capture design. The motion of the spacecraft in a numerically-integrated, high-fidelity
model is described by a system of second order ODE’s dominated by central-body gravitational
acceleration

r̈+µ
r
r3 = ap, (59)

where the radius r = ||r|| is the magnitude of the inertial position vector r. The remaining terms
ap are perturbing accelerations. It is noted that when ||ap||= 0, the fundamental system reverts to
the two-body problem, and when coupled with the assumptions of the preliminary design process,
reflects a model that exactly captures a solution of the doubly-aided capture problem thus far. To
minimize round-off errors, the central body chosen to represent the left-hand side of Eq. (59) is
always switched to the dominant gravity field as needed based on the sphere-of-influence. In general,
the perturbing acceleration can capture any additional dynamical effects, but for the problem of
interest it can be decomposed as

ap = an +aq +asrp +ad +agr (60)

to reflect contributions from non-spherical gravity an, third-body perturbations aq, solar radiation
pressure asrp, atmospheric drag ad , and general relativity agr. Evaluation of aq requires an ephemeris
file that specifies the position and velocity of all moons and planetary objects as a function of time,
e.g., the Jet Propulsion Laboratory (JPL) binary ephemeris files DE430 (planets) and JUP230
(Jovian moons). For brevity, detailed discussion of the models for the perturbing accelerations is
omitted, and can by found in references such as Vallado.[13] Typically, an and aq will dominate
the perturbations from an order-of-magnitude perspective and thus, for this analysis all other
components of ap are ignored.

To transition solutions into the high-fidelity integrated model described by Eq. (59), a constraint/
variable formulation is assumed that is consistent with the solution methodologies of software pack-
ages such as the Computer Optimization System for Multiple Independent Courses (COSMIC), the
Computer Algorithm for Trajectory Optimization (CATO),[14] and Copernicus,[15] and adaptable
to others.[16] For this analysis, the authors chose COSMIC, a package within JPL’s Mission-design
and Operations Navigation Toolkit Environment (MONTE) that facilitates configuration control in
modeling and physical constants among mission designers on the Europa project. Free variables in
the form of control points (CPs) are specified at the gravity assist bodies as well as at points where
the trajectory must depart the interplanetary solution and arrive at the capture orbit. The control
points are numerically integrated in forward- and reverse-time, and a break point (BP) exists where
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at the midpoint of two arcs. The break points are associated with discontinuities in position and
velocity that must be eliminated within a prescribed tolerance. Maneuvers are also placed at control
points as needed. Let any trajectory sequence consisting of a break point between a pair of control
points be defined as a “leg”. The goal of the high-fidelity trajectory design process is to adjust the
control points and maneuvers to satisfy the BP discontinuity on each leg and minimize total ∆v.
With this transcription in mind, the initial high-fidelity design process is formulated as a four-leg
problem, with five control points and two maneuvers. These variables, along with their rationale,
are summarized in Tab. 3 and sketched in Fig. 5 for the FMF case. It is noted that CP#4 is reversed
with CP #3/Mvr. #2 in Tab. 3 and Fig. 5 for the FFM scenario.

Table 3: Control variable details, FMF case

Maneuver
(Mvr.) #

CP # Leg # Central Body Location Parameterization

Components
to Vary wrt

Central
Body

# Control
Variables

Rationale

- 1 1 Sun
Deep space, ∼
1 year before

capture
Cartesian None 0

Interplanetary
trajectory anchor

state

1 - 1 Sun At CP #1 Cartesian ∆v 3 Flyby targeting
TCM

- 2 1–2 Moon #1
Moon #1
periapsis

Hyperbolic Bθ , v−∞ , t 5
Fixed-altitude

flyby state

- 3 2–3 Planet
Planetary
periapsis

Hyperbolic Bθ , v−∞ , t 5
Periapsis anchor

point

2 - 3 Planet At CP #3 Spherical ∆v 3
Energy reduction

maneuver at
periapsis

- 4 3–4 Moon #2
Moon #2
periapsis

Hyperbolic Bθ , v−∞ , t 5
Fixed-altitude

flyby state

- 5 4 Planet
Post-Moon #2

planetary
apoapsis

Keplerian rp, i, Ω, ω , t 5
Fixed-period
post-capture

apoapsis state

Deep Space Flyby 1 Maneuver at
 Perijove

Flyby 2 Capture Orbit
Apojove

Figure 5: Control point transcription, flyby-JOI-flyby case (not to scale)

Due to the assumption that the incoming asymptote is approximately inertially fixed over the interval
∆t, all components of the Trajectory Correction Maneuver (TCM), i.e. maneuver #1, are initialized
to be zero. The NLP solver adjusts the TCM to account for the new time of the system entry.
Once an optimal solution is found, a follow-on end-to-end high-fidelity optimization stage may
be appended to actively include the preceding Earth launch sequence and any gravity assists from
the interplanetary trajectory. This follow-on process is useful for reducing/eliminating the TCM
and producing an end-to-end optimal total ∆v that includes the launch injection maneuver and any
nominal TCM’s in the reference interplanetary sequence.
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5. Results

Recall that the design process outlined in Fig. 2 begins with an interplanetary asymptote consistent
with an enabling interplanetary trajectory. To demonstrate a detailed application of the design
process, we choose an interplanetary trajectory consistent with the Europa Mission. These trajecto-
ries, along with details on the entire mission design, are summarized in detail by Lam, Camacho,
and Buffington.[17] The interplanetary trajectories for the Europa mission are chosen on the basis
of delivered mass requirements and the interplanetary time of flight. Currently, the mission is
compatible with launch on Evolved Expendable Launch Vehicle (EELV) class (Atlas V 551, Delta
IV Heavy, and Falcon Heavy) launch vehicles as well as the Space Launch System (SLS). To
accomplish this cross-compatibility in terms of delivered masses to Jupiter, the EELV’s require
either a Venus-Earth-Earth gravity assist (VEEGA) trajectory or a Earth-Venus-Earth-Earth gravity
assist (EVEEGA) trajectory, whereas the SLS launch vehicle can go direct (Earth to Jupiter). For
this analysis, we analyze the 2022 interplanetary trajectory options in detail. The direct option,
the 14F8 trajectory, is selected for the majority of the trade studies, while the EVEEGA option,
the 15F9 [18] trajectory is used to demonstrate application of the method to a multi gravity-assist
solution. A summary of the two options appears in Tab. 4 and Fig. 6.

Table 4: Interplanetary trajectory options for the Europa Mission with launch in 2022
Case 14F8 15F9
Launch Vehicle SLS EELV
Launch Period Jun. 4 - 24 May 25 - Jun. 4
Trajectory Type Direct EVEEGA
Flight Time to Jupiter 2.1 yrs. 7.6 yrs.
Launch ∆v (C3)† 6,462 m/s (81.8 km2/s2) 3,736 m/s (11.5 km2/s2)
Deep Space Maneuvers 174 m/s 6 m/s
Jupiter v−∞ ,αe,δe

‡ 5.718 km/s,347.58◦,−8.653◦ 5.550 km/s,4.8458◦,2.577◦

JOI Maneuver∗ 893 m/s 843 m/s
JOI rp 12.0 Rj 12.1 Rj
Total Launch to JOI ∆v 7,529 m/s 4,585 m/s
Jupiter Capture Orbit Period 200 days 200 days
All maneuvers are worst-case values over the entire launch period.
†200 km Earth parking orbit
‡EME2000 coordinates
∗500 km Ganymede-aided capture

Given the 14F8 arrival asymptote, a database of analytical phase-free solutions is rapidly generated
for all possible moon combinations. The phasing check is then applied to prune accessible moon
combinations, which are summarized in Fig. 7. Through iterative application of the design process,
it was found that 40 days of variation in ∆t constitutes a reasonable range for this application. Recall
that since the encounter moon order constrains the solution space for FFM sequences, the upper
corner of Fig. 7(b) is always inaccessible due to geometry. All of the remaining solutions presented
assume that the first flyby altitude is 500 km.

5.1. Flyby-Maneuver-Flyby

For the FMF cases, the six accessible combinations determined in Fig. 7(a) are selected for transition
into high-fidelity solutions. Given a flyby altitude of 500 km for the second flyby, all solutions
of interest are represented in Fig. 8. For reference, all 12 phase-free solutions are displayed,
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(a) 14F8 (a two-arrival-date strategy is imple-
mented to minimize total ∆v over a 21-day launch
period)

(b) 15F9

Figure 6: Europa Mission interplanetary trajectories with launch in 2022 [17]
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(a) Flyby-Maneuver-Flyby
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(b) Flyby-Flyby-Maneuver

Figure 7: Phasing satisfaction of the 14F8 asymptote assuming ∆t < 40 days

although those with infeasible phasing utilize thinner lines. The remaining 6 accessible solutions are
represented by thicker lines. The analytical solutions in Fig. 8 yield rapid insight into the potential
mission design performance. For example, Callisto-Ganymede combinations could be used to
reduce the capture period to within 71 days with the same JOI as the baseline direct solution in
Tab. 4. Alternatively, for the same capture period, the JOI could be reduced by 313 m/s to a value of
580 m/s.

For proof-of-concept, the six accessible combinations are discretized into a set of initial high-fidelity
guesses. Following the prescribed design process, all of these guesses initially converge in the NLP
cleanup, and then in the integrated environment, and are represented by the blue points in Fig. 8.
For preliminary comparison, the deep space maneuvers are omitted and only the JOI values are
compared. For all of the six accessible phasing combinations, the converged v∞ in the integrated
environment is re-run through the phase-free analysis in Fig. 8 to compare the JOI accuracy. In
five of the six cases, the converged solutions closely match the phase-free solutions within 10 m/s.
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Significant deviations in the JOI maneuver are only evident for the Ganymede-Callisto phase-free
combination, which results from ε = 17◦, the maximum allowable value in Eq. 49. Therefore, a
non-trivial portion of inefficiency is introduced into the JOI to re-target moon 2. Even in this case,
the JOI still yields a notable benefit compared to the baseline solution in Tab. 4
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Figure 8: Phase-free versus converged, high-fidelity solutions; thinner lines indicate combi-
nations that did not satisfy phasing constraints, altitude for second flyby is 500 km

Pragmatically any alternative option still must perform a qualitatively similar Jupiter system tour
as the 14F8 trajectory. Timing, orientation, and rp of the capture ellipse all have major impacts
on achieving this goal. As an example the Callisto-JOI-Ganymede solution for a 190 day capture
period is compared against the nominal solution in Tab. 5 and plotted in Fig. 9. The 4◦ and
2.1◦ differences in the capture longitude and line of apsides can be reconciled by the subsequent
pump-down sequence to the first Europa flyby. This evaluation is ongoing for each of the feasible
options. Since the C3 and DSM are nearly equivalent for these two options a similar delivered mass
prior to JOI can be assumed. The predicted data for a starting mass of 6000 kg and an engine Isp of
300 s is plotted in Fig. 10. If the nominal period of 200 days is targeted, then nearly 500 kg of mass
can be added post-JOI. For an equivalent mass, the spacecraft can be delivered into a 70 day orbit.

From a navigational perspective, a 500 km altitude for the second moon flyby may be considered
too risky. Hardware uncertainties introduce state vector error in the post-JOI spacecraft state
vector. In lieu of a specific altitude requirement, the capability of the FMF trajectories may also be
parametrically varied by varying the altitude range up to a value of 10,000 km, which significantly
reduces the effect of the flyby while reducing navigational risk. This design space is visualized in
Fig. 11 using the phase-free analysis on the accessible combinations only. Here, the lines bound the
expected performance envelope throughout the JOI vs. capture period trade space. Ultimately, the
proper selection of flyby altitude for the second moon flyby would require a detailed navigational
study.

As previously mentioned the approach is applicable to any interplanetary solution. A sample
EVEEGA interplanetary trajectory with a Callisto-JOI-Europa capture sequence is shown in Fig.
12 and detailed in Tab. 6. Note that the total ∆v including launch is optimized in the end-to-end
trajectory.
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CJG (black)

14F8 (gray)

Figure 9: The nominal 14F8 and CGJ capture el-
lipses

Table 5: Parameters for the nominal
Europa capture and the CJG point
design
Parameter 14F8 CJG
Launch Date (UTC) 6/13/2022 6/13/2022
Launch C3 (km2/s2) 78.3 78.4
DSM Date (UTC) 3/13/2023 3/13/2023
DSM ∆v (m/s) 103 104
Moon 1 Name/Alt. G/500 C/500
Moon 1 Date 3/4/2025 3/12/2025
JOI rp (Rj) 11.4 9.2
JOI (m/s) (Rj) 891 674
Moon 2 Name/Alt (km) N/A G/1,000
Moon 2 Date N/A 3/14/2025
Capture Period (days) 198 190
Capture Long./inc. (deg.) 0.9/4.9 1.2/3.3

Angles are measured with respect an inertial frame with the
z-axis aligned with the north rotational pole of Jupiter and x-y
plane approximately in the plane of the moon orbits.
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Figure 10: Mass and ∆v after JOI versus capture period for the CJG case

5.2. Flyby-Flyby-Maneuver

Since the maneuver is always performed at perijove the number of combinations is significantly
reduced from the FMF sequence with the feasible combinations shown in Fig. 7(b). Although a
general constraint of ∆t < 40 days was set for phasing, it is noted that all phasing for the FFM
combinations is satisfied within ∆t < 20 days, which is favorable for reducing interplanetary
targeting maneuvers. Another major difference among the two cases is that for a given rp, the JOI
magnitude is pre-determined by the radius of the last node crossing for FMF solutions. Since both
flybys have already been performed, the JOI for the FFM cases is a free variable.

The DSM is modified such that the incoming asymptote is expressed as: (v−∞ = 5.715 km/s
αe = 6.024◦, δe =−0.106◦) in EME2000 which necessarily places the incoming hyperbola into
the plane of the moons. Figure 13 shows the variation of ∆v with rp for a capture period of 200 days.
The contours represent altitudes evenly spaced from 500-10,000 km for the second flyby. Returns
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Figure 11: Upper and lower ∆v bounds for the second flyby altitudes ranging from 500-
10,000 km for feasible combinations
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Figure 12: EVEEGA+CJE sample solution

Table 6: EVEEGA+CJE
Parameter Value
Launch Date (UTC) 06/01/2022
Launch C3 (km2/s2) 10.7
DSM Date (UTC) 01/01/2028
DSM ∆v (m/s) 48
Moon1 Name/Alt. C/500
Moon1 Date 1/3/2030
JOI rp (Rj) 6.5
JOI (m/s) (Rj) 688
Moon2 Name/Alt (km) E/500
Moon2 Date 01/05/2030
Capture Period (days) 200

Angles are measured with respect an inertial frame with the
z-axis aligned with the north rotational pole of Jupiter and x-y
plane approximately in the plane of the moon orbits.

on the second flyby rapidly diminish for altitudes from 500-2,000 km. As rp is increased towards
the radius of the second flyby the ∆v savings diminish as a nearly tangential approach to the second
body is inefficient for energy reduction. As a point of reference, the phase-free, NLP refinement, and
converged high-fidelity solutions are plotted beside each other showing close agreement. Similar
agreements exist among the phase-free and converged high-fidelity solutions as in the last section.

5.3. Comparison and Launch Period Analysis

Comparison of all solutions (nominal, FMF, and FFM) is perhaps best accomplished by aggregating
total ∆v including the launch injection maneuver, any DSM’s, and JOI. Despite specific impulse
differences of individual maneuvers, this approach effectively decouples propulsion hardware from
the analysis. For the detailed comparison, we compare integrated solutions within the vicinity of
14F8 in Fig. 14. All solutions are completely optimized for ∆v from launch through apojove. For
simplicity, the analysis is limited to trajectories with a capture period similar to the nominal solution
of 200 days, and the second flyby altitude is chosen to be 500 km in order to represent a best-case
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Figure 13: Sensitivity to the second flyby altitude for the FFM sequence; nominal single
Ganymede flyby solution is plotted for comparison, variation in the DSM (151-172 m/s) not
included.

in performance. Viewing the performance of all trajectories from this perspective is useful for
weighing the potential radiation trade-offs that might further impact the system. Additionally, the
perijove radii will factor into the perijove raise maneuver and any subsequent moon tour design.
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Figure 14: Launch through JOI ∆v comparison of solutions in the vicinity of the nominal
14F8 arrival. All solutions have a capture period within 190-200 days, with 500 km for the
second flyby altitude.

From Fig. 14 it is clear that the optimized Callisto-JOI-Ganymede (CJG) solution is highly
advantageous from a ∆v perspective, while maintaining a perijove radius that is very close to the
nominal solution. This CJG solution is chosen for further analysis to determine, as an initial proof
of concept, whether the geometry-dependent dual capture solutions might exist over the 21-day
launch period that is typically expected for interplanetary missions. The launch date of this CJG
solution is varied and re-optimized in the integrated environment to find an optimal envelope that
bounds the performance. Considering a date range from 6/3/2022 to 6/23/2022, Fig. 15 decomposes
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the deterministic post-launch ∆v (DSM’s and JOI typically executed by the spacecraft engine) and
the C3 (typically supplied by the launch vehicle upper stage) over the period. In this case, choosing
two different feasible CJG arrival dates facilitates upper bounds on ∆v and C3 of 807.8 m/s and 81.1
km2/s2, respectively. The arrival dates are spaced approximately by four months with 12/3/2024
shaded in blue and 3/12/2025 in red. The multiple arrival date strategy is enabled by the drift rate of
Callisto-Ganymede (Tab. 2) which is high relative to combinations constrained to the inner three
moons. The existence of the earlier arrival is also enabled by an alternate direct interplanetary
trajectory with an earlier arrival date that satisfies the phasing criteria.
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Figure 15: Conceptual CJG launch period using dual arrival dates.

6. Future Work

Future work must address many additional concerns before applicability to the Europa mission can
be determined. The mission includes a tour design that specifically meets all of the broad science
goals.[18] Alterations to the system entry will change the geometry of the capture ellipse, including
lighting conditions, the magnitude of the periapsis raising maneuver required for subsequent flybys,
and the total radiation dose. Any favorable solution must demonstrate that these changes can be
compensated for without adversely impacting the achievement of these goals. Another consideration
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is the existence of backup launch trajectory with comparable performance to a candidate doubly
aided trajectory. Additionally, a navigation analysis must prove that the spacecraft state can be
estimated to an accuracy which does not place unacceptable risk to the mission.

7. Conclusions

A novel design process to robustly design doubly aided capture solutions was introduced. Key to
the approach is the perspective that the qualitative aspects of the interplanetary trajectory account
for the major system-driving requirements. Therefore, an assisted solution is considered a mission
enhancement and the task of broadly searching for an interplanetary trajectory in order to find a
favorable entry trajectory is eliminated. This process was successfully applied to the 2022 direct
interplanetary trajectory for the Europa Mission using both FMF and FFM sequences, demonstrating
an alternate approach to the current Ganymede-assisted baseline. Additionally, the existence of an
optimized 21-day launch period for an FMF case was demonstrated by using the strategy of repeat
arrival geometry. The process was further applied to the 2022 EVEEGA trajectory for the Europa
Mission with an optimized, end-to-end integrated dual capture example.
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Appendix

The space of all possible post-flyby excess velocities is formed by a cone whose axis is aligned
with the incoming excess velocity vector v−∞ and with a half-angle equal to the turn angle δ =

2arcsin
(

1
e f

)
. Here, e f = 1+ rp f v2

∞

µb
is the eccentricity relative to the flyby body, where rp f is the

periapsis radius of the flyby hyperbola, and µb is the gravitational mass parameter of the flyby body.
The distance from the vertex to the base of the cone is v∞, i.e., the magnitude of v−∞ and v+∞ , as
depicted in Fig. 16. The pump angle, α , orients the incoming excess velocity vector relative to the

Figure 16: Geometry of possible post-flyby excess velocity orientations

flyby body velocity, vb, as defined with respect to the central body. The pump angle is illustrated
in Fig. 17, where v−c represents the pre-flyby spacecraft velocity relative to the central body. The

Figure 17: Pump angle geometry

î− ĵ plane in Fig. 16 contains the vectors vb and v−c , and î is aligned with v−∞ . The turn, pump, and
B-plane angles are defined within the ranges δ ∈ [0,π], α ∈ [0,π], β ∈ [0,2π], respectively

The change in energy effected by the flyby can be derived and is given as

∆E = vbv∞ [cosα(cosδ −1)− sinα cosβ sinδ ] (61)

Assuming the angle ranges given for α and δ , the second term within the brackets, (−sinα cosβ sinδ ),
is minimized for β = 0. Thus, for given values of α and δ , the post-flyby energy is minimized via a
flyby for which the B-plane angle β is zero.
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